Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):m29–m30. doi: 10.1107/S1600536812047964

catena-Poly[[[O,O′-bis­(2-methyl­phen­yl) dithio­phosphato-κ2 S,S]lead(II)]-μ-O,O′-bis­(2-methyl­phen­yl) dithio­phosphato-κ3 S,S′:S]

Ray J Butcher a,*, Raju Ratnani b,, Sema Öztürk Yildirim a,c, Oluwaseun Falola a
PMCID: PMC3588372  PMID: 23476328

Abstract

In the title compound, [Pb(C14H14O2PS2)2]n, the metal atom is surrounded by two O,O′-bis­(2-methyl­phen­yl) dithio­phosphate ligands bonding through the S-donor atoms. Three of the Pb—S bond lengths are are close to each other at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in inter­molecular bridging to an adjacent PbII atom [Pb—S = 3.145 (2) Å]. The bond angles demonstrate that the PbII atom contains a stereochemically active lone pair with a distorted octa­hedral geometry about the PbII atom. This distortion is shown by the S—Pb—S bite angles of 73.63 (4) and 69.50 (4)°, while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. One of the benzene rings shows positional disorder over two orientations with occupancy factors of 0.747 (11) and 0.253 (11).

Related literature  

For applications of related O,O′-dialkyl derivatives of phospho­rus(V) dithio­acids, see: Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988). For general and convenient methods for the preparation of dithio­phosphato salt derivatives and their metal derivatives, see: Bajia et al. (2009); Maheshwari et al. (2009); Lawton & Kokotailo (1969, 1972); Ito (1972); Harrison et al. (1988); Van Zyl & Fackler, (2000); Van Zyl (2010). For VSEPR theory, see: Gillespie & Nyholm (1957). For stereochemically active lone pairs in Pb2+ complexes, see: Davidovich et al. (2010); Ito & Maeda (2004); Larsson et al. (2004); Lawton & Kokotailo (1972). graphic file with name e-69-00m29-scheme1.jpg

Experimental  

Crystal data  

  • [Pb(C14H14O2PS2)2]

  • M r = 825.87

  • Monoclinic, Inline graphic

  • a = 12.0263 (6) Å

  • b = 10.7420 (4) Å

  • c = 13.0499 (8) Å

  • β = 112.849 (6)°

  • V = 1553.58 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 14.31 mm−1

  • T = 123 K

  • 0.46 × 0.05 × 0.03 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] T min = 0.094, T max = 0.675

  • 10226 measured reflections

  • 4494 independent reflections

  • 4269 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.075

  • S = 1.03

  • 4494 reflections

  • 406 parameters

  • 55 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.15 e Å−3

  • Absolute structure: Flack (1983), 1093 Friedel pairs

  • Flack parameter: −0.03 (8)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047964/bt6859sup1.cif

e-69-00m29-sup1.cif (40.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047964/bt6859Isup2.hkl

e-69-00m29-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

O,O'-Dialkyl derivatives of phosphorus(V) dithioacids are characterized by wide possibilities for practical applications in various areas, namely, as flotation reagents (in the concentration of sulfide ores of nonferrous metals), fungicides, insecticides, herbicides, antioxidants, additives to lubricating oils, and technological precursors of film sulfides of transition and nontransition metals. The structural variety of metal complexes with dialkyldithiophosphates has been explained in terms of coordination chemistry by the ability of these compounds to perform different structural functions and act as bidentate terminal, bidentate bridging or combined ligands. As a result, compounds with different types of structural organization can be formed: mono-, bi-, tetra-, or polynuclear complexes. A unique alternation of the conformationally different (`chair`-`saddle`) eight-membered rings [Cd2S4P2] has been revealed in the chains of polynuclear cadmium(II) complexes [Cd{S(S)P(OR)2}2]n (Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). General and convenient methods to prepare dithiophosphato salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010). In view of the importance of these compounds and in continuation of our earlier work (Bajia et al., 2009; Maheshwari et al., 2009) we have undertaken the crystal structure determination of the title compound, and the results are presented here. Pb2+ complexes of these types of ligands are of particular interest because of the possibility of exhibiting stereochemically active lone pairs (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The structure consists of a linear zigzag chain of molecules in the b direction composed of one Pb atom and two chelating bis(2-methylphenyl) phosphato ligands and linked by Pb—S—Pb bonds. The two bis(2-methylphenyl) phosphato ligands are coordinated through both S atoms to the metal. Three of the Pb—S bond lengths are insignificantly different at 2.7710 (18), 2.8104 (16) and 2.8205 (16) Å, while the fourth Pb—S bond is elongated at 3.0910 (18) Å and reflects the fact that this atom is involved in intermolecular bridging (symmetry code, 2 - x,1/2 + y,1 - z) to an adjacent Pb (intermolecular Pb—S distance, 3.145 (2) Å).

The bond angles reflect the fact that Pb contains a stereochemically active lone pair so the geometry about the Pb is best described using VSEPR theory as AX5E (Gillespie & Nyholm, 1957) and is thus distorted octahedral. The S—Pb—S bite angles are small at 73.63 (4) and 69.50 (4)° while the remaining S—Pb—S angles range from 81.03 (5) to 143.66 (5)°. Thus the relative bond distances and angles for the title compound agree with the presence of an electron lone pair in a distorted octahedral PbS5E (with one S as a bridging ligand) environment. Evidence for the presence of a stereochemically active electron lone pair of the lead atom has also been reported for other Pb2+ complexes with similar ligands (Davidovich et al., 2010; Ito & Maeda, 2004; Larsson et al., 2004; Lawton & Kokotailo, 1972).

In the molecule one of the 1-methoxy-2-methyl-benzene rings (O4—C22—C28) shows positional disorder over two orientations with occupancy ratio of 0.747 (11):0.253 (11).

No evidence for C—H···O or C—H···S interactions were found in the crystal.

Experimental

Title compound was published methods (Bajia et al., 2009; Maheshwari et al., 2009; Lawton & Kokotailo, 1969; Lawton & Kokotailo, 1972; Ito, 1972; Harrison et al., 1988). Crystals were grown by slow evaporation of a mixture of absolute ethyl alcohol (90%) and chloroform (10%) solution.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96(CH3) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.69 Å from Pb the deepest hole 0.82 Å from Pb.

In the molecule one 1-methoxy-2-methyl-benzene ring (O4—C22—C28) shows positional disorder in a 0.747 (1):0.253 (1) ratio. The highest maximum (0.69 e/Å3) in the final difference map is at 1.12 Å from Pb and the deepest hole (0.82 e/Å3) is at -1.15 Å from Pb. Nine outliers, (-12 - 5 12), (-13 - 4 11), (-14 - 3 10), (-12 - 6 10), (-7 - 11 7), (-13 - 5 10), (0 - 8 12), (0 1 15) and (-5 - 12 6), were omitted in the final refinement.

The SIMU and DELU constraint instructions in SHELXL97 were used for atoms O4/O4a, C22/C22a, C23/C23a, C24/C24a, C25/C25a, C26/C26a, C27/C27a,C28/C28a and ISOR (0.01) was used for atoms C24a and C26a in order to model the disorder properly during the refinement.

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only major disordered component for the 1-methoxy-2-methyl-benzene ring is shown. Atoms labelled with suffix A were generated by the symmetry operator 2 - x, 0.5 + y, 1 - z.

Fig. 2.

Fig. 2.

Crystal packing diagram for the title compound.

Crystal data

[Pb(C14H14O2PS2)2] F(000) = 808
Mr = 825.87 Dx = 1.765 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2yb Cell parameters from 4674 reflections
a = 12.0263 (6) Å θ = 3.7–75.4°
b = 10.7420 (4) Å µ = 14.31 mm1
c = 13.0499 (8) Å T = 123 K
β = 112.849 (6)° Needle, colorless
V = 1553.58 (15) Å3 0.46 × 0.05 × 0.03 mm
Z = 2

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 4494 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4269 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
Detector resolution: 10.5081 pixels mm-1 θmax = 75.6°, θmin = 3.7°
ω scans h = −15→14
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] k = −13→8
Tmin = 0.094, Tmax = 0.675 l = −14→16
10226 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.1401P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.007
4494 reflections Δρmax = 1.12 e Å3
406 parameters Δρmin = −1.15 e Å3
55 restraints Absolute structure: Flack (1983), 1093 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.58111 (14) 0.59159 (15) 0.27999 (13) 0.0313 (3)
P2 0.94672 (15) 0.36924 (17) 0.63559 (15) 0.0397 (4)
S1 0.65999 (14) 0.43767 (15) 0.25837 (14) 0.0372 (3)
S2 0.68892 (13) 0.72496 (15) 0.37035 (14) 0.0360 (3)
S3 0.97595 (15) 0.29732 (17) 0.50949 (16) 0.0426 (4)
S4 0.84998 (14) 0.52418 (15) 0.60457 (14) 0.0428 (4)
Pb 0.874757 (17) 0.55165 (2) 0.403361 (19) 0.03788 (6)
O1 0.4862 (3) 0.5601 (6) 0.3355 (3) 0.0329 (9)
O2 0.5005 (4) 0.6443 (4) 0.1582 (4) 0.0354 (9)
O3 0.8792 (4) 0.2724 (5) 0.6864 (4) 0.0452 (12)
C1 0.4143 (5) 0.4517 (6) 0.3029 (5) 0.0334 (13)
C2 0.3246 (6) 0.4438 (7) 0.1981 (6) 0.0379 (14)
H2A 0.3119 0.5086 0.1476 0.045*
C3 0.2528 (7) 0.3365 (8) 0.1688 (7) 0.0470 (17)
H3A 0.1930 0.3288 0.0978 0.056*
C4 0.2710 (7) 0.2427 (7) 0.2451 (7) 0.0483 (17)
H4A 0.2230 0.1717 0.2261 0.058*
C5 0.3608 (7) 0.2538 (7) 0.3502 (7) 0.0453 (16)
H5A 0.3726 0.1893 0.4008 0.054*
C6 0.4350 (5) 0.3602 (6) 0.3828 (5) 0.0350 (13)
C7 0.5306 (6) 0.3735 (8) 0.4978 (7) 0.0502 (19)
H7A 0.5198 0.4510 0.5295 0.075*
H7B 0.6088 0.3722 0.4941 0.075*
H7C 0.5244 0.3059 0.5434 0.075*
C8 0.4551 (6) 0.7671 (6) 0.1443 (5) 0.0359 (13)
C9 0.3744 (6) 0.8024 (8) 0.1895 (6) 0.0424 (15)
H9A 0.3508 0.7464 0.2316 0.051*
C10 0.3283 (7) 0.9222 (8) 0.1720 (7) 0.0490 (17)
H10A 0.2754 0.9479 0.2042 0.059*
C11 0.3614 (8) 1.0035 (8) 0.1062 (7) 0.0534 (19)
H11A 0.3286 1.0832 0.0918 0.064*
C12 0.4437 (9) 0.9654 (8) 0.0621 (6) 0.054 (2)
H12A 0.4653 1.0207 0.0181 0.064*
C13 0.4950 (7) 0.8473 (7) 0.0814 (6) 0.0407 (15)
C14 0.5853 (8) 0.8076 (8) 0.0345 (7) 0.0540 (19)
H14A 0.6487 0.7610 0.0895 0.081*
H14B 0.6188 0.8798 0.0139 0.081*
H14C 0.5461 0.7565 −0.0299 0.081*
C15 0.9162 (7) 0.1475 (8) 0.7050 (7) 0.0428 (17)
C16 1.0210 (8) 0.1178 (10) 0.7962 (7) 0.051 (2)
H16A 1.0669 0.1801 0.8430 0.061*
C17 1.0567 (9) −0.0087 (11) 0.8169 (9) 0.065 (3)
H17A 1.1253 −0.0315 0.8779 0.078*
C18 0.9857 (8) −0.0971 (9) 0.7428 (9) 0.061 (2)
H18A 1.0086 −0.1803 0.7544 0.073*
C19 0.8856 (8) −0.0673 (8) 0.6553 (8) 0.055 (2)
H19A 0.8409 −0.1305 0.6088 0.065*
C20 0.8456 (5) 0.0560 (12) 0.6314 (6) 0.0472 (15)
C21 0.7325 (7) 0.0918 (8) 0.5346 (7) 0.0509 (19)
H21A 0.7496 0.1594 0.4949 0.076*
H21B 0.6720 0.1171 0.5613 0.076*
H21C 0.7036 0.0217 0.4858 0.076*
O4 1.0800 (7) 0.3917 (8) 0.7289 (7) 0.043 (2) 0.747 (11)
C22 1.0991 (7) 0.4823 (6) 0.8088 (6) 0.040 (3) 0.747 (11)
C23 1.0368 (7) 0.4817 (8) 0.8790 (7) 0.058 (3) 0.747 (11)
H23 0.9802 0.4199 0.8721 0.069* 0.747 (11)
C24 1.0591 (9) 0.5736 (10) 0.9595 (6) 0.077 (6) 0.747 (11)
H24 1.0175 0.5733 1.0065 0.093* 0.747 (11)
C25 1.1437 (10) 0.6661 (8) 0.9699 (6) 0.080 (5) 0.747 (11)
H25 1.1586 0.7276 1.0238 0.096* 0.747 (11)
C26 1.2060 (8) 0.6666 (7) 0.8997 (8) 0.071 (5) 0.747 (11)
H26 1.2625 0.7285 0.9066 0.086* 0.747 (11)
C27 1.1836 (7) 0.5747 (7) 0.8192 (7) 0.058 (3) 0.747 (11)
C28 1.2475 (11) 0.5753 (14) 0.7405 (11) 0.064 (4) 0.747 (11)
H28A 1.3050 0.6422 0.7596 0.096* 0.747 (11)
H28B 1.1897 0.5867 0.6658 0.096* 0.747 (11)
H28C 1.2887 0.4976 0.7458 0.096* 0.747 (11)
O4A 1.0570 (17) 0.374 (2) 0.762 (2) 0.044 (6) 0.253 (11)
C22A 1.1269 (15) 0.4788 (17) 0.7926 (16) 0.054 (11) 0.253 (11)
C23A 1.2071 (17) 0.5125 (19) 0.7443 (16) 0.048 (8) 0.253 (11)
H23A 1.2118 0.4653 0.6863 0.057* 0.253 (11)
C24A 1.2802 (16) 0.617 (2) 0.7825 (18) 0.045 (8) 0.253 (11)
H24A 1.3339 0.6391 0.7502 0.055* 0.253 (11)
C25A 1.2731 (19) 0.6870 (18) 0.8691 (18) 0.060 (10) 0.253 (11)
H25A 1.3221 0.7567 0.8947 0.072* 0.253 (11)
C26A 1.193 (2) 0.653 (2) 0.9175 (16) 0.045 (8) 0.253 (11)
H26A 1.1882 0.7005 0.9755 0.054* 0.253 (11)
C27A 1.1198 (16) 0.549 (2) 0.8793 (16) 0.053 (7) 0.253 (11)
C28A 1.030 (3) 0.511 (6) 0.927 (3) 0.09 (2) 0.253 (11)
H28D 1.0442 0.4262 0.9514 0.134* 0.253 (11)
H28E 0.9498 0.5189 0.8710 0.134* 0.253 (11)
H28F 1.0381 0.5638 0.9889 0.134* 0.253 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0341 (6) 0.0230 (7) 0.0404 (7) 0.0005 (5) 0.0186 (6) 0.0006 (5)
P2 0.0325 (7) 0.0354 (9) 0.0492 (9) 0.0053 (7) 0.0139 (6) −0.0042 (7)
S1 0.0395 (7) 0.0256 (8) 0.0518 (8) 0.0014 (6) 0.0234 (6) −0.0039 (6)
S2 0.0345 (7) 0.0259 (7) 0.0480 (8) −0.0006 (6) 0.0163 (6) −0.0032 (6)
S3 0.0477 (10) 0.0303 (8) 0.0595 (10) 0.0064 (8) 0.0314 (8) 0.0042 (7)
S4 0.0401 (7) 0.0366 (12) 0.0516 (8) 0.0103 (6) 0.0178 (6) −0.0056 (6)
Pb 0.03314 (9) 0.02947 (11) 0.05628 (12) −0.00011 (13) 0.02308 (8) −0.00157 (14)
O1 0.0358 (16) 0.028 (2) 0.0381 (17) −0.001 (2) 0.0180 (14) 0.001 (2)
O2 0.045 (2) 0.024 (2) 0.041 (2) −0.0006 (18) 0.0196 (19) 0.0013 (17)
O3 0.042 (2) 0.047 (3) 0.051 (3) 0.010 (2) 0.024 (2) 0.002 (2)
C1 0.036 (3) 0.029 (3) 0.043 (3) 0.002 (2) 0.022 (2) −0.003 (2)
C2 0.041 (3) 0.036 (4) 0.042 (3) −0.004 (3) 0.021 (3) 0.000 (3)
C3 0.047 (4) 0.044 (4) 0.055 (4) −0.008 (3) 0.025 (3) −0.009 (3)
C4 0.058 (4) 0.031 (4) 0.067 (4) −0.012 (3) 0.037 (4) −0.010 (3)
C5 0.049 (3) 0.031 (4) 0.069 (4) 0.003 (3) 0.038 (3) 0.008 (3)
C6 0.035 (3) 0.033 (3) 0.045 (3) 0.007 (3) 0.024 (2) 0.010 (3)
C7 0.036 (3) 0.054 (5) 0.061 (4) 0.006 (3) 0.020 (3) 0.022 (4)
C8 0.040 (3) 0.028 (3) 0.038 (3) −0.003 (3) 0.013 (2) 0.001 (2)
C9 0.042 (3) 0.041 (4) 0.046 (3) 0.004 (3) 0.019 (3) 0.002 (3)
C10 0.055 (4) 0.041 (4) 0.051 (4) 0.015 (3) 0.020 (3) 0.006 (3)
C11 0.075 (5) 0.040 (4) 0.052 (4) 0.015 (4) 0.032 (4) 0.006 (3)
C12 0.083 (5) 0.039 (4) 0.044 (4) 0.006 (4) 0.030 (4) 0.012 (3)
C13 0.054 (4) 0.028 (3) 0.042 (3) 0.003 (3) 0.021 (3) −0.001 (3)
C14 0.079 (5) 0.038 (4) 0.058 (4) −0.004 (4) 0.040 (4) −0.001 (3)
C15 0.047 (4) 0.044 (4) 0.050 (4) 0.009 (3) 0.032 (3) 0.008 (3)
C16 0.050 (4) 0.062 (6) 0.045 (4) 0.012 (4) 0.024 (3) 0.006 (4)
C17 0.057 (5) 0.079 (7) 0.062 (5) 0.029 (5) 0.027 (4) 0.027 (5)
C18 0.059 (5) 0.044 (5) 0.095 (7) 0.012 (4) 0.046 (5) 0.019 (4)
C19 0.069 (5) 0.035 (4) 0.084 (6) 0.002 (4) 0.055 (5) 0.007 (4)
C20 0.044 (3) 0.047 (4) 0.063 (3) 0.001 (5) 0.034 (3) 0.010 (5)
C21 0.043 (3) 0.047 (4) 0.067 (5) −0.003 (3) 0.027 (3) 0.001 (3)
O4 0.033 (4) 0.047 (4) 0.049 (4) 0.004 (3) 0.018 (3) −0.007 (3)
C22 0.046 (5) 0.036 (6) 0.034 (5) 0.000 (4) 0.010 (4) −0.007 (4)
C23 0.067 (7) 0.068 (8) 0.040 (6) 0.013 (6) 0.022 (5) 0.001 (5)
C24 0.087 (10) 0.098 (16) 0.037 (6) 0.031 (9) 0.012 (6) −0.004 (7)
C25 0.087 (10) 0.064 (9) 0.052 (7) 0.012 (8) −0.013 (7) −0.013 (6)
C26 0.073 (9) 0.046 (7) 0.058 (8) 0.003 (7) −0.015 (7) −0.004 (6)
C27 0.050 (5) 0.054 (9) 0.055 (6) 0.001 (5) 0.003 (4) 0.017 (5)
C28 0.042 (6) 0.060 (10) 0.082 (8) −0.012 (6) 0.014 (6) 0.020 (7)
O4A 0.014 (8) 0.058 (14) 0.056 (14) 0.003 (8) 0.010 (8) −0.007 (11)
C22A 0.044 (17) 0.05 (2) 0.047 (18) 0.011 (15) −0.003 (15) 0.016 (15)
C23A 0.028 (13) 0.044 (19) 0.067 (19) −0.008 (12) 0.014 (13) −0.015 (14)
C24A 0.039 (10) 0.044 (11) 0.051 (10) −0.010 (8) 0.015 (8) 0.005 (8)
C25A 0.047 (17) 0.042 (18) 0.06 (2) −0.017 (15) −0.008 (15) 0.011 (15)
C26A 0.050 (11) 0.040 (11) 0.033 (10) −0.003 (8) 0.005 (8) −0.001 (8)
C27A 0.033 (10) 0.060 (16) 0.072 (15) 0.016 (18) 0.025 (10) 0.03 (2)
C28A 0.039 (15) 0.19 (8) 0.04 (2) −0.01 (3) 0.015 (16) −0.02 (3)

Geometric parameters (Å, º)

P1—O1 1.608 (4) C15—C16 1.394 (11)
P1—O2 1.609 (5) C15—C20 1.406 (14)
P1—S1 1.980 (2) C16—C17 1.419 (13)
P1—S2 1.984 (2) C16—H16A 0.9300
P2—O3 1.612 (6) C17—C18 1.388 (15)
P2—O4 1.611 (8) C17—H17A 0.9300
P2—O4A 1.67 (2) C18—C19 1.337 (14)
P2—S3 1.969 (3) C18—H18A 0.9300
P2—S4 1.980 (2) C19—C20 1.403 (15)
S1—Pb 2.8205 (16) C19—H19A 0.9300
S2—Pb 2.8104 (16) C20—C21 1.503 (10)
S3—Pb 3.0910 (18) C21—H21A 0.9600
S4—Pb 2.7710 (18) C21—H21B 0.9600
O1—C1 1.414 (8) C21—H21C 0.9600
O2—C8 1.413 (8) O4—C22 1.379 (9)
O3—C15 1.404 (10) C22—C23 1.3900
C1—C2 1.376 (9) C22—C27 1.3900
C1—C6 1.384 (9) C23—C24 1.3900
C2—C3 1.402 (10) C23—H23 0.9300
C2—H2A 0.9300 C24—C25 1.3900
C3—C4 1.373 (12) C24—H24 0.9300
C3—H3A 0.9300 C25—C26 1.3900
C4—C5 1.382 (12) C25—H25 0.9300
C4—H4A 0.9300 C26—C27 1.3900
C5—C6 1.410 (10) C26—H26 0.9300
C5—H5A 0.9300 C27—C28 1.502 (14)
C6—C7 1.501 (10) C28—H28A 0.9600
C7—H7A 0.9600 C28—H28B 0.9600
C7—H7B 0.9600 C28—H28C 0.9600
C7—H7C 0.9600 O4A—C22A 1.371 (16)
C8—C9 1.370 (10) C22A—C23A 1.3900
C8—C13 1.397 (10) C22A—C27A 1.3900
C9—C10 1.384 (11) C23A—C24A 1.3900
C9—H9A 0.9300 C23A—H23A 0.9300
C10—C11 1.387 (12) C24A—C25A 1.3900
C10—H10A 0.9300 C24A—H24A 0.9300
C11—C12 1.387 (12) C25A—C26A 1.3900
C11—H11A 0.9300 C25A—H25A 0.9300
C12—C13 1.391 (11) C26A—C27A 1.3900
C12—H12A 0.9300 C26A—H26A 0.9300
C13—C14 1.500 (11) C27A—C28A 1.50 (2)
C14—H14A 0.9600 C28A—H28D 0.9600
C14—H14B 0.9600 C28A—H28E 0.9600
C14—H14C 0.9600 C28A—H28F 0.9600
O1—P1—O2 104.9 (2) H14A—C14—H14B 109.5
O1—P1—S1 110.6 (2) C13—C14—H14C 109.5
O2—P1—S1 106.93 (19) H14A—C14—H14C 109.5
O1—P1—S2 107.4 (2) H14B—C14—H14C 109.5
O2—P1—S2 109.71 (19) C16—C15—O3 119.2 (8)
S1—P1—S2 116.68 (10) C16—C15—C20 122.0 (9)
O3—P2—O4 107.3 (4) O3—C15—C20 118.9 (7)
O3—P2—O4A 87.0 (8) C15—C16—C17 119.2 (9)
O4—P2—O4A 21.9 (7) C15—C16—H16A 120.4
O3—P2—S3 111.9 (2) C17—C16—H16A 120.4
O4—P2—S3 104.0 (3) C18—C17—C16 117.7 (9)
O4A—P2—S3 120.3 (8) C18—C17—H17A 121.2
O3—P2—S4 106.1 (2) C16—C17—H17A 121.2
O4—P2—S4 111.2 (3) C19—C18—C17 122.5 (9)
O4A—P2—S4 110.9 (8) C19—C18—H18A 118.8
S3—P2—S4 116.12 (12) C17—C18—H18A 118.8
P1—S1—Pb 84.63 (7) C18—C19—C20 122.3 (9)
P1—S2—Pb 84.84 (7) C18—C19—H19A 118.9
P2—S3—Pb 81.99 (8) C20—C19—H19A 118.9
P2—S4—Pb 90.71 (8) C19—C20—C15 116.4 (8)
S4—Pb—S2 81.03 (5) C19—C20—C21 123.3 (9)
S4—Pb—S1 100.49 (5) C15—C20—C21 120.3 (10)
S2—Pb—S1 73.63 (4) C20—C21—H21A 109.5
S4—Pb—S3 69.50 (4) C20—C21—H21B 109.5
S2—Pb—S3 143.66 (5) H21A—C21—H21B 109.5
S1—Pb—S3 90.89 (5) C20—C21—H21C 109.5
C1—O1—P1 119.7 (4) H21A—C21—H21C 109.5
C8—O2—P1 120.7 (4) H21B—C21—H21C 109.5
C15—O3—P2 120.7 (5) C22—O4—P2 120.1 (6)
C2—C1—C6 123.2 (6) O4—C22—C23 121.4 (6)
C2—C1—O1 120.1 (6) O4—C22—C27 118.6 (6)
C6—C1—O1 116.6 (6) C23—C22—C27 120.0
C1—C2—C3 118.9 (7) C22—C23—C24 120.0
C1—C2—H2A 120.5 C22—C23—H23 120.0
C3—C2—H2A 120.5 C24—C23—H23 120.0
C4—C3—C2 119.9 (7) C25—C24—C23 120.0
C4—C3—H3A 120.1 C25—C24—H24 120.0
C2—C3—H3A 120.1 C23—C24—H24 120.0
C3—C4—C5 119.9 (7) C26—C25—C24 120.0
C3—C4—H4A 120.0 C26—C25—H25 120.0
C5—C4—H4A 120.0 C24—C25—H25 120.0
C4—C5—C6 121.9 (7) C27—C26—C25 120.0
C4—C5—H5A 119.0 C27—C26—H26 120.0
C6—C5—H5A 119.0 C25—C26—H26 120.0
C1—C6—C5 116.1 (6) C26—C27—C22 120.0
C1—C6—C7 122.0 (6) C26—C27—C28 120.9 (8)
C5—C6—C7 121.9 (6) C22—C27—C28 119.1 (8)
C6—C7—H7A 109.5 C22A—O4A—P2 118.4 (18)
C6—C7—H7B 109.5 O4A—C22A—C23A 122.3 (15)
H7A—C7—H7B 109.5 O4A—C22A—C27A 117.6 (15)
C6—C7—H7C 109.5 C23A—C22A—C27A 120.0
H7A—C7—H7C 109.5 C24A—C23A—C22A 120.0
H7B—C7—H7C 109.5 C24A—C23A—H23A 120.0
C9—C8—C13 123.0 (7) C22A—C23A—H23A 120.0
C9—C8—O2 120.4 (6) C25A—C24A—C23A 120.0
C13—C8—O2 116.6 (6) C25A—C24A—H24A 120.0
C8—C9—C10 119.4 (7) C23A—C24A—H24A 120.0
C8—C9—H9A 120.3 C24A—C25A—C26A 120.0
C10—C9—H9A 120.3 C24A—C25A—H25A 120.0
C9—C10—C11 119.7 (8) C26A—C25A—H25A 120.0
C9—C10—H10A 120.2 C27A—C26A—C25A 120.0
C11—C10—H10A 120.2 C27A—C26A—H26A 120.0
C12—C11—C10 119.6 (8) C25A—C26A—H26A 120.0
C12—C11—H11A 120.2 C26A—C27A—C22A 120.0
C10—C11—H11A 120.2 C26A—C27A—C28A 122 (2)
C11—C12—C13 122.1 (8) C22A—C27A—C28A 118 (2)
C11—C12—H12A 118.9 C27A—C28A—H28D 109.5
C13—C12—H12A 118.9 C27A—C28A—H28E 109.5
C12—C13—C8 116.1 (7) H28D—C28A—H28E 109.5
C12—C13—C14 121.7 (7) C27A—C28A—H28F 109.5
C8—C13—C14 122.2 (7) H28D—C28A—H28F 109.5
C13—C14—H14A 109.5 H28E—C28A—H28F 109.5
C13—C14—H14B 109.5
O1—P1—S1—Pb −118.69 (17) C10—C11—C12—C13 0.0 (14)
O2—P1—S1—Pb 127.58 (19) C11—C12—C13—C8 2.5 (12)
S2—P1—S1—Pb 4.39 (10) C11—C12—C13—C14 −179.2 (8)
O1—P1—S2—Pb 120.3 (2) C9—C8—C13—C12 −2.9 (11)
O2—P1—S2—Pb −126.2 (2) O2—C8—C13—C12 175.9 (6)
S1—P1—S2—Pb −4.41 (11) C9—C8—C13—C14 178.8 (7)
O3—P2—S3—Pb 133.5 (2) O2—C8—C13—C14 −2.4 (10)
O4—P2—S3—Pb −110.9 (4) P2—O3—C15—C16 75.9 (8)
O4A—P2—S3—Pb −126.8 (9) P2—O3—C15—C20 −104.6 (7)
S4—P2—S3—Pb 11.61 (11) O3—C15—C16—C17 178.3 (9)
O3—P2—S4—Pb −137.8 (2) C20—C15—C16—C17 −1.1 (13)
O4—P2—S4—Pb 105.8 (3) C15—C16—C17—C18 1.3 (15)
O4A—P2—S4—Pb 129.3 (8) C16—C17—C18—C19 −1.1 (16)
S3—P2—S4—Pb −12.84 (12) C17—C18—C19—C20 0.7 (14)
P2—S4—Pb—S2 166.17 (8) C18—C19—C20—C15 −0.4 (11)
P2—S4—Pb—S1 94.80 (8) C18—C19—C20—C21 −179.1 (8)
P2—S4—Pb—S3 7.80 (7) C16—C15—C20—C19 0.7 (10)
P1—S2—Pb—S4 −100.91 (7) O3—C15—C20—C19 −178.7 (7)
P1—S2—Pb—S1 2.88 (7) C16—C15—C20—C21 179.4 (7)
P1—S2—Pb—S3 −65.29 (11) O3—C15—C20—C21 −0.1 (10)
P1—S1—Pb—S4 74.43 (7) O3—P2—O4—C22 −87.1 (8)
P1—S1—Pb—S2 −2.89 (7) O4A—P2—O4—C22 −65 (2)
P1—S1—Pb—S3 143.73 (7) S3—P2—O4—C22 154.3 (7)
P2—S3—Pb—S4 −7.92 (7) S4—P2—O4—C22 28.5 (8)
P2—S3—Pb—S2 −45.83 (12) P2—O4—C22—C23 57.5 (9)
P2—S3—Pb—S1 −108.79 (8) P2—O4—C22—C27 −123.2 (6)
O2—P1—O1—C1 76.3 (5) O4—C22—C23—C24 179.3 (8)
S1—P1—O1—C1 −38.7 (5) C27—C22—C23—C24 0.0
S2—P1—O1—C1 −167.0 (4) C22—C23—C24—C25 0.0
O1—P1—O2—C8 77.3 (5) C23—C24—C25—C26 0.0
S1—P1—O2—C8 −165.2 (4) C24—C25—C26—C27 0.0
S2—P1—O2—C8 −37.8 (5) C25—C26—C27—C22 0.0
O4—P2—O3—C15 −68.9 (6) C25—C26—C27—C28 178.4 (8)
O4A—P2—O3—C15 −77.0 (10) O4—C22—C27—C26 −179.3 (7)
S3—P2—O3—C15 44.6 (6) C23—C22—C27—C26 0.0
S4—P2—O3—C15 172.1 (5) O4—C22—C27—C28 2.3 (9)
P1—O1—C1—C2 −69.4 (7) C23—C22—C27—C28 −178.4 (8)
P1—O1—C1—C6 114.0 (5) O3—P2—O4A—C22A −153.3 (16)
C6—C1—C2—C3 −2.2 (10) O4—P2—O4A—C22A 47.8 (19)
O1—C1—C2—C3 −178.5 (6) S3—P2—O4A—C22A 93.1 (16)
C1—C2—C3—C4 1.4 (11) S4—P2—O4A—C22A −47.2 (18)
C2—C3—C4—C5 −0.6 (12) P2—O4A—C22A—C23A −69 (2)
C3—C4—C5—C6 0.6 (12) P2—O4A—C22A—C27A 114.4 (17)
C2—C1—C6—C5 2.0 (9) O4A—C22A—C23A—C24A −177 (2)
O1—C1—C6—C5 178.5 (5) C27A—C22A—C23A—C24A 0.0
C2—C1—C6—C7 −177.7 (6) C22A—C23A—C24A—C25A 0.0
O1—C1—C6—C7 −1.2 (9) C23A—C24A—C25A—C26A 0.0
C4—C5—C6—C1 −1.2 (10) C24A—C25A—C26A—C27A 0.0
C4—C5—C6—C7 178.6 (7) C25A—C26A—C27A—C22A 0.0
P1—O2—C8—C9 −63.7 (8) C25A—C26A—C27A—C28A −179 (3)
P1—O2—C8—C13 117.6 (6) O4A—C22A—C27A—C26A 177 (2)
C13—C8—C9—C10 0.7 (11) C23A—C22A—C27A—C26A 0.0
O2—C8—C9—C10 −178.0 (6) O4A—C22A—C27A—C28A −5 (3)
C8—C9—C10—C11 2.0 (12) C23A—C22A—C27A—C28A 179 (3)
C9—C10—C11—C12 −2.3 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6859).

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Bajia, S., Butcher, R. J., Drake, J. E. & Ratnani, R. (2009). Polyhedron, 28, 1556–1560.
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Davidovich, R. L., Stavila, V. & Whitmire, K. H. (2010). Coord. Chem. Rev. 254, 2193–2226.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Gillespie, R. J. & Nyholm, R. S. (1957). Q. Rev. 11, 339–380.
  7. Harrison, Ph. G., Steel, A., Pelizzi, G. & Pellizi, C. (1988). Main Group Met. Chem. 11, 181–204.
  8. Ito, T. (1972). Acta Cryst. B28, 1034–1040.
  9. Ito, T. & Maeda, Y. (2004). Acta Cryst. E60, m1349–m1350.
  10. Larsson, A.-C., Ivanov, A. V., Antzutkin, O. N., Gerasimenko, A. V. & Forsling, W. (2004). Inorg. Chim. Acta, 357, 2510–2518.
  11. Lawton, S. L. & Kokotailo, G. T. (1969). Nature (London), 221, 550–551.
  12. Lawton, S. L. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 363–368.
  13. Maheshwari, S., Drake, J. E., Kori, K., Light, M. E. & Ratnani, R. (2009). Polyhedron, 28, 689–694.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.
  16. Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047964/bt6859sup1.cif

e-69-00m29-sup1.cif (40.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047964/bt6859Isup2.hkl

e-69-00m29-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES