Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 22;69(Pt 1):m70–m71. doi: 10.1107/S1600536812051185

(2-Amino-7-methyl-4-oxido­pteridine-6-carboxyl­ato-κ3 O 4,N 5,O 6)aqua(1,10-phen­an­thro­line-κ2 N,N′)cobalt(II) trihydrate

Siddhartha S Baisya a, Samir Sen a, Parag S Roy a,*
PMCID: PMC3588366  PMID: 23476360

Abstract

In the title compound, [Co(C8H5N5O3)(C12H8N2)(H2O)]·3H2O, a tridentate 2-amino-7-methyl-4-oxidopteridine-6-carboxyl­ate ligand, a bidentate ancillary 1,10-phenanthroline (phen) ligand and a water mol­ecule complete a distorted octa­hedral geometry around the CoII atom. The pterin ligand forms two chelate rings. The phen and pterin ring systems are nearly perpendicular [dihedral angle = 85.15 (8)°]. N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the complex mol­ecules and lattice water mol­ecules into a layer parallel to (001). π–π stacking contacts (involving phen–phen and pteridine–pteridine) are also observed [centroid–centroid distances = 3.670 (2), 3.547 (2), 3.698 (2) and 3.349 (2) Å].

Related literature  

For background to the chemistry of pterins in metalloenzymes, see: Basu & Burgmayer (2011); Burgmayer (1998); Fitzpatrick (2003); Fukuzumi & Kojima (2008). For structures of related cobalt complexes, see: Acuña-Cueva et al. (2003); Beddoes et al. (1997); Burgmayer & Stiefel (1988); Funahashi et al. (1997). For structures of related copper complexes, see: Odani et al. (1992). For the electron-shuffling ability of the pterin unit as well as its donor groups and the effect on the geometric parameters of related complexes, see: Beddoes et al. (1993); Kohzuma et al. (1988); Russell et al. (1992). For the synthesis of the pterin ligand, see: Wittle et al. (1947).graphic file with name e-69-00m70-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C8H5N5O3)(C12H8N2)(H2O)]·3H2O

  • M r = 530.36

  • Triclinic, Inline graphic

  • a = 8.454 (2) Å

  • b = 9.934 (3) Å

  • c = 13.778 (4) Å

  • α = 97.534 (4)°

  • β = 95.281 (4)°

  • γ = 110.603 (4)°

  • V = 1061.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 110 K

  • 0.23 × 0.11 × 0.04 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.82, T max = 0.97

  • 8945 measured reflections

  • 4726 independent reflections

  • 4360 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.129

  • S = 1.03

  • 4726 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051185/hy2609sup1.cif

e-69-00m70-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051185/hy2609Isup2.hkl

e-69-00m70-Isup2.hkl (297.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H141⋯O2i 0.85 2.12 2.942 (4) 163
N7—H142⋯O6ii 0.84 2.15 2.970 (4) 165
O4—H181⋯O6 0.81 1.93 2.717 (3) 164
O4—H182⋯N5ii 0.80 2.25 3.051 (4) 176
O5—H341⋯O1 0.82 2.34 3.079 (4) 151
O5—H341⋯O2 0.82 2.23 2.896 (4) 139
O5—H342⋯N4iii 0.82 2.04 2.844 (4) 166
O6—H351⋯O5 0.83 1.92 2.740 (4) 174
O6—H352⋯N5iv 0.82 2.05 2.871 (4) 176
O7—H331⋯O5i 0.80 2.25 2.941 (4) 145
O7—H332⋯O3 0.81 2.23 2.962 (5) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their gratitude to the UGC, New Delhi, for financial assistance (SAP–DRS program). Thanks are due to the CSMCRI, Bhavnagar, Gujrat, India, for the X-ray structural data and the University of North Bengal for infrastructure.

supplementary crystallographic information

Comment

The primary motivation for pursuing coordination chemistry of pterins is the ubiquitous presence of this heterocyclic system in nature including a substantial number of metalloenzymes (Basu & Burgmayer, 2011; Burgmayer, 1998; Fitzpatrick, 2003; Fukuzumi & Kojima, 2008). Literature survey reveals the existence of only a few X-ray structurally characterized cobalt-pterin/pteridine/lumazine complexes as well as one containing an organocobalt moiety (Acuña-Cueva et al., 2003; Beddoes et al., 1997; Burgmayer & Stiefel, 1988; Funahashi et al., 1997). The concerned ligands usually act as bidentate O,N-donors and none of the above complexes possesses a typical π-acceptor ancillary ligand like 1,10-phenanthroline (phen). In this crystallographic study on the title cobalt(II) complex, possessing both a tridentate pterin ligand and a π-acidic ligand like phen, different aspects are considered, e.g. crystal, molecular and electronic structures.

In the title compound (Fig. 1), the stereochemistry around the CoII atom is essentially distorted octahedral with two N atoms of phen, a pyrazine ring N atom (N3) of the pterin ligand and an aqua O atom forming the equatorial plane; two pterin O atoms (O1 and O3) define the longer axial positions, with the phenolate O3 forming the longest axial bond [2.270 (2) Å]. Extent of distortion of this coordination octahedron is much more pronounced as compared to that of the Co(II)-pteridine complexes reported earlier (Acuña-Cueva et al., 2003; Burgmayer & Stiefel, 1988; Funahashi et al., 1997). A major cause of this departure from regular geometry is that the pterin ligand forms two five-membered chelate rings having small bite angles [75.10 (10) and 76.26 (9)°], instead of only one per pteridine ligand for the earlier cases. Location of the short Co1—N3 bond [2.016 (3) Å] in the equatorial plane is consistent with the literature, which suggests a strong cobalt-pterin interaction (Odani et al., 1992). The pterin ligand is coordinated here as a binegative tridentate ONO donor, as evident from the charge balance of this complex. The phen and pterin rings are nearly perpendicular to each other for minimizing the steric repulsion. The Co1—N1 [2.079 (3) Å] and Co1—N2 [2.123 (3) Å] bond lengths are at par with that of the Co1—N3 bond [2.016 (3) Å] and indicate receipt of π-back donation to both phen and pterin rings from the Co(II) centre (d7) through dπ–pπ interactions. This process is further strengthened by the presence of π-donating phenolate and carboxylate O atoms around the metal centre (Kohzuma et al., 1988).

For rationalizing the near double bond nature of the O3—C18 [1.265 (4) Å] bond, a hypothesis of Joule (Beddoes et al., 1993; Russell et al., 1992) may be invoked, which suggests withdrawl of electron density from the pyrazine ring N6 by the pyrimidine ring C18-carbonyl group through mesomeric interaction. Formation of the O3—Co1 bond accentuates this electron withdrawal towards O3. The electron-rich N7—C17 [1.337 (4) Å] bond may also participate in this electron transfer. The pyrimidine ring is fairly planer and deviations of the C16/N5/C17 and C17/N4/C18 segments with respect to the N7—C17 multiple bonds are 2.6 and 0.7°, respectively.

In the crystal, intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1) link the complex molecules and lattice water molecules into a layer parallel to (001) (Fig. 2). The lattice water molecules are decisive for the crystal packing. Fig. 3 reveals π–π stacking interactions involving two parallel, inversion-related pterin rings within the same unit cell and showing face-to-face distance of 3.283 (4) and 3.366 (4) Å. Again the phen rings display two types of π–π stacking on either side of the unit cell. In one case, the adjacent phen rings are essentially parallel to each other with an average interplanar distance of 3.496 (4) Å; on the other side of the unit cell, the face-to-face seperations between parallel phen rings are 3.578 (4) and 3.629 (5) Å.

Experimental

2-Amino-4-hydroxy-7-methylpteridine-6-carboxylic acid sesquihydrate (C8H7N5O3.1.5H2O) was obtained by published procedure (Wittle et al., 1947). The title complex was prepared by the dropwise addition of an aqueous alkaline solution (NaOH: 11 mg, 0.275 mmol) of the pterin ligand (31 mg, 0.125 mmol) to a warm (311 K) aqueous reaction medium containing CoSO4.7H2O (35 mg, 0.125 mmol) and 1,10-phenanthroline monohydrate (25 mg, 0.125 mmol) in a total volume of 60 ml. The pH value was adjusted to 10.8 using aqueous NaOH solution and dioxygen was bubbled in for 48 h; final pH was 10.3. Initially a small amount of yellow-white precipitate came out and the reaction mixture ultimately assumed a reddish-pink tinge. It was transferred to a 100 ml beaker, requisite quantity of water was added to make up for the evaporation loss and allowed to stand at room temperature. Pink crystals suitable for single-crystal X-ray diffraction appeared after 15 days (yield: 30%).

Refinement

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restrains on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98, N—H = 0.86–0.89, O—H = 0.82 Å) and with Uiso(H) = 1.2–1.5Ueq(parent atom), after which the positions were refined with rigiding constrains.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Lattice water molecules are omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing diagram of the title compound, viewed along the b axis. Dotted lines indicate hydrogen bonds, assisting the formation of a layer structure parallel to (001).

Fig. 3.

Fig. 3.

A molecular packing diagram highlighting π–π stacking interactions between two neighbouring phen–phen and pterin–pterin rings, respectively.

Crystal data

[Co(C8H5N5O3)(C12H8N2)(H2O)]·3H2O Z = 2
Mr = 530.36 F(000) = 546
Triclinic, P1 Dx = 1.659 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.454 (2) Å Cell parameters from 8945 reflections
b = 9.934 (3) Å θ = 2–28°
c = 13.778 (4) Å µ = 0.87 mm1
α = 97.534 (4)° T = 110 K
β = 95.281 (4)° Block, pink
γ = 110.603 (4)° 0.23 × 0.11 × 0.04 mm
V = 1061.8 (5) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 4360 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.82, Tmax = 0.97 k = −12→13
8945 measured reflections l = −18→18
4726 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.129 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 3.34P], where P = (max(Fo2,0) + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.0001859
4726 reflections Δρmax = 0.99 e Å3
316 parameters Δρmin = −0.88 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.45982 (5) 0.22172 (4) 0.22887 (3) 0.0125
O1 0.2062 (3) 0.0747 (2) 0.23341 (17) 0.0176
C13 0.1224 (4) 0.1182 (3) 0.2948 (2) 0.0159
O2 −0.0205 (3) 0.0408 (2) 0.31159 (18) 0.0204
C14 0.2096 (4) 0.2762 (3) 0.3463 (2) 0.0150
N3 0.3618 (3) 0.3367 (3) 0.32052 (19) 0.0137
C19 0.4572 (4) 0.4746 (3) 0.3559 (2) 0.0137
C16 0.4012 (4) 0.5628 (3) 0.4205 (2) 0.0151
N5 0.4986 (3) 0.7057 (3) 0.4529 (2) 0.0154
C17 0.6493 (4) 0.7539 (3) 0.4170 (2) 0.0157
N4 0.7169 (3) 0.6739 (3) 0.3559 (2) 0.0161
C18 0.6243 (4) 0.5321 (3) 0.3254 (2) 0.0148
O3 0.6704 (3) 0.4463 (2) 0.26886 (17) 0.0174
N7 0.7460 (4) 0.8957 (3) 0.4440 (2) 0.0199
H141 0.8293 0.9343 0.4135 0.0223*
H142 0.7086 0.9522 0.4775 0.0228*
N6 0.2466 (3) 0.5028 (3) 0.4504 (2) 0.0176
C15 0.1508 (4) 0.3621 (3) 0.4146 (2) 0.0171
C20 −0.0163 (4) 0.2992 (4) 0.4506 (3) 0.0256
H172 −0.0359 0.3696 0.4963 0.0378*
H173 −0.0185 0.2188 0.4829 0.0383*
H171 −0.1061 0.2680 0.3985 0.0380*
O4 0.5538 (3) 0.1469 (2) 0.35063 (17) 0.0185
H181 0.4964 0.0663 0.3597 0.0272*
H182 0.5418 0.1894 0.4013 0.0271*
N2 0.3758 (3) 0.2801 (3) 0.0963 (2) 0.0162
C12 0.2567 (4) 0.3370 (4) 0.0798 (3) 0.0196
C11 0.2191 (4) 0.3750 (4) −0.0116 (3) 0.0230
C10 0.3071 (4) 0.3548 (4) −0.0867 (3) 0.0220
C8 0.4354 (4) 0.2958 (4) −0.0719 (2) 0.0183
C9 0.4634 (4) 0.2593 (3) 0.0218 (2) 0.0138
C5 0.5897 (4) 0.1963 (3) 0.0422 (2) 0.0147
N1 0.6075 (3) 0.1592 (3) 0.1330 (2) 0.0152
C1 0.7247 (4) 0.1018 (3) 0.1537 (2) 0.0178
C2 0.8260 (4) 0.0749 (4) 0.0839 (3) 0.0225
C3 0.8069 (4) 0.1096 (4) −0.0079 (3) 0.0221
C4 0.6854 (4) 0.1721 (3) −0.0323 (2) 0.0179
C6 0.6545 (4) 0.2115 (4) −0.1271 (3) 0.0227
C7 0.5346 (5) 0.2690 (4) −0.1461 (3) 0.0241
H321 0.5124 0.2898 −0.2083 0.0280*
H311 0.7136 0.1926 −0.1771 0.0268*
H291 0.8704 0.0898 −0.0554 0.0258*
H281 0.9086 0.0377 0.1020 0.0257*
H271 0.7401 0.0814 0.2171 0.0208*
H221 0.2815 0.3779 −0.1477 0.0263*
H211 0.1346 0.4115 −0.0211 0.0270*
H201 0.1976 0.3531 0.1304 0.0229*
O7 0.9931 (4) 0.4695 (3) 0.1919 (3) 0.0445
H331 1.0355 0.5568 0.1993 0.0644*
H332 0.9309 0.4819 0.2305 0.0648*
O5 0.0341 (3) −0.2327 (3) 0.28207 (18) 0.0224
H341 0.0418 −0.1559 0.2637 0.0322*
H342 −0.0472 −0.2571 0.3124 0.0321*
O6 0.3374 (3) −0.0951 (2) 0.40693 (18) 0.0204
H351 0.2468 −0.1420 0.3696 0.0287*
H352 0.3795 −0.1552 0.4182 0.0294*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0135 (2) 0.0131 (2) 0.0129 (2) 0.00622 (16) 0.00458 (15) 0.00324 (15)
O1 0.0164 (11) 0.0142 (11) 0.0210 (12) 0.0040 (9) 0.0048 (9) 0.0026 (9)
C13 0.0156 (15) 0.0157 (15) 0.0168 (15) 0.0064 (12) −0.0002 (12) 0.0050 (12)
O2 0.0143 (11) 0.0173 (11) 0.0269 (13) 0.0015 (9) 0.0059 (9) 0.0056 (10)
C14 0.0134 (14) 0.0150 (15) 0.0185 (15) 0.0062 (12) 0.0048 (12) 0.0053 (12)
N3 0.0134 (12) 0.0130 (12) 0.0153 (13) 0.0049 (10) 0.0035 (10) 0.0038 (10)
C19 0.0139 (14) 0.0141 (14) 0.0156 (15) 0.0062 (12) 0.0053 (12) 0.0057 (12)
C16 0.0158 (15) 0.0172 (15) 0.0152 (15) 0.0085 (12) 0.0029 (12) 0.0050 (12)
N5 0.0149 (13) 0.0129 (12) 0.0196 (14) 0.0060 (10) 0.0040 (10) 0.0030 (10)
C17 0.0157 (15) 0.0175 (15) 0.0167 (15) 0.0083 (12) 0.0030 (12) 0.0063 (12)
N4 0.0150 (13) 0.0148 (13) 0.0202 (14) 0.0057 (10) 0.0078 (11) 0.0047 (11)
C18 0.0144 (15) 0.0169 (15) 0.0150 (15) 0.0065 (12) 0.0036 (12) 0.0063 (12)
O3 0.0173 (11) 0.0170 (11) 0.0193 (12) 0.0073 (9) 0.0065 (9) 0.0028 (9)
N7 0.0188 (14) 0.0136 (13) 0.0264 (15) 0.0044 (11) 0.0081 (12) 0.0020 (11)
N6 0.0164 (13) 0.0169 (13) 0.0224 (14) 0.0083 (11) 0.0071 (11) 0.0041 (11)
C15 0.0148 (15) 0.0171 (15) 0.0226 (16) 0.0075 (12) 0.0065 (12) 0.0079 (13)
C20 0.0163 (16) 0.0207 (17) 0.040 (2) 0.0056 (14) 0.0126 (15) 0.0024 (15)
O4 0.0198 (12) 0.0193 (11) 0.0174 (11) 0.0069 (9) 0.0052 (9) 0.0063 (9)
N2 0.0151 (13) 0.0150 (13) 0.0203 (14) 0.0061 (10) 0.0063 (11) 0.0055 (11)
C12 0.0169 (16) 0.0171 (15) 0.0263 (18) 0.0064 (13) 0.0075 (13) 0.0055 (13)
C11 0.0193 (17) 0.0195 (16) 0.0319 (19) 0.0082 (14) 0.0003 (14) 0.0098 (14)
C10 0.0202 (17) 0.0232 (17) 0.0224 (17) 0.0061 (14) −0.0007 (13) 0.0107 (14)
C8 0.0177 (16) 0.0168 (15) 0.0178 (16) 0.0030 (12) 0.0007 (12) 0.0044 (13)
C9 0.0133 (14) 0.0114 (14) 0.0153 (15) 0.0026 (11) 0.0032 (11) 0.0022 (11)
C5 0.0129 (14) 0.0113 (14) 0.0176 (15) 0.0020 (11) 0.0022 (12) 0.0015 (12)
N1 0.0152 (13) 0.0133 (12) 0.0158 (13) 0.0040 (10) 0.0034 (10) 0.0013 (10)
C1 0.0171 (15) 0.0150 (15) 0.0199 (16) 0.0058 (12) 0.0002 (12) 0.0005 (12)
C2 0.0169 (16) 0.0214 (17) 0.0312 (19) 0.0103 (14) 0.0035 (14) 0.0025 (14)
C3 0.0162 (16) 0.0190 (16) 0.0298 (19) 0.0059 (13) 0.0079 (14) −0.0016 (14)
C4 0.0152 (15) 0.0162 (15) 0.0200 (16) 0.0032 (12) 0.0055 (13) 0.0009 (13)
C6 0.0241 (17) 0.0251 (17) 0.0181 (17) 0.0072 (14) 0.0093 (14) 0.0026 (14)
C7 0.0299 (19) 0.0254 (18) 0.0169 (16) 0.0070 (15) 0.0085 (14) 0.0086 (14)
O7 0.0352 (16) 0.0272 (15) 0.074 (2) 0.0127 (13) 0.0292 (16) −0.0010 (15)
O5 0.0178 (11) 0.0184 (12) 0.0318 (14) 0.0057 (9) 0.0095 (10) 0.0059 (10)
O6 0.0192 (12) 0.0166 (11) 0.0266 (13) 0.0077 (9) 0.0020 (10) 0.0060 (10)

Geometric parameters (Å, º)

Co1—O1 2.140 (2) N2—C12 1.333 (4)
Co1—N3 2.016 (3) N2—C9 1.355 (4)
Co1—O3 2.270 (2) C12—C11 1.402 (5)
Co1—O4 2.120 (2) C12—H201 0.923
Co1—N2 2.123 (3) C11—C10 1.363 (5)
Co1—N1 2.079 (3) C11—H211 0.914
O1—C13 1.279 (4) C10—C8 1.414 (5)
C13—O2 1.244 (4) C10—H221 0.926
C13—C14 1.519 (4) C8—C9 1.408 (4)
C14—N3 1.319 (4) C8—C7 1.435 (5)
C14—C15 1.426 (4) C9—C5 1.439 (4)
N3—C19 1.319 (4) C5—N1 1.359 (4)
C19—C16 1.397 (4) C5—C4 1.411 (4)
C19—C18 1.450 (4) N1—C1 1.333 (4)
C16—N5 1.354 (4) C1—C2 1.406 (5)
C16—N6 1.360 (4) C1—H271 0.930
N5—C17 1.360 (4) C2—C3 1.363 (5)
C17—N4 1.378 (4) C2—H281 0.928
C17—N7 1.337 (4) C3—C4 1.412 (5)
N4—C18 1.335 (4) C3—H291 0.928
C18—O3 1.265 (4) C4—C6 1.439 (5)
N7—H141 0.852 C6—C7 1.349 (5)
N7—H142 0.843 C6—H311 0.925
N6—C15 1.342 (4) C7—H321 0.926
C15—C20 1.491 (4) O7—H331 0.800
C20—H172 0.947 O7—H332 0.810
C20—H173 0.960 O5—H341 0.811
C20—H171 0.930 O5—H342 0.820
O4—H181 0.810 O6—H351 0.830
O4—H182 0.801 O6—H352 0.820
O1—Co1—N3 75.10 (10) H172—C20—H171 106.6
O1—Co1—O3 151.22 (8) H173—C20—H171 109.7
N3—Co1—O3 76.26 (9) Co1—O4—H181 116.6
O1—Co1—O4 90.13 (9) Co1—O4—H182 109.7
N3—Co1—O4 90.23 (10) H181—O4—H182 95.0
O3—Co1—O4 92.74 (9) Co1—N2—C12 128.8 (2)
O1—Co1—N2 90.99 (10) Co1—N2—C9 112.7 (2)
N3—Co1—N2 96.45 (10) C12—N2—C9 118.5 (3)
O3—Co1—N2 89.46 (9) N2—C12—C11 122.3 (3)
O4—Co1—N2 173.29 (10) N2—C12—H201 119.1
O1—Co1—N1 119.55 (10) C11—C12—H201 118.6
N3—Co1—N1 164.48 (10) C12—C11—C10 119.6 (3)
O3—Co1—N1 88.76 (9) C12—C11—H211 120.2
O4—Co1—N1 94.58 (10) C10—C11—H211 120.2
N2—Co1—N1 79.12 (10) C11—C10—C8 119.9 (3)
Co1—O1—C13 116.8 (2) C11—C10—H221 120.1
O1—C13—O2 124.1 (3) C8—C10—H221 120.0
O1—C13—C14 114.6 (3) C10—C8—C9 116.7 (3)
O2—C13—C14 121.2 (3) C10—C8—C7 124.4 (3)
C13—C14—N3 111.4 (3) C9—C8—C7 118.9 (3)
C13—C14—C15 129.9 (3) C8—C9—N2 123.1 (3)
N3—C14—C15 118.8 (3) C8—C9—C5 120.1 (3)
Co1—N3—C14 121.6 (2) N2—C9—C5 116.8 (3)
Co1—N3—C19 117.6 (2) C9—C5—N1 117.5 (3)
C14—N3—C19 120.8 (3) C9—C5—C4 119.5 (3)
N3—C19—C16 121.8 (3) N1—C5—C4 123.0 (3)
N3—C19—C18 117.4 (3) Co1—N1—C5 113.6 (2)
C16—C19—C18 120.7 (3) Co1—N1—C1 127.6 (2)
C19—C16—N5 120.8 (3) C5—N1—C1 118.5 (3)
C19—C16—N6 118.7 (3) N1—C1—C2 122.0 (3)
N5—C16—N6 120.4 (3) N1—C1—H271 118.0
C16—N5—C17 115.1 (3) C2—C1—H271 120.0
N5—C17—N4 127.9 (3) C1—C2—C3 119.8 (3)
N5—C17—N7 117.0 (3) C1—C2—H281 119.3
N4—C17—N7 115.1 (3) C3—C2—H281 120.9
C17—N4—C18 117.6 (3) C2—C3—C4 119.9 (3)
C19—C18—N4 117.7 (3) C2—C3—H291 120.7
C19—C18—O3 118.1 (3) C4—C3—H291 119.4
N4—C18—O3 124.2 (3) C3—C4—C5 116.8 (3)
Co1—O3—C18 110.63 (19) C3—C4—C6 124.2 (3)
C17—N7—H141 119.8 C5—C4—C6 119.0 (3)
C17—N7—H142 119.9 C4—C6—C7 121.2 (3)
H141—N7—H142 117.6 C4—C6—H311 119.5
C16—N6—C15 119.0 (3) C7—C6—H311 119.2
C14—C15—N6 120.8 (3) C8—C7—C6 121.3 (3)
C14—C15—C20 121.7 (3) C8—C7—H321 118.4
N6—C15—C20 117.4 (3) C6—C7—H321 120.3
C15—C20—H172 111.5 H331—O7—H332 86.2
C15—C20—H173 110.1 H341—O5—H342 108.7
H172—C20—H173 108.2 H351—O6—H352 105.5
C15—C20—H171 110.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N7—H141···O2i 0.85 2.12 2.942 (4) 163
N7—H142···O6ii 0.84 2.15 2.970 (4) 165
O4—H181···O6 0.81 1.93 2.717 (3) 164
O4—H182···N5ii 0.80 2.25 3.051 (4) 176
O5—H341···O1 0.82 2.34 3.079 (4) 151
O5—H341···O2 0.82 2.23 2.896 (4) 139
O5—H342···N4iii 0.82 2.04 2.844 (4) 166
O6—H351···O5 0.83 1.92 2.740 (4) 174
O6—H352···N5iv 0.82 2.05 2.871 (4) 176
O7—H331···O5i 0.80 2.25 2.941 (4) 145
O7—H332···O3 0.81 2.23 2.962 (5) 151

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y−1, z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2609).

References

  1. Acuña-Cueva, E. R., Faure, R., Illán-Cabeza, N. A., Jiménez-Pulido, S. B., Moreno-Carretero, M. N. & Quirós-Olozábal, M. (2003). Inorg. Chim. Acta, 342, 209–218.
  2. Basu, P. & Burgmayer, S. J. N. (2011). Coord. Chem. Rev. 255, 1016–1038. [DOI] [PMC free article] [PubMed]
  3. Beddoes, R. L., Dinsmore, A., Helliwell, M., Garner, C. D. & Joule, J. A. (1997). Acta Cryst. C53, 213–215.
  4. Beddoes, R. L., Russell, J. R., Garner, C. D. & Joule, J. A. (1993). Acta Cryst. C49, 1649–1652.
  5. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Burgmayer, S. J. N. (1998). Struct. Bond. 92, 67–119.
  8. Burgmayer, S. J. N. & Stiefel, E. I. (1988). Inorg. Chem. 27, 4059–4061.
  9. Fitzpatrick, P. F. (2003). Biochemistry, 42, 14083–14091. [DOI] [PMC free article] [PubMed]
  10. Fukuzumi, S. & Kojima, T. (2008). J. Biol. Inorg. Chem. 13, 321–333. [DOI] [PubMed]
  11. Funahashi, Y., Hara, Y., Masuda, H. & Yamauchi, O. (1997). Inorg. Chem. 36, 3869–3875.
  12. Kohzuma, T., Odani, A., Morita, Y., Takani, M. & Yamauchi, O. (1988). Inorg. Chem. 27, 3854–3858.
  13. Odani, A., Masuda, H., Inukai, K. & Yamauchi, O. (1992). J. Am. Chem. Soc. 114, 6294–6300.
  14. Russell, J. R., Garner, C. D. & Joule, J. A. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1245–1249.
  15. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
  18. Wittle, E. L., O’Dell, B. L., Vandenbelt, J. M. & Pfiffner, J. J. (1947). J. Am. Chem. Soc. 69, 1786–1792. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051185/hy2609sup1.cif

e-69-00m70-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051185/hy2609Isup2.hkl

e-69-00m70-Isup2.hkl (297.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES