Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):m34–m35. doi: 10.1107/S1600536812049537

Chlorido[1H-1,2,4-triazole-5(4H)-thione-κS]bis­(triphenyl­phosphane-κP)copper(I) acetronitrile monosolvate

Kofsoh Wani a, Chaveng Pakawatchai a, Saowanit Saithong a,*
PMCID: PMC3588355  PMID: 23476332

Abstract

In the title solvate, [CuCl(C2H3N3S)(C18H15P)2]·CH3CN, the CuI ion is bonded to two triphenyl­phosphane ligands, one 1H-1,2,4-triazole-5(4H)-thione ligand via its S atom and one chloride ion in a distorted CuP2SCl tetra­hedron. An intra­molecular N—H⋯Cl hydrogen bond, which closes an S(6) ring, helps to establish the conformation of the complex. In the crystal, N—H⋯Cl hydrogen bonds and C—H⋯π inter­actions link the components, generating (110) layers.

Related literature  

For the properties of mixed-ligand copper(I) complexes, see: Oshio et al. (1996); Henary et al. (1997); Vitale & Ford (2001); Zhang & Chen (2003). For structurally related mixed-ligand complexes of triphenyl­phosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1998); Chen et al. (2001); Li et al. (2004); Lobana et al. (2008); La-o et al. (2009). For complexes of 1,2,4-triazole-2-thione and its derivatives, see: Sen et al. (1996); Zhang et al. (2008).graphic file with name e-69-00m34-scheme1.jpg

Experimental  

Crystal data  

  • [CuCl(C2H3N3S)(C18H15P)2]·C2H3N

  • M r = 765.72

  • Orthorhombic, Inline graphic

  • a = 10.2348 (4) Å

  • b = 16.4046 (7) Å

  • c = 22.3632 (9) Å

  • V = 3754.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.09 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.840, T max = 0.928

  • 30968 measured reflections

  • 6602 independent reflections

  • 6040 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.086

  • S = 1.11

  • 6602 reflections

  • 449 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 2890 Friedel pairs

  • Flack parameter: −0.001 (11)

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049537/hb7008sup1.cif

e-69-00m34-sup1.cif (40.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049537/hb7008Isup2.hkl

e-69-00m34-Isup2.hkl (323.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—P1 2.2802 (9)
Cu1—P2 2.2824 (9)
Cu1—S1 2.3582 (9)
Cu1—Cl1 2.4035 (9)

Table 2. Hydrogen-bond geometry (Å, °).

Cg7 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.84 (2) 2.41 (3) 3.183 (3) 155 (5)
N1—H1A⋯Cl1i 0.84 (2) 2.34 (2) 3.154 (3) 163 (5)
C15—H15⋯Cg7ii 0.93 2.88 3.749 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission, the Ministry of Education and the Graduate School, Prince of Songkla University, are gratefully acknowledged.

supplementary crystallographic information

Comment

The mixed ligand metal(I) complexes of IB group have been studied and characterized due to various properties such as magnetism (Oshio et al., 1996), mocroporus (Zhang & Chen, 2003) and luminescent properties (Vitale & Ford, 2001). Besides, some mixed ligand of copper(I) with drug has been studied (Chen et al., 2001).

For the 1,2,4-triazole-2-thione and its derivatives group have been used as an active ligand to coordinate metals with interesting intrinsic properties (Sen et al., 1996; Zhang et al., 2008). This study reports the crystal structure analysis and self-assembly of the tiltle complex base on mixed ligand copper(I) complex containing triphenylphosphosphane (PPh3) and 1H-1,2,4-triazole-2-thione (C2H3N3S).

The title compound, [Cu(C2H3N3S)(PPh3)2Cl].CH3CN, is a mononuclear complex. The asymetric unit of the complex contains one formula unit with no crystallographically imposed symmetry and a non-coordinating acetonitrile solvent molecule (Fig.1), in which Cu center is in distorted tetrahedral geometry coordinated by two P atoms of two PPh3 molecules, one S atom from C2H3N3S molecule and one Cl atom. Similar to those copper(I) complexes coordinating with mixed PPh3/ heterocyclic thione and Cl ligands, the geometry around copper center and the coordination modes are in agreement with the previous reports (Aslanidis et al., 1998; Li et al., 2004; Lobana et al.,2008).

The short non-bonding distance between N at 3-positon of triazole ring and Cl atom (N3–H3A···Cl1) in the molecule can be accepted as an intra-molecular hydrogen bond with the N3···Cl1 distance = 3.183 (3) Å and the N3–H3A···Cl1 bond angle = 155 (5)°. In crystal packing, the one-dimensional interaction chain along [100] is connected by inter- hydrogen bonding interactions, N–H···Cl, between N at 1-position of triazole ring and the Cl atom of neighbouring molecule (N1···Cl1i = 3.154 (3) Å; i: x + 1/2, -y + 3/2, -z + 2). In addition, each chain is further linked to each other to form two-dimensional network parallel to (001) due to C—H···π interactions between C15 of phenyl ring and the Cg7 centroid (Cg7: C31–C32–C33–C34–C35–C36) of the nearby phenyl ring of adjacent molecule with the C···Cg7ii distance of 3.749 (4) Å (ii: -x - 1, y + 5/2, -z + 5/2). Two perspective views of intra- and inter-interactions are depicted in Fig. 2 and 3.

Experimental

A mixture of CuCl (0.15 g: 1.50 mmol), C2H3N3S (0.15 g: 1.48 mmol) and PPh3 (0.80: 3.05 mmol) in acetronitrile 30 ml was refluxed for 4 h. Then, the fitrate was kept to evaporate at room temperature over night. The polygon colorless crystals were obtained. The complex melts at 140–142°C.

Refinement

All carbon H-atoms of triazole ring and phenyl ring were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The hydrogen atoms of N atoms are located in the difference map and restrained, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex with displacement ellipsoids plotted at the 30% probability level.

Fig. 2.

Fig. 2.

The interactions sheet of the title complex plot down a axis.

Fig. 3.

Fig. 3.

The two-dimensional sheet of hydrogen bond, N–H···Cl, and C–H···π interaction of the title complex plotted parallel to (001). All H atoms not involving the interactions are omitted.

Crystal data

[CuCl(C2H3N3S)(C18H15P)2]·C2H3N F(000) = 1584
Mr = 765.72 Dx = 1.355 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5583 reflections
a = 10.2348 (4) Å θ = 2.2–21.3°
b = 16.4046 (7) Å µ = 0.83 mm1
c = 22.3632 (9) Å T = 293 K
V = 3754.7 (3) Å3 Polyhedron, colourless
Z = 4 0.27 × 0.18 × 0.09 mm

Data collection

Bruker APEX CCD diffractometer 6602 independent reflections
Radiation source: fine-focus sealed tube 6040 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Frames, each covering 0.3 ° in ω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −12→12
Tmin = 0.840, Tmax = 0.928 k = −19→19
30968 measured reflections l = −26→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.5093P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
6602 reflections Δρmax = 0.52 e Å3
449 parameters Δρmin = −0.17 e Å3
2 restraints Absolute structure: Flack (1983), 2890 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.001 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.34524 (4) 0.93751 (2) 0.962685 (16) 0.03712 (11)
Cl1 0.12918 (7) 0.90194 (5) 0.92963 (4) 0.04224 (19)
S1 0.46576 (9) 0.82003 (6) 0.98819 (5) 0.0529 (2)
P1 0.29805 (8) 1.00323 (5) 1.04989 (3) 0.03605 (19)
P2 0.42531 (8) 0.99058 (5) 0.87575 (4) 0.03542 (19)
N1 0.4062 (3) 0.65928 (17) 0.98402 (14) 0.0466 (7)
N2 0.3204 (3) 0.60429 (17) 0.96044 (14) 0.0533 (7)
N3 0.2723 (3) 0.72977 (17) 0.93421 (14) 0.0440 (7)
C1 0.4369 (3) 1.0231 (2) 1.09970 (16) 0.0449 (8)
C2 0.5549 (4) 1.0419 (2) 1.0752 (2) 0.0615 (11)
H2 0.5638 1.0455 1.0339 0.074*
C3 0.6623 (4) 1.0557 (3) 1.1121 (3) 0.0848 (15)
H3 0.7421 1.0703 1.0953 0.102*
C4 0.6519 (6) 1.0481 (3) 1.1714 (3) 0.0953 (18)
H4 0.7251 1.0549 1.1955 0.114*
C5 0.5345 (7) 1.0306 (4) 1.1963 (3) 0.114 (2)
H5 0.5264 1.0271 1.2377 0.136*
C6 0.4271 (5) 1.0178 (3) 1.16028 (19) 0.0840 (15)
H6 0.3469 1.0055 1.1776 0.101*
C7 0.1835 (3) 0.9471 (2) 1.09762 (14) 0.0401 (8)
C8 0.1875 (4) 0.8625 (2) 1.09702 (16) 0.0509 (9)
H8 0.2479 0.8356 1.0730 0.061*
C9 0.1017 (4) 0.8182 (3) 1.13215 (18) 0.0651 (12)
H9 0.1063 0.7616 1.1325 0.078*
C10 0.0106 (4) 0.8570 (3) 1.16626 (18) 0.0691 (12)
H10 −0.0484 0.8268 1.1888 0.083*
C11 0.0061 (4) 0.9391 (4) 1.16727 (18) 0.0723 (12)
H11 −0.0553 0.9651 1.1913 0.087*
C12 0.0909 (4) 0.9851 (3) 1.13328 (16) 0.0579 (10)
H12 0.0860 1.0417 1.1343 0.070*
C13 0.2164 (3) 1.10211 (19) 1.04311 (16) 0.0452 (8)
C14 0.2650 (4) 1.1740 (2) 1.06457 (17) 0.0543 (10)
H14 0.3442 1.1741 1.0850 0.065*
C15 0.1981 (5) 1.2473 (2) 1.0564 (2) 0.0730 (14)
H15 0.2329 1.2960 1.0706 0.088*
C16 0.0804 (6) 1.2465 (3) 1.0272 (2) 0.0865 (16)
H16 0.0348 1.2950 1.0216 0.104*
C17 0.0295 (6) 1.1749 (3) 1.0060 (3) 0.110 (2)
H17 −0.0508 1.1744 0.9865 0.132*
C18 0.0985 (5) 1.1035 (3) 1.0139 (2) 0.0856 (16)
H18 0.0642 1.0550 0.9990 0.103*
C19 0.3278 (3) 1.07665 (19) 0.84849 (13) 0.0404 (8)
C20 0.3033 (5) 1.1388 (2) 0.88831 (19) 0.0784 (15)
H20 0.3386 1.1364 0.9266 0.094*
C21 0.2265 (6) 1.2051 (3) 0.8721 (2) 0.0907 (17)
H21 0.2141 1.2477 0.8989 0.109*
C22 0.1697 (5) 1.2080 (3) 0.8176 (2) 0.0698 (12)
H22 0.1157 1.2513 0.8071 0.084*
C23 0.1932 (5) 1.1460 (3) 0.7780 (2) 0.0815 (14)
H23 0.1552 1.1474 0.7403 0.098*
C24 0.2720 (4) 1.0819 (3) 0.79331 (18) 0.0649 (11)
H24 0.2877 1.0410 0.7654 0.078*
C25 0.4252 (3) 0.91805 (18) 0.81294 (14) 0.0382 (7)
C26 0.3092 (4) 0.8834 (3) 0.79486 (16) 0.0606 (11)
H26 0.2322 0.8961 0.8149 0.073*
C27 0.3067 (5) 0.8294 (3) 0.74663 (18) 0.0715 (13)
H27 0.2274 0.8086 0.7333 0.086*
C28 0.4188 (5) 0.8070 (2) 0.71913 (18) 0.0670 (12)
H28 0.4168 0.7706 0.6873 0.080*
C29 0.5353 (5) 0.8384 (2) 0.73845 (19) 0.0668 (12)
H29 0.6127 0.8224 0.7202 0.080*
C30 0.5385 (4) 0.8940 (2) 0.78519 (17) 0.0531 (9)
H30 0.6181 0.9152 0.7978 0.064*
C31 0.5944 (3) 1.0287 (2) 0.87255 (14) 0.0384 (7)
C32 0.6363 (4) 1.0808 (2) 0.82716 (16) 0.0479 (8)
H32 0.5764 1.1023 0.8002 0.057*
C33 0.7671 (4) 1.1001 (2) 0.82252 (19) 0.0617 (11)
H33 0.7956 1.1348 0.7923 0.074*
C34 0.8556 (4) 1.0682 (3) 0.8627 (2) 0.0643 (11)
H34 0.9441 1.0799 0.8588 0.077*
C35 0.8137 (4) 1.0195 (2) 0.9080 (2) 0.0603 (10)
H35 0.8735 0.9990 0.9355 0.072*
C36 0.6832 (3) 1.0004 (2) 0.91342 (16) 0.0472 (8)
H36 0.6552 0.9680 0.9450 0.057*
C37 0.3795 (3) 0.73556 (19) 0.96862 (15) 0.0396 (7)
C38 0.2396 (4) 0.6494 (2) 0.93112 (17) 0.0514 (9)
H38 0.1677 0.6295 0.9104 0.062*
N4 1.0664 (6) 0.7141 (3) 0.8189 (3) 0.1146 (18)
C39 0.8865 (6) 0.8191 (4) 0.8394 (3) 0.122 (2)
H39A 0.8616 0.8164 0.8808 0.183*
H39B 0.8121 0.8074 0.8148 0.183*
H39C 0.9183 0.8728 0.8305 0.183*
C40 0.9877 (6) 0.7604 (4) 0.8278 (2) 0.0798 (15)
H3A 0.219 (4) 0.767 (2) 0.926 (2) 0.096*
H1A 0.477 (3) 0.646 (3) 1.001 (2) 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0398 (2) 0.0367 (2) 0.03486 (19) −0.00132 (17) 0.00169 (18) 0.00165 (17)
Cl1 0.0320 (4) 0.0448 (4) 0.0499 (5) −0.0026 (3) −0.0016 (4) 0.0037 (4)
S1 0.0455 (5) 0.0383 (5) 0.0747 (6) 0.0050 (4) −0.0170 (5) −0.0032 (5)
P1 0.0398 (4) 0.0322 (4) 0.0362 (4) −0.0018 (3) −0.0010 (3) −0.0013 (3)
P2 0.0344 (4) 0.0397 (5) 0.0322 (4) −0.0029 (4) −0.0011 (3) 0.0033 (4)
N1 0.0458 (17) 0.0364 (16) 0.0577 (19) 0.0051 (14) −0.0041 (14) 0.0052 (14)
N2 0.0525 (17) 0.0423 (16) 0.0651 (19) 0.0000 (15) 0.0029 (17) 0.0033 (16)
N3 0.0385 (16) 0.0387 (16) 0.0549 (18) 0.0053 (13) −0.0063 (14) 0.0018 (14)
C1 0.047 (2) 0.0366 (18) 0.051 (2) −0.0024 (16) −0.0093 (17) −0.0040 (15)
C2 0.048 (2) 0.059 (3) 0.077 (3) −0.0066 (18) −0.001 (2) −0.018 (2)
C3 0.046 (2) 0.075 (3) 0.134 (5) 0.000 (2) −0.005 (3) −0.029 (3)
C4 0.080 (4) 0.087 (4) 0.119 (5) 0.008 (3) −0.055 (4) −0.029 (3)
C5 0.104 (5) 0.156 (6) 0.081 (4) −0.033 (4) −0.051 (4) 0.010 (4)
C6 0.071 (3) 0.125 (4) 0.056 (3) −0.022 (3) −0.015 (2) 0.004 (3)
C7 0.0415 (19) 0.0448 (19) 0.0340 (16) −0.0072 (16) −0.0025 (14) 0.0009 (15)
C8 0.061 (2) 0.047 (2) 0.0440 (19) −0.0071 (19) 0.0028 (18) −0.0026 (17)
C9 0.082 (3) 0.059 (2) 0.055 (2) −0.019 (2) −0.009 (2) 0.011 (2)
C10 0.065 (3) 0.091 (4) 0.051 (2) −0.025 (3) 0.004 (2) 0.015 (2)
C11 0.063 (3) 0.102 (4) 0.053 (2) −0.002 (3) 0.019 (2) 0.001 (3)
C12 0.057 (2) 0.065 (2) 0.052 (2) −0.005 (2) 0.0072 (19) −0.003 (2)
C13 0.054 (2) 0.0348 (17) 0.0466 (19) 0.0038 (16) 0.0024 (18) 0.0010 (16)
C14 0.065 (2) 0.039 (2) 0.059 (2) −0.0034 (18) 0.007 (2) −0.0043 (17)
C15 0.100 (4) 0.037 (2) 0.082 (3) 0.000 (2) 0.021 (3) −0.006 (2)
C16 0.104 (4) 0.051 (3) 0.105 (4) 0.033 (3) 0.007 (4) 0.000 (3)
C17 0.093 (4) 0.082 (4) 0.157 (6) 0.039 (3) −0.049 (4) −0.013 (4)
C18 0.087 (3) 0.056 (3) 0.114 (4) 0.017 (2) −0.049 (3) −0.016 (3)
C19 0.0381 (18) 0.0442 (19) 0.0390 (17) −0.0013 (15) 0.0002 (15) 0.0077 (14)
C20 0.130 (5) 0.049 (2) 0.056 (2) 0.018 (3) −0.023 (3) −0.005 (2)
C21 0.153 (5) 0.046 (2) 0.073 (3) 0.027 (3) 0.009 (3) −0.001 (2)
C22 0.070 (3) 0.059 (3) 0.080 (3) 0.017 (2) 0.009 (3) 0.027 (2)
C23 0.085 (3) 0.086 (3) 0.073 (3) 0.019 (3) −0.030 (3) 0.012 (3)
C24 0.076 (3) 0.064 (3) 0.055 (2) 0.020 (2) −0.014 (2) −0.0043 (19)
C25 0.0477 (19) 0.0370 (18) 0.0298 (16) −0.0022 (15) −0.0008 (15) 0.0044 (13)
C26 0.063 (3) 0.073 (3) 0.046 (2) −0.017 (2) 0.0061 (19) −0.013 (2)
C27 0.083 (3) 0.075 (3) 0.056 (3) −0.026 (3) −0.008 (2) −0.014 (2)
C28 0.108 (4) 0.045 (2) 0.048 (2) −0.002 (2) 0.000 (2) −0.0103 (18)
C29 0.081 (3) 0.051 (2) 0.069 (3) 0.009 (2) 0.009 (2) −0.015 (2)
C30 0.055 (2) 0.046 (2) 0.058 (2) 0.0056 (18) 0.0003 (19) −0.0058 (18)
C31 0.0368 (18) 0.0416 (18) 0.0369 (17) −0.0023 (14) 0.0049 (15) −0.0008 (14)
C32 0.046 (2) 0.049 (2) 0.0481 (19) −0.0044 (17) 0.0041 (17) 0.0025 (16)
C33 0.062 (3) 0.057 (2) 0.065 (2) −0.016 (2) 0.019 (2) 0.001 (2)
C34 0.040 (2) 0.061 (2) 0.092 (3) −0.007 (2) 0.012 (2) −0.009 (2)
C35 0.047 (2) 0.053 (2) 0.081 (3) 0.0003 (19) −0.012 (2) 0.003 (2)
C36 0.0380 (19) 0.049 (2) 0.055 (2) −0.0002 (16) 0.0014 (16) 0.0043 (17)
C37 0.0353 (17) 0.0430 (18) 0.0405 (18) 0.0076 (14) 0.0042 (15) 0.0044 (15)
C38 0.042 (2) 0.047 (2) 0.065 (2) −0.0008 (17) 0.0008 (19) −0.0066 (18)
N4 0.108 (4) 0.109 (4) 0.127 (4) 0.007 (3) −0.037 (4) −0.021 (4)
C39 0.098 (5) 0.127 (5) 0.141 (5) 0.003 (4) −0.040 (4) −0.037 (5)
C40 0.080 (4) 0.081 (4) 0.078 (3) −0.023 (3) −0.029 (3) −0.003 (3)

Geometric parameters (Å, º)

Cu1—P1 2.2802 (9) C15—H15 0.9300
Cu1—P2 2.2824 (9) C16—C17 1.370 (7)
Cu1—S1 2.3582 (9) C16—H16 0.9300
Cu1—Cl1 2.4035 (9) C17—C18 1.378 (6)
S1—C37 1.700 (3) C17—H17 0.9300
P1—C13 1.831 (3) C18—H18 0.9300
P1—C7 1.834 (3) C19—C24 1.363 (5)
P1—C1 1.834 (4) C19—C20 1.377 (5)
P2—C19 1.833 (3) C20—C21 1.390 (6)
P2—C25 1.841 (3) C20—H20 0.9300
P2—C31 1.841 (3) C21—C22 1.352 (7)
N1—C37 1.326 (4) C21—H21 0.9300
N1—N2 1.364 (4) C22—C23 1.369 (6)
N1—H1A 0.844 (19) C22—H22 0.9300
N2—C38 1.289 (5) C23—C24 1.368 (6)
N3—C37 1.343 (4) C23—H23 0.9300
N3—C38 1.361 (4) C24—H24 0.9300
N3—H3A 0.835 (19) C25—C30 1.372 (5)
C1—C6 1.361 (6) C25—C26 1.377 (5)
C1—C2 1.362 (5) C26—C27 1.397 (5)
C2—C3 1.393 (6) C26—H26 0.9300
C2—H2 0.9300 C27—C28 1.352 (6)
C3—C4 1.336 (7) C27—H27 0.9300
C3—H3 0.9300 C28—C29 1.369 (6)
C4—C5 1.355 (8) C28—H28 0.9300
C4—H4 0.9300 C29—C30 1.388 (5)
C5—C6 1.379 (7) C29—H29 0.9300
C5—H5 0.9300 C30—H30 0.9300
C6—H6 0.9300 C31—C36 1.370 (5)
C7—C12 1.386 (5) C31—C32 1.394 (5)
C7—C8 1.388 (5) C32—C33 1.380 (5)
C8—C9 1.384 (5) C32—H32 0.9300
C8—H8 0.9300 C33—C34 1.379 (6)
C9—C10 1.362 (6) C33—H33 0.9300
C9—H9 0.9300 C34—C35 1.360 (6)
C10—C11 1.347 (7) C34—H34 0.9300
C10—H10 0.9300 C35—C36 1.378 (5)
C11—C12 1.379 (6) C35—H35 0.9300
C11—H11 0.9300 C36—H36 0.9300
C12—H12 0.9300 C38—H38 0.9300
C13—C14 1.368 (5) N4—C40 1.125 (7)
C13—C18 1.373 (6) C39—C40 1.438 (8)
C14—C15 1.395 (6) C39—H39A 0.9600
C14—H14 0.9300 C39—H39B 0.9600
C15—C16 1.371 (7) C39—H39C 0.9600
P1—Cu1—P2 128.63 (3) C16—C17—C18 119.3 (5)
P1—Cu1—S1 106.88 (4) C16—C17—H17 120.3
P2—Cu1—S1 109.27 (4) C18—C17—H17 120.3
P1—Cu1—Cl1 100.54 (3) C13—C18—C17 121.6 (5)
P2—Cu1—Cl1 99.26 (3) C13—C18—H18 119.2
S1—Cu1—Cl1 110.93 (3) C17—C18—H18 119.2
C37—S1—Cu1 109.39 (11) C24—C19—C20 117.5 (3)
C13—P1—C7 101.60 (16) C24—C19—P2 125.3 (3)
C13—P1—C1 104.29 (16) C20—C19—P2 117.0 (3)
C7—P1—C1 103.35 (15) C19—C20—C21 120.9 (4)
C13—P1—Cu1 116.40 (12) C19—C20—H20 119.5
C7—P1—Cu1 113.32 (11) C21—C20—H20 119.5
C1—P1—Cu1 116.05 (12) C22—C21—C20 120.4 (4)
C19—P2—C25 104.12 (14) C22—C21—H21 119.8
C19—P2—C31 103.71 (15) C20—C21—H21 119.8
C25—P2—C31 100.96 (15) C21—C22—C23 118.7 (4)
C19—P2—Cu1 112.43 (10) C21—C22—H22 120.6
C25—P2—Cu1 113.78 (10) C23—C22—H22 120.6
C31—P2—Cu1 120.00 (11) C24—C23—C22 120.9 (4)
C37—N1—N2 113.0 (3) C24—C23—H23 119.6
C37—N1—H1A 122 (4) C22—C23—H23 119.6
N2—N1—H1A 124 (4) C19—C24—C23 121.5 (4)
C38—N2—N1 103.2 (3) C19—C24—H24 119.3
C37—N3—C38 107.3 (3) C23—C24—H24 119.3
C37—N3—H3A 128 (4) C30—C25—C26 118.5 (3)
C38—N3—H3A 122 (4) C30—C25—P2 122.0 (3)
C6—C1—C2 118.7 (4) C26—C25—P2 119.4 (3)
C6—C1—P1 122.4 (3) C25—C26—C27 120.3 (4)
C2—C1—P1 118.9 (3) C25—C26—H26 119.9
C1—C2—C3 119.9 (4) C27—C26—H26 119.9
C1—C2—H2 120.1 C28—C27—C26 120.5 (4)
C3—C2—H2 120.1 C28—C27—H27 119.7
C4—C3—C2 120.6 (5) C26—C27—H27 119.7
C4—C3—H3 119.7 C27—C28—C29 119.6 (4)
C2—C3—H3 119.7 C27—C28—H28 120.2
C3—C4—C5 120.0 (5) C29—C28—H28 120.2
C3—C4—H4 120.0 C28—C29—C30 120.4 (4)
C5—C4—H4 120.0 C28—C29—H29 119.8
C4—C5—C6 119.9 (5) C30—C29—H29 119.8
C4—C5—H5 120.1 C25—C30—C29 120.6 (4)
C6—C5—H5 120.1 C25—C30—H30 119.7
C1—C6—C5 120.9 (5) C29—C30—H30 119.7
C1—C6—H6 119.5 C36—C31—C32 119.3 (3)
C5—C6—H6 119.5 C36—C31—P2 118.8 (3)
C12—C7—C8 118.4 (3) C32—C31—P2 121.7 (3)
C12—C7—P1 123.1 (3) C33—C32—C31 119.6 (4)
C8—C7—P1 118.5 (3) C33—C32—H32 120.2
C9—C8—C7 120.0 (4) C31—C32—H32 120.2
C9—C8—H8 120.0 C34—C33—C32 120.0 (4)
C7—C8—H8 120.0 C34—C33—H33 120.0
C10—C9—C8 120.5 (4) C32—C33—H33 120.0
C10—C9—H9 119.8 C35—C34—C33 120.2 (4)
C8—C9—H9 119.8 C35—C34—H34 119.9
C11—C10—C9 120.0 (4) C33—C34—H34 119.9
C11—C10—H10 120.0 C34—C35—C36 120.3 (4)
C9—C10—H10 120.0 C34—C35—H35 119.9
C10—C11—C12 121.1 (4) C36—C35—H35 119.9
C10—C11—H11 119.5 C31—C36—C35 120.5 (4)
C12—C11—H11 119.5 C31—C36—H36 119.7
C11—C12—C7 120.1 (4) C35—C36—H36 119.7
C11—C12—H12 119.9 N1—C37—N3 104.5 (3)
C7—C12—H12 119.9 N1—C37—S1 126.5 (3)
C14—C13—C18 118.2 (3) N3—C37—S1 129.0 (3)
C14—C13—P1 124.7 (3) N2—C38—N3 111.9 (3)
C18—C13—P1 117.1 (3) N2—C38—H38 124.1
C13—C14—C15 121.3 (4) N3—C38—H38 124.1
C13—C14—H14 119.4 C40—C39—H39A 109.5
C15—C14—H14 119.4 C40—C39—H39B 109.5
C16—C15—C14 119.0 (4) H39A—C39—H39B 109.5
C16—C15—H15 120.5 C40—C39—H39C 109.5
C14—C15—H15 120.5 H39A—C39—H39C 109.5
C17—C16—C15 120.5 (4) H39B—C39—H39C 109.5
C17—C16—H16 119.7 N4—C40—C39 179.7 (8)
C15—C16—H16 119.7
P1—Cu1—S1—C37 116.24 (13) P1—C13—C14—C15 178.5 (3)
P2—Cu1—S1—C37 −100.90 (13) C13—C14—C15—C16 1.1 (7)
Cl1—Cu1—S1—C37 7.53 (13) C14—C15—C16—C17 −0.3 (8)
P2—Cu1—P1—C13 41.73 (14) C15—C16—C17—C18 −0.6 (10)
S1—Cu1—P1—C13 174.88 (13) C14—C13—C18—C17 −0.1 (7)
Cl1—Cu1—P1—C13 −69.26 (13) P1—C13—C18—C17 −179.5 (5)
P2—Cu1—P1—C7 159.03 (12) C16—C17—C18—C13 0.8 (10)
S1—Cu1—P1—C7 −67.83 (12) C25—P2—C19—C24 −0.6 (4)
Cl1—Cu1—P1—C7 48.03 (12) C31—P2—C19—C24 104.7 (3)
P2—Cu1—P1—C1 −81.59 (13) Cu1—P2—C19—C24 −124.2 (3)
S1—Cu1—P1—C1 51.56 (13) C25—P2—C19—C20 175.6 (3)
Cl1—Cu1—P1—C1 167.42 (13) C31—P2—C19—C20 −79.2 (4)
P1—Cu1—P2—C19 −53.12 (13) Cu1—P2—C19—C20 51.9 (4)
S1—Cu1—P2—C19 174.57 (12) C24—C19—C20—C21 −1.3 (7)
Cl1—Cu1—P2—C19 58.44 (12) P2—C19—C20—C21 −177.8 (4)
P1—Cu1—P2—C25 −171.18 (12) C19—C20—C21—C22 2.9 (8)
S1—Cu1—P2—C25 56.52 (12) C20—C21—C22—C23 −2.4 (8)
Cl1—Cu1—P2—C25 −59.61 (12) C21—C22—C23—C24 0.4 (8)
P1—Cu1—P2—C31 69.18 (13) C20—C19—C24—C23 −0.7 (7)
S1—Cu1—P2—C31 −63.12 (13) P2—C19—C24—C23 175.5 (4)
Cl1—Cu1—P2—C31 −179.25 (13) C22—C23—C24—C19 1.2 (8)
C37—N1—N2—C38 −1.1 (4) C19—P2—C25—C30 119.2 (3)
C13—P1—C1—C6 88.1 (4) C31—P2—C25—C30 11.9 (3)
C7—P1—C1—C6 −17.8 (4) Cu1—P2—C25—C30 −118.1 (3)
Cu1—P1—C1—C6 −142.5 (4) C19—P2—C25—C26 −64.1 (3)
C13—P1—C1—C2 −93.5 (3) C31—P2—C25—C26 −171.4 (3)
C7—P1—C1—C2 160.6 (3) Cu1—P2—C25—C26 58.6 (3)
Cu1—P1—C1—C2 36.0 (3) C30—C25—C26—C27 −4.3 (6)
C6—C1—C2—C3 −0.3 (6) P2—C25—C26—C27 178.9 (3)
P1—C1—C2—C3 −178.8 (3) C25—C26—C27—C28 3.5 (7)
C1—C2—C3—C4 2.1 (7) C26—C27—C28—C29 −0.7 (7)
C2—C3—C4—C5 −3.1 (8) C27—C28—C29—C30 −1.2 (7)
C3—C4—C5—C6 2.2 (10) C26—C25—C30—C29 2.4 (5)
C2—C1—C6—C5 −0.5 (8) P2—C25—C30—C29 179.2 (3)
P1—C1—C6—C5 177.9 (5) C28—C29—C30—C25 0.4 (6)
C4—C5—C6—C1 −0.4 (10) C19—P2—C31—C36 149.0 (3)
C13—P1—C7—C12 −19.7 (3) C25—P2—C31—C36 −103.3 (3)
C1—P1—C7—C12 88.2 (3) Cu1—P2—C31—C36 22.6 (3)
Cu1—P1—C7—C12 −145.4 (3) C19—P2—C31—C32 −35.7 (3)
C13—P1—C7—C8 158.7 (3) C25—P2—C31—C32 71.9 (3)
C1—P1—C7—C8 −93.3 (3) Cu1—P2—C31—C32 −162.2 (2)
Cu1—P1—C7—C8 33.1 (3) C36—C31—C32—C33 2.8 (5)
C12—C7—C8—C9 −0.9 (5) P2—C31—C32—C33 −172.4 (3)
P1—C7—C8—C9 −179.5 (3) C31—C32—C33—C34 −0.1 (6)
C7—C8—C9—C10 1.8 (6) C32—C33—C34—C35 −2.0 (6)
C8—C9—C10—C11 −1.9 (7) C33—C34—C35—C36 1.4 (6)
C9—C10—C11—C12 1.3 (7) C32—C31—C36—C35 −3.4 (5)
C10—C11—C12—C7 −0.5 (6) P2—C31—C36—C35 171.9 (3)
C8—C7—C12—C11 0.3 (5) C34—C35—C36—C31 1.3 (6)
P1—C7—C12—C11 178.8 (3) N2—N1—C37—N3 0.4 (4)
C7—P1—C13—C14 115.5 (3) N2—N1—C37—S1 −178.8 (2)
C1—P1—C13—C14 8.3 (4) C38—N3—C37—N1 0.4 (4)
Cu1—P1—C13—C14 −120.9 (3) C38—N3—C37—S1 179.5 (3)
C7—P1—C13—C18 −65.0 (4) Cu1—S1—C37—N1 −168.9 (3)
C1—P1—C13—C18 −172.2 (3) Cu1—S1—C37—N3 12.1 (3)
Cu1—P1—C13—C18 58.6 (4) N1—N2—C38—N3 1.3 (4)
C18—C13—C14—C15 −0.9 (6) C37—N3—C38—N2 −1.1 (4)

Hydrogen-bond geometry (Å, º)

Cg7 is the centroid of the C31–C36 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3A···Cl1 0.84 (2) 2.41 (3) 3.183 (3) 155 (5)
N1—H1A···Cl1i 0.84 (2) 2.34 (2) 3.154 (3) 163 (5)
C15—H15···Cg7ii 0.93 2.88 3.749 (4) 155

Symmetry codes: (i) x+1/2, −y+3/2, −z+2; (ii) −x−1, y+5/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7008).

References

  1. Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P. & Cox, P. J. (1998). Inorg. Chim. Acta, 271, 243–247.
  2. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Henary, M., Wootton, J. L., Khan, S. I. & Zink, J. I. (1997). Inorg. Chem. 36, 796–801.
  6. La-o, L., Pakawatchai, C., Saithong, S. & Skelton, B. W. (2009). Acta Cryst. E65, m926. [DOI] [PMC free article] [PubMed]
  7. Li, D., Shi, W.-J., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m776–m777.
  8. Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479. [DOI] [PubMed]
  11. Sen, A. K., Dubey, S. N. & Squattrito, P. J. (1996). Acta Cryst. C52, 865–868.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Vitale, M. & Ford, P. C. (2001). Coord. Chem. Rev. 219–221, 3–16.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 413–417.
  18. Zhang, R.-B., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y., Zhang, J. & Yao, Y.-G. (2008). Cryst. Growth Des. 8, 2562–2573.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049537/hb7008sup1.cif

e-69-00m34-sup1.cif (40.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049537/hb7008Isup2.hkl

e-69-00m34-Isup2.hkl (323.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES