Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 12;69(Pt 1):o67–o68. doi: 10.1107/S1600536812049835

1-[4-({4-[(E)-(2-Hy­droxy­naphthalen-1-yl)methyl­idene­amino]­phen­yl}sulfan­yl)phen­yl]ethanone

Rabihe Hebbachi a, Hénia Mousser b,*, Abdelhamid Mousser a
PMCID: PMC3588383  PMID: 23476448

Abstract

The title Schiff base compound, C25H19NO2S, crystallizes in a statistically disordered structure comprising keto and enol tautomeric forms. In the enol form, the benzenoid arrangment is promoted by a strong intra­molecular O—H⋯N hydrogen bond and adopts an E conformation about the imine bond. In the keto form there is an intramolecular N—H⋯O hydrogen bond. In the crystal, an extended network of C—H⋯O hydrogen bonds stabilizes columns parallel to the c axis, forming large voids (there are four cavities of 108 Å3 per unit cell) with highly disordered residual electron density. The SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155] was used to eliminate the contribution of this electron density from the intensity data, and the solvent-free model was employed for the final refinement. The contribution of this undetermined solvent was ignored in the calculation of the unit-cell characteristics.

Related literature  

For related structures, see: Blagus & Kaitner (2011); Farag et al. (2010); Venkatachalam et al. (2011). For background to Schiff bases and their applications, see: Li et al. (2003); Villar et al. (2004); Kagkelari et al. (2009); Ourari et al. (2008); Zidane et al. (2011).graphic file with name e-69-00o67-scheme1.jpg

Experimental  

Crystal data  

  • C25H19NO2S

  • M r = 397.47

  • Monoclinic, Inline graphic

  • a = 10.695 (3) Å

  • b = 44.458 (14) Å

  • c = 4.4437 (11) Å

  • β = 99.004 (9)°

  • V = 2086.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 150 K

  • 0.58 × 0.17 × 0.06 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.898, T max = 0.990

  • 8026 measured reflections

  • 3680 independent reflections

  • 2952 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.125

  • S = 0.98

  • 3680 reflections

  • 263 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 1291 Friedel pairs

  • Flack parameter: −0.06 (10)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049835/tk5178sup1.cif

e-69-00o67-sup1.cif (32.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049835/tk5178Isup2.hkl

e-69-00o67-Isup2.hkl (180.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049835/tk5178Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N13A 0.84 1.80 2.558 (4) 149
N13B—H13B⋯O1B 0.88 1.85 2.558 (4) 136
C9—H9⋯O28i 0.95 2.46 (1) 3.398 (4) 168
C19A—H19A⋯O28i 0.95 2.56 (1) 3.506 (4) 174
C22—H22⋯O1A ii 0.95 2.44 (1) 3.337 (4) 157
C27—H27B⋯O1A i 0.98 2.49 (1) 3.442 (4) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Lahcène Ouahab and Thierry Roisnel from the Institut des Sciences Chimiques de Rennes UMR CNRS 6226 for the data collection and helpful discussions, and the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique for financial support.

supplementary crystallographic information

Comment

Schiff bases are important compounds owing to their wide range of biological activities and industrial applications (Li et al., 2003; Villar et al., 2004). They have also been used as ligands in coordination chemistry (Kagkelari et al., 2009; Ourari et al. 2008; Zidane et al., 2011). Schiff bases are generally synthesized by nucleophilic condensation of an aromatic amine and a carbonyl compound, followed by the dehydration of the hemiaminal intermediate to generate the imine (Blagus et al., 2011).

In the present paper, we describe the synthesis and structural study of E-2-{[4-(4-acetylphenylsulfanyl)phenyl-amino]methyl} 2-oxo-naphthalene. The titled compound (Fig. 1) crystallizes in a disordered keto–amino tautomer [Csp2—O 1.277 (4) Å]. The C12—N13A bond length [1.334 (4) Å] is longer than C═N but in the same range of those observed in the literature for related compounds (Blagus et al., 2011; Farag et al., 2010; Venkatachalam et al., 2011) in accordance with the observed keto–amino tautomer form. The benzenoid arrangement is promoted by a strong intramolecular hydrogen bond O—H···N [N···O 2.558 (4) Å].

The Schiff base adopts a E conformation about the C12═N13 bond with a C11—C12—N13A—C14A torsion angle = -178.5 (3) Å. The central part of the molecule is planar with a dihedral angle between the benzene and naphthalene rings being less than 1 °. The molecule is twisted around the sulfide atom, so the average dihedral angle between the acetyl phenyl ring and the oxo naphthalen ring system is about 71°. The electron delocalisation between the two sulfur-bound lone pairs and π electrons of the adjacent phenyl rings leads to a slightly tighter Ssp3 angle (C17A—S1—C20 = 104.88 (15)°). The two similar sulfide carbone single bonds [C17A—S1 1.780 (3) Å and C20—S1 1.764 (3) Å] are as expected. The short bond C3—C4 distance [1.354 (5) Å] adjacent to the O1 oxygen atom of the naphthalen core indicates the presence of quinoid effect.

In the crystal, molecules are aligned head to foot along b axis, in columns parallel to [0 0 1] axis and the structure is stabilized by four kinds of C—H···O interactions (Fig. 2, Table 1). This arrangement separates the equivalent groups in columns by 4.444 (1) Å.

The large void channels in the structure (Fig. 3) contains residual electrons density with high disorder. The residual electron density were difficult to model and therefore, the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are four cavities of 108 Å3 per unit cell. PLATON estimated that each cavity contains 12 electrons which may correspond to a solvent molecule.

Experimental

The title Schiff base was prepared by the condensation of 4-amino-4-acetyl diphenylsulfide and 2-hydroxy naphthaldehyde in a 1:1 molar ratio in ethanol solution. The mixture was stirred under reflux three hours. The crystals of title compound crystallized from a mixture of chloroforme/hexane (1/1). The orange needles were collected by filtration and dried in air. Yield: 61%. Melting Point: 451 K.

Refinement

H atoms were positioned geometrically, using a riding model with C—H = 0.98 Å [Uiso(H) = 1.5 × Ueq(methyl-C)] and with C—H = 0.95 Å [Uiso(H) =1.2 × Ueq(aromatic-C)]. The model included free rotation about the C—C(methyl) bond

Since one hydrogen is not very well localized between N13 and O1, the structure is described as the presence of two tautomers. Hydrogen is bonded to O1 in the first one (part A) and to N13 in the second (part B). This disorder was modeled by refining part A (except H on N13), with O—H = 0.84 Å (Uiso(H) = 1.5), and part B (except H on O1) with equivalence of N13 and central phenyl ring (C14 to C19) atoms, with N—H = 0.88 Å (Uiso(H) = 1.5).

Large voids in the structure contains residual electrons density with hight disorder and or thermal motions. The SQUEEZE procedure of PLATON was used to eliminate the contribution of this residual electron density from the intensity data, and the solvent-free model was employed for the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms. Disorder is present between the (illustrated) enol and keto forms.

Fig. 2.

Fig. 2.

The four intermolecular C—H···O interactions bonds (symmetry codes: C9—H9···O28i, C19A—H19A···O28i, C27—H27B···O1Ai [(i): x - 1/2, -y + 1/2, z - 1/2] and C22–H22···O1Aii [(ii): x - 1/2, -y + 1/2, z + 1/2]).

Fig. 3.

Fig. 3.

A view of the unit-cell contents in projection down the c axis in (I), highlighting large void channels within the unit cell.

Crystal data

C25H19NO2S F(000) = 832
Mr = 397.47 Dx = 1.265 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1817 reflections
a = 10.695 (3) Å θ = 2.4–26.0°
b = 44.458 (14) Å µ = 0.18 mm1
c = 4.4437 (11) Å T = 150 K
β = 99.004 (9)° Stick, orange
V = 2086.8 (10) Å3 0.58 × 0.17 × 0.06 mm
Z = 4

Data collection

Bruker APEXII diffractometer 2952 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS, Sheldrick, 2002) h = −12→13
Tmin = 0.898, Tmax = 0.990 k = −57→57
8026 measured reflections l = −4→5
3680 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.005
3680 reflections Δρmax = 0.24 e Å3
263 parameters Δρmin = −0.22 e Å3
2 restraints Absolute structure: Flack (1983), 1291 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Since hydrogen is not very well localized between N13 and O1, the structure is described as the presence of two tautomers. Hydrogen is bonded to O1 in the first one (part A) and to N13 in the second (part B). This disorder was modeled by refining part A (except H on N13) and part B (except H on O1) with equivalence of N13 and central phenyl ring (C14 to C19) atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.9261 (2) 0.89274 (5) 0.2227 (5) 0.0432 (6) 0.5
H1A 0.8804 0.8781 0.2548 0.065* 0.5
O1B 0.9261 (2) 0.89274 (5) 0.2227 (5) 0.0432 (6) 0.5
C2 0.8665 (3) 0.90927 (7) 0.0128 (7) 0.0343 (7)
C3 0.9267 (3) 0.93567 (7) −0.0798 (8) 0.0404 (8)
H3 1.0096 0.9405 0.0187 0.048*
C4 0.8695 (3) 0.95396 (7) −0.3033 (8) 0.0404 (8)
H4 0.9135 0.9711 −0.3594 0.048*
C5 0.7436 (3) 0.94802 (7) −0.4576 (7) 0.0339 (7)
C6 0.6843 (4) 0.96779 (7) −0.6875 (8) 0.0402 (8)
H6 0.7291 0.9849 −0.7408 0.048*
C7 0.5643 (3) 0.96264 (7) −0.8334 (7) 0.0423 (9)
H7 0.5253 0.9761 −0.9862 0.051*
C8 0.4992 (4) 0.93702 (8) −0.7531 (7) 0.0408 (8)
H8 0.4155 0.9332 −0.853 0.049*
C9 0.5551 (3) 0.91739 (7) −0.5316 (8) 0.0357 (7)
H9 0.5092 0.9003 −0.4825 0.043*
C10 0.6785 (3) 0.92219 (6) −0.3773 (7) 0.0317 (7)
C11 0.7411 (3) 0.90245 (6) −0.1401 (7) 0.0306 (7)
C12 0.6792 (3) 0.87685 (7) −0.0513 (7) 0.0321 (7)
H12 0.5963 0.8725 −0.153 0.039*
N13A 0.7319 (3) 0.85845 (5) 0.1698 (6) 0.0320 (6) 0.5
C14A 0.6753 (3) 0.83248 (6) 0.2696 (7) 0.0285 (6) 0.5
C15A 0.7471 (3) 0.81538 (7) 0.4960 (7) 0.0325 (7) 0.5
H15A 0.8306 0.8216 0.5776 0.039* 0.5
C16A 0.6980 (3) 0.78934 (7) 0.6035 (7) 0.0343 (7) 0.5
H16A 0.7467 0.7782 0.7626 0.041* 0.5
C17A 0.5781 (3) 0.77958 (6) 0.4798 (7) 0.0296 (7) 0.5
C18A 0.5070 (3) 0.79663 (7) 0.2544 (7) 0.0324 (7) 0.5
H18A 0.4242 0.7901 0.1706 0.039* 0.5
C19A 0.5541 (3) 0.82303 (7) 0.1483 (7) 0.0345 (7) 0.5
H19A 0.504 0.8345 −0.0058 0.041* 0.5
N13B 0.7319 (3) 0.85845 (5) 0.1698 (6) 0.0320 (6) 0.5
H13B 0.8087 0.8629 0.2611 0.038* 0.5
C14B 0.6753 (3) 0.83248 (6) 0.2696 (7) 0.0285 (6) 0.5
C15B 0.7471 (3) 0.81538 (7) 0.4960 (7) 0.0325 (7) 0.5
H15B 0.8306 0.8216 0.5776 0.039* 0.5
C16B 0.6980 (3) 0.78934 (7) 0.6035 (7) 0.0343 (7) 0.5
H16B 0.7467 0.7782 0.7626 0.041* 0.5
C17B 0.5781 (3) 0.77958 (6) 0.4798 (7) 0.0296 (7) 0.5
C18B 0.5070 (3) 0.79663 (7) 0.2544 (7) 0.0324 (7) 0.5
H18B 0.4242 0.7901 0.1706 0.039* 0.5
C19B 0.5541 (3) 0.82303 (7) 0.1483 (7) 0.0345 (7) 0.5
H19B 0.504 0.8345 −0.0058 0.041* 0.5
S1 0.50675 (10) 0.747532 (16) 0.62296 (19) 0.0362 (2)
C20 0.5814 (3) 0.71639 (6) 0.4809 (7) 0.0288 (7)
C21 0.5376 (3) 0.68797 (7) 0.5525 (7) 0.0342 (7)
H21 0.47 0.6864 0.6674 0.041*
C22 0.5921 (3) 0.66202 (7) 0.4567 (7) 0.0344 (7)
H22 0.5608 0.6429 0.5051 0.041*
C23 0.6915 (3) 0.66362 (7) 0.2916 (7) 0.0309 (7)
C24 0.7347 (3) 0.69227 (7) 0.2182 (7) 0.0317 (7)
H24 0.8024 0.6938 0.1038 0.038*
C25 0.6800 (3) 0.71807 (7) 0.3103 (7) 0.0305 (7)
H25 0.7098 0.7372 0.257 0.037*
C26 0.7554 (3) 0.63638 (7) 0.1932 (8) 0.0367 (8)
C27 0.7015 (4) 0.60589 (7) 0.2401 (9) 0.0474 (9)
H27A 0.7546 0.5904 0.1671 0.071*
H27B 0.6154 0.6046 0.1264 0.071*
H27C 0.6992 0.6028 0.4576 0.071*
O28 0.8519 (3) 0.63891 (6) 0.0759 (6) 0.0530 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0444 (14) 0.0349 (12) 0.0494 (16) 0.0022 (10) 0.0045 (11) −0.0044 (10)
O1B 0.0444 (14) 0.0349 (12) 0.0494 (16) 0.0022 (10) 0.0045 (11) −0.0044 (10)
C2 0.044 (2) 0.0286 (16) 0.032 (2) 0.0051 (14) 0.0121 (14) −0.0093 (13)
C3 0.0406 (19) 0.0355 (17) 0.047 (2) −0.0029 (15) 0.0120 (16) −0.0151 (15)
C4 0.048 (2) 0.0319 (16) 0.046 (2) −0.0078 (15) 0.0241 (17) −0.0102 (15)
C5 0.048 (2) 0.0278 (15) 0.0299 (19) −0.0021 (14) 0.0177 (14) −0.0072 (12)
C6 0.064 (2) 0.0293 (16) 0.0320 (19) −0.0051 (15) 0.0218 (16) −0.0041 (13)
C7 0.061 (2) 0.0339 (17) 0.033 (2) −0.0001 (16) 0.0109 (17) 0.0036 (14)
C8 0.049 (2) 0.0396 (18) 0.034 (2) 0.0013 (15) 0.0062 (16) −0.0023 (14)
C9 0.048 (2) 0.0294 (15) 0.0310 (18) −0.0037 (14) 0.0092 (14) −0.0008 (13)
C10 0.0457 (19) 0.0240 (13) 0.0287 (18) −0.0010 (13) 0.0159 (14) −0.0066 (12)
C11 0.0410 (18) 0.0249 (14) 0.0279 (17) −0.0011 (13) 0.0112 (13) −0.0068 (12)
C12 0.0397 (18) 0.0296 (15) 0.0279 (18) 0.0039 (13) 0.0082 (13) −0.0055 (12)
N13A 0.0375 (14) 0.0286 (13) 0.0308 (15) 0.0022 (11) 0.0082 (11) −0.0019 (11)
C14A 0.0362 (17) 0.0263 (14) 0.0248 (17) 0.0041 (12) 0.0101 (12) −0.0052 (12)
C15A 0.0359 (18) 0.0332 (16) 0.0278 (19) 0.0001 (13) 0.0034 (13) −0.0021 (12)
C16A 0.0368 (18) 0.0370 (17) 0.0284 (19) 0.0042 (14) 0.0029 (14) 0.0051 (13)
C17A 0.0358 (18) 0.0267 (14) 0.0270 (18) 0.0034 (12) 0.0069 (13) 0.0017 (12)
C18A 0.0342 (17) 0.0327 (16) 0.0312 (19) 0.0045 (13) 0.0078 (13) −0.0033 (12)
C19A 0.0403 (18) 0.0311 (16) 0.0311 (19) 0.0048 (13) 0.0030 (14) 0.0036 (13)
N13B 0.0375 (14) 0.0286 (13) 0.0308 (15) 0.0022 (11) 0.0082 (11) −0.0019 (11)
C14B 0.0362 (17) 0.0263 (14) 0.0248 (17) 0.0041 (12) 0.0101 (12) −0.0052 (12)
C15B 0.0359 (18) 0.0332 (16) 0.0278 (19) 0.0001 (13) 0.0034 (13) −0.0021 (12)
C16B 0.0368 (18) 0.0370 (17) 0.0284 (19) 0.0042 (14) 0.0029 (14) 0.0051 (13)
C17B 0.0358 (18) 0.0267 (14) 0.0270 (18) 0.0034 (12) 0.0069 (13) 0.0017 (12)
C18B 0.0342 (17) 0.0327 (16) 0.0312 (19) 0.0045 (13) 0.0078 (13) −0.0033 (12)
C19B 0.0403 (18) 0.0311 (16) 0.0311 (19) 0.0048 (13) 0.0030 (14) 0.0036 (13)
S1 0.0411 (4) 0.0342 (4) 0.0357 (5) 0.0028 (4) 0.0138 (3) 0.0048 (4)
C20 0.0311 (16) 0.0305 (15) 0.0233 (18) 0.0001 (12) −0.0005 (12) 0.0028 (12)
C21 0.0350 (18) 0.0354 (17) 0.033 (2) −0.0023 (13) 0.0092 (13) 0.0063 (13)
C22 0.0394 (18) 0.0310 (16) 0.0326 (19) −0.0070 (13) 0.0047 (14) 0.0037 (13)
C23 0.0325 (17) 0.0294 (15) 0.0297 (18) −0.0039 (12) 0.0018 (13) 0.0025 (12)
C24 0.0325 (17) 0.0331 (16) 0.0296 (19) −0.0035 (13) 0.0049 (13) 0.0028 (13)
C25 0.0337 (17) 0.0284 (15) 0.0297 (18) −0.0010 (12) 0.0062 (13) 0.0047 (12)
C26 0.0362 (19) 0.0362 (17) 0.035 (2) 0.0004 (14) −0.0013 (14) 0.0015 (14)
C27 0.052 (2) 0.0334 (17) 0.057 (3) 0.0055 (16) 0.0088 (17) 0.0002 (16)
O28 0.0506 (16) 0.0421 (14) 0.0705 (18) 0.0027 (12) 0.0222 (13) −0.0073 (13)

Geometric parameters (Å, º)

O1A—C2 1.277 (4) C15A—H15A 0.95
O1A—H1A 0.84 C16A—C17A 1.383 (5)
C2—C3 1.429 (4) C16A—H16A 0.95
C2—C11 1.438 (5) C17A—C18A 1.385 (4)
C3—C4 1.354 (5) C17A—S1 1.780 (3)
C3—H3 0.95 C18A—C19A 1.389 (4)
C4—C5 1.437 (5) C18A—H18A 0.95
C4—H4 0.95 C19A—H19A 0.95
C5—C10 1.417 (4) S1—C20 1.764 (3)
C5—C6 1.420 (5) C20—C25 1.394 (4)
C6—C7 1.363 (5) C20—C21 1.401 (4)
C6—H6 0.95 C21—C22 1.389 (4)
C7—C8 1.410 (5) C21—H21 0.95
C7—H7 0.95 C22—C23 1.385 (5)
C8—C9 1.380 (5) C22—H22 0.95
C8—H8 0.95 C23—C24 1.410 (4)
C9—C10 1.404 (5) C23—C26 1.489 (4)
C9—H9 0.95 C24—C25 1.378 (4)
C10—C11 1.453 (4) C24—H24 0.95
C11—C12 1.404 (4) C25—H25 0.95
C12—N13A 1.334 (4) C26—O28 1.232 (4)
C12—H12 0.95 C26—C27 1.500 (4)
N13A—C14A 1.407 (4) C27—H27A 0.98
C14A—C19A 1.388 (4) C27—H27B 0.98
C14A—C15A 1.393 (5) C27—H27C 0.98
C15A—C16A 1.387 (4)
C2—O1A—H1A 109.5 C17A—C16A—C15A 120.2 (3)
O1A—C2—C3 119.1 (3) C17A—C16A—H16A 119.9
O1A—C2—C11 123.1 (3) C15A—C16A—H16A 119.9
C3—C2—C11 117.8 (3) C16A—C17A—C18A 119.1 (3)
C4—C3—C2 122.1 (3) C16A—C17A—S1 122.1 (2)
C4—C3—H3 118.9 C18A—C17A—S1 118.6 (2)
C2—C3—H3 118.9 C17A—C18A—C19A 121.3 (3)
C3—C4—C5 121.5 (3) C17A—C18A—H18A 119.3
C3—C4—H4 119.3 C19A—C18A—H18A 119.3
C5—C4—H4 119.3 C18A—C19A—C14A 119.4 (3)
C10—C5—C6 120.1 (3) C18A—C19A—H19A 120.3
C10—C5—C4 119.3 (3) C14A—C19A—H19A 120.3
C6—C5—C4 120.6 (3) C20—S1—C17A 104.88 (15)
C7—C6—C5 121.3 (3) C25—C20—C21 118.7 (3)
C7—C6—H6 119.4 C25—C20—S1 125.2 (2)
C5—C6—H6 119.4 C21—C20—S1 116.1 (2)
C6—C7—C8 118.7 (3) C22—C21—C20 120.5 (3)
C6—C7—H7 120.6 C22—C21—H21 119.8
C8—C7—H7 120.6 C20—C21—H21 119.8
C9—C8—C7 121.0 (3) C23—C22—C21 120.9 (3)
C9—C8—H8 119.5 C23—C22—H22 119.5
C7—C8—H8 119.5 C21—C22—H22 119.5
C8—C9—C10 121.4 (3) C22—C23—C24 118.3 (3)
C8—C9—H9 119.3 C22—C23—C26 122.6 (3)
C10—C9—H9 119.3 C24—C23—C26 119.0 (3)
C9—C10—C5 117.5 (3) C25—C24—C23 120.9 (3)
C9—C10—C11 123.6 (3) C25—C24—H24 119.5
C5—C10—C11 118.9 (3) C23—C24—H24 119.5
C12—C11—C2 119.0 (3) C24—C25—C20 120.6 (3)
C12—C11—C10 120.6 (3) C24—C25—H25 119.7
C2—C11—C10 120.4 (3) C20—C25—H25 119.7
N13A—C12—C11 122.7 (3) O28—C26—C23 120.2 (3)
N13A—C12—H12 118.7 O28—C26—C27 120.4 (3)
C11—C12—H12 118.7 C23—C26—C27 119.3 (3)
C12—N13A—C14A 125.6 (3) C26—C27—H27A 109.5
C19A—C14A—C15A 119.4 (3) C26—C27—H27B 109.5
C19A—C14A—N13A 123.2 (3) H27A—C27—H27B 109.5
C15A—C14A—N13A 117.4 (3) C26—C27—H27C 109.5
C16A—C15A—C14A 120.6 (3) H27A—C27—H27C 109.5
C16A—C15A—H15A 119.7 H27B—C27—H27C 109.5
C14A—C15A—H15A 119.7
O1A—C2—C3—C4 179.2 (3) C19A—C14A—C15A—C16A −0.9 (5)
C11—C2—C3—C4 0.0 (4) N13A—C14A—C15A—C16A −179.4 (3)
C2—C3—C4—C5 0.9 (5) C14A—C15A—C16A—C17A 2.0 (5)
C3—C4—C5—C10 −0.9 (5) C15A—C16A—C17A—C18A −1.9 (5)
C3—C4—C5—C6 178.8 (3) C15A—C16A—C17A—S1 −176.4 (2)
C10—C5—C6—C7 0.6 (5) C16A—C17A—C18A—C19A 0.8 (5)
C4—C5—C6—C7 −179.2 (3) S1—C17A—C18A—C19A 175.5 (2)
C5—C6—C7—C8 −0.3 (5) C17A—C18A—C19A—C14A 0.3 (5)
C6—C7—C8—C9 −0.1 (5) C15A—C14A—C19A—C18A −0.2 (5)
C7—C8—C9—C10 0.2 (5) N13A—C14A—C19A—C18A 178.1 (3)
C8—C9—C10—C5 0.0 (5) C16A—C17A—S1—C20 −76.5 (3)
C8—C9—C10—C11 179.2 (3) C18A—C17A—S1—C20 109.0 (3)
C6—C5—C10—C9 −0.4 (4) C17A—S1—C20—C25 3.5 (3)
C4—C5—C10—C9 179.4 (3) C17A—S1—C20—C21 −177.5 (2)
C6—C5—C10—C11 −179.7 (3) C25—C20—C21—C22 0.4 (4)
C4—C5—C10—C11 0.1 (4) S1—C20—C21—C22 −178.6 (3)
O1A—C2—C11—C12 1.6 (4) C20—C21—C22—C23 0.7 (5)
C3—C2—C11—C12 −179.3 (3) C21—C22—C23—C24 −1.1 (4)
O1A—C2—C11—C10 −180.0 (3) C21—C22—C23—C26 178.0 (3)
C3—C2—C11—C10 −0.8 (4) C22—C23—C24—C25 0.5 (4)
C9—C10—C11—C12 0.0 (5) C26—C23—C24—C25 −178.7 (3)
C5—C10—C11—C12 179.2 (3) C23—C24—C25—C20 0.6 (4)
C9—C10—C11—C2 −178.5 (3) C21—C20—C25—C24 −1.1 (4)
C5—C10—C11—C2 0.8 (4) S1—C20—C25—C24 177.9 (2)
C2—C11—C12—N13A −0.1 (4) C22—C23—C26—O28 −172.1 (3)
C10—C11—C12—N13A −178.5 (3) C24—C23—C26—O28 7.0 (4)
C11—C12—N13A—C14A −180.0 (3) C22—C23—C26—C27 7.5 (5)
C12—N13A—C14A—C19A −0.8 (5) C24—C23—C26—C27 −173.4 (3)
C12—N13A—C14A—C15A 177.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···N13A 0.84 1.80 2.558 (4) 149
N13B—H13B···O1B 0.88 1.85 2.558 (4) 136
C9—H9···O28i 0.95 2.46 (1) 3.398 (4) 168
C19A—H19A···O28i 0.95 2.56 (1) 3.506 (4) 174
C22—H22···O1Aii 0.95 2.44 (1) 3.337 (4) 157
C27—H27B···O1Ai 0.98 2.49 (1) 3.442 (4) 164

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5178).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2958–o2959. [DOI] [PMC free article] [PubMed]
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farag, A. M., Teoh, S. G., Osman, H., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o1227–o1228. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.
  8. Li, Y., Yang, Z. S., Zhang, H., Cao, B. J. & Wang, F. D. (2003). Bioorg. Med. Chem. 11, 4363–4368. [DOI] [PubMed]
  9. Ourari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846–3859.
  10. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Venkatachalam, T. K., Pierens, G. K., Bernhardt, P. V., Hammond, L. & Reutens, D. C. (2011). J. Chem. Crystallogr. 41, 944–951.
  14. Villar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963–968. [DOI] [PubMed]
  15. Zidane, Y., Ourari, A., Mousser, H. & Mousser, A. (2011). Acta Cryst. E67, m1069–m1070. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049835/tk5178sup1.cif

e-69-00o67-sup1.cif (32.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049835/tk5178Isup2.hkl

e-69-00o67-Isup2.hkl (180.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049835/tk5178Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES