Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 19;69(Pt 1):m60–m61. doi: 10.1107/S1600536812050660

catena-Poly[[[aqua­(glycine-κO)lithium]-μ-glycine-κ2 O:O′] bromide]

T Balakrishnan a, K Ramamurthi b, J Jeyakanthan c, S Thamotharan d,*
PMCID: PMC3588392  PMID: 23476353

Abstract

In the title coordination polymer, {[Li(C2H5NO2)2(H2O)]Br}n, the Li+ cation is coordinated by three carboxyl­ate O atoms of zwitterionic glycine mol­ecules and by a water mol­ecule, forming a distorted tetra­hedral geometry. One of the two glycine mol­ecules bridges neighbouring complexes, forming an infinite chain parallel to the c axis. Polymeric chains are further linked by extensive hydrogen bonds involving the Br anions and glycine and water mol­ecules, producing a three-dimensional network.

Related literature  

For hydrogen-bonding motifs, see Bernstein et al. (1995). For glycine polymorphs, see: Marsh (1958); Iitaka (1960, 1961). For glycine with halogen and metal halogenides, see: Fleck (2008). For related structures, see: Müller et al. (1994); Baran et al. (2003, 2009); Fleck & Bohatý (2004); Fleck et al. (2006). For head-to-tail hydrogen bonds, see: Sharma et al. (2006); Selvaraj et al. (2007).graphic file with name e-69-00m60-scheme1.jpg

Experimental  

Crystal data  

  • [Li(C2H5NO2)2(H2O)]Br

  • M r = 255.01

  • Monoclinic, Inline graphic

  • a = 7.5396 (6) Å

  • b = 17.4173 (14) Å

  • c = 8.2726 (12) Å

  • β = 118.138 (7)°

  • V = 957.96 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.28 mm−1

  • T = 173 K

  • 0.61 × 0.30 × 0.30 mm

Data collection  

  • STOE IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) T min = 0.217, T max = 0.277

  • 7515 measured reflections

  • 1847 independent reflections

  • 1520 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.051

  • S = 0.96

  • 1847 reflections

  • 151 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: EXPOSE in IPDS (Stoe & Cie, 2000); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050660/aa2077sup1.cif

e-69-00m60-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050660/aa2077Isup2.hkl

e-69-00m60-Isup2.hkl (89.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.94 (3) 1.83 (3) 2.774 (2) 176 (3)
N1—H1B⋯O1W ii 0.92 (4) 2.15 (4) 2.989 (3) 151 (2)
N1—H1C⋯Br1iii 0.86 (3) 2.61 (3) 3.353 (2) 146 (3)
N2—H2A⋯Br1 0.81 (3) 2.48 (3) 3.283 (2) 170 (3)
N2—H2B⋯O1iv 0.90 (3) 2.00 (3) 2.833 (3) 153 (2)
N2—H2C⋯O1v 0.93 (3) 1.92 (3) 2.797 (2) 157 (3)
O1W—H1⋯O2vi 0.82 (2) 1.88 (2) 2.692 (2) 172 (3)
O1W—H2⋯Br1vii 0.83 (2) 2.48 (2) 3.2923 (17) 169 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

TB thanks the University Grants Commission (UGC) for the award of a Research Fellowship under the Faculty Improvement Programme (FIP). We are grateful to Professor Helen Stoeckli-Evans, University of Neuchâtel, Switzerland, for measuring the X-ray diffraction data. ST thanks the management of SASTRA University for their encouragement.

supplementary crystallographic information

Comment

The asymmetric unit of the title complex contains two glycine molecules, one Li cation, one Br- anion and a water molecule (Fig. 1). The bond lengths and angles around the carboxylic groups of both glycine molecules indicate that they are deprotonated and each carboxylic group then carries a negative charge. The amino groups of the glycine molecules are protonated. The positive charge of the ammonium groups are compensated for by the negative charge of the carboxylate groups. The central Li atom is coordinated by a water molecule and three carboxylate oxygen atoms of the three glycine molecules, and has a distorted tetrahedral coordination geometry. One of the two glycine molecules acts as a bridging ligand connecting neighbouring complexes to an infinite chain parallel to the c axis (Fig. 2).

The ammonium group of one glycine molecule is involved in an intermolecular hydrogen bond (N1—H1A···O4) with an adjacent glycine molecule (Table 1). Another amino group of the second glycine molecule also participates in an intermolecular hydrogen bond (N2—H2B···O1) with a neighbouring carboxylate group of a glycine molecule. These two hydrogen bonds combined to produce C22(10) (Bernstein et al., 1995) chains that run parallel to the c axis. Adjacent C22(10) chains are connected by another N1···O1 hydrogen bond via hydrogen H2C. Two types of N2···O1 hydrogen bonds generate two ring motifs, R24(8) and R44(20), with C22(10) chains (Fig. 3). These two ring motifs are arranged alternately along the c axis.

Each polymer chain is interconnected with neighbouring polymeric chains via a hydrogen bond (N2—H2C···O1, Table 1) involving the ammonium group of glycine and a symmetry-related carboxylate group. This hydrogen bond produce two ring motifs R22(18) and R22(26). These two rings motifs are arranged alternately along the bc plane (Fig. 4). Four glycine molecules and two Li cations are involved in the former ring, while six glycines and four Li ions are involved in the latter motif. The Br- anion acts as an acceptor for two different ammonium groups (atoms N1 and N2) of the glycine molecules. The water molecule acts as a donor for two different intermolecular hydrogen bonds with a carboxylate oxygen (O2) and the Br- anion. The N1—H1C···Br1, O1W—H1···O2 and O1W—H2···Br1 hydrogen bonds held together to form a R46(18) ring motif (Fig. 5).

Experimental

A 1:1 stoichiometeric mixture of glycine and lithium bromide was dissolved in double distilled water. Colourless block-shaped single crystals were obtained after 2 weeks by slow evaporation.

Refinement

The positions of H atoms bound to nitrogen and water oxygen were determined from difference electron density maps and refined freely along with their isotropic displacement parameter. The O—H distances of water molecule are restrained to 0.84 (2) Å using DFIX option. The H atoms bound to carbon were placed in geometrically idealized positions (C—H = 0.99 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title complex, showing the atom-labeling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (a) x, -y+3/2, z-1/2 (b) x, -y+3/2, z+1/2.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title complex. The hydrogen bonds are shown as dashed lines (see Table 1 for details). For clarity, H atoms not involved in hydrogen bonds have been omitted in this and subsequent figures..

Fig. 3.

Fig. 3.

A partial view of the crystal structure of the title complex, showing the hydrogen bonds involving the glycine molecules.

Fig. 4.

Fig. 4.

Part of the crystal structure showing N1—H2C···O1 hydrogen bond links the coodination polymeric chains.

Fig. 5.

Fig. 5.

Part of the crystal structure showing R46(18) ring motif which comprises two glycines, two waters and two Br- anions. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Li(C2H5NO2)2(H2O)]Br F(000) = 512
Mr = 255.01 Dx = 1.768 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7161 reflections
a = 7.5396 (6) Å θ = 2.3–26.0°
b = 17.4173 (14) Å µ = 4.28 mm1
c = 8.2726 (12) Å T = 173 K
β = 118.138 (7)° Rod, colourless
V = 957.96 (18) Å3 0.61 × 0.30 × 0.30 mm
Z = 4

Data collection

STOE IPDS diffractometer 1847 independent reflections
Radiation source: fine-focus sealed tube 1520 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
phi rotation scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) h = −9→9
Tmin = 0.217, Tmax = 0.277 k = −21→21
7515 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0317P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
1847 reflections Δρmax = 0.55 e Å3
151 parameters Δρmin = −0.26 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0097 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4191 (2) 0.89555 (8) 0.8413 (2) 0.0210 (3)
O2 0.1743 (3) 0.80884 (9) 0.7211 (2) 0.0250 (4)
O1W 0.0182 (3) 0.65924 (9) 0.4468 (2) 0.0218 (4)
H1 0.075 (4) 0.6666 (14) 0.385 (4) 0.027 (7)*
H2 0.084 (4) 0.6254 (14) 0.522 (4) 0.043 (9)*
O3 −0.1525 (3) 0.81668 (8) 0.1971 (2) 0.0270 (4)
O4 −0.2535 (2) 0.80493 (8) 0.4080 (2) 0.0217 (3)
N1 0.5965 (3) 0.84975 (12) 0.6419 (3) 0.0205 (4)
H1A 0.643 (4) 0.8360 (15) 0.559 (4) 0.031 (7)*
H1B 0.702 (5) 0.8395 (17) 0.755 (5) 0.038 (8)*
H1C 0.580 (5) 0.899 (2) 0.631 (4) 0.047 (9)*
N2 −0.2448 (3) 0.96593 (11) 0.1353 (3) 0.0174 (4)
H2A −0.129 (5) 0.9644 (14) 0.156 (4) 0.025 (7)*
H2B −0.323 (4) 0.9429 (15) 0.027 (4) 0.029 (7)*
H2C −0.284 (4) 1.0168 (17) 0.126 (4) 0.035 (8)*
C1 0.3295 (3) 0.84132 (11) 0.7358 (3) 0.0153 (4)
C2 0.4092 (3) 0.81116 (11) 0.6103 (3) 0.0174 (4)
H2E 0.4342 0.7553 0.6307 0.021*
H2F 0.3062 0.8189 0.4812 0.021*
C3 −0.2198 (3) 0.84265 (12) 0.2952 (3) 0.0166 (4)
C4 −0.2679 (4) 0.92762 (12) 0.2840 (3) 0.0204 (5)
H4A −0.4078 0.9343 0.2624 0.025*
H4B −0.1772 0.9523 0.4025 0.025*
Li1 −0.0369 (6) 0.7388 (2) 0.5754 (5) 0.0196 (8)
Br1 0.24155 (3) 0.968012 (12) 0.27597 (3) 0.02208 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0197 (8) 0.0202 (8) 0.0247 (9) −0.0040 (6) 0.0118 (7) −0.0074 (6)
O2 0.0244 (9) 0.0289 (8) 0.0290 (10) −0.0120 (7) 0.0186 (8) −0.0097 (7)
O1W 0.0316 (9) 0.0191 (8) 0.0248 (10) 0.0070 (7) 0.0217 (9) 0.0058 (7)
O3 0.0410 (10) 0.0198 (7) 0.0349 (10) 0.0062 (7) 0.0300 (9) 0.0011 (7)
O4 0.0254 (8) 0.0231 (7) 0.0223 (9) 0.0046 (6) 0.0159 (8) 0.0045 (6)
N1 0.0191 (11) 0.0237 (10) 0.0236 (12) −0.0025 (8) 0.0142 (11) −0.0050 (8)
N2 0.0149 (9) 0.0166 (9) 0.0213 (11) 0.0007 (8) 0.0089 (9) −0.0015 (8)
C1 0.0165 (10) 0.0150 (9) 0.0145 (11) 0.0024 (8) 0.0073 (10) 0.0018 (8)
C2 0.0191 (11) 0.0168 (9) 0.0201 (12) −0.0012 (8) 0.0123 (10) −0.0027 (8)
C3 0.0128 (10) 0.0204 (10) 0.0157 (12) 0.0008 (8) 0.0061 (10) −0.0019 (8)
C4 0.0253 (12) 0.0207 (11) 0.0211 (12) 0.0008 (9) 0.0158 (11) −0.0023 (9)
Li1 0.023 (2) 0.0190 (16) 0.020 (2) −0.0040 (14) 0.0125 (18) −0.0022 (14)
Br1 0.01662 (13) 0.02188 (12) 0.02587 (15) −0.00224 (9) 0.00846 (10) −0.00292 (9)

Geometric parameters (Å, º)

O1—C1 1.247 (3) N1—H1C 0.86 (3)
O2—C1 1.253 (3) N2—C4 1.480 (3)
O2—Li1 1.915 (4) N2—H2A 0.81 (3)
O1W—Li1 1.908 (4) N2—H2B 0.90 (3)
O1W—H1 0.816 (17) N2—H2C 0.93 (3)
O1W—H2 0.829 (18) C1—C2 1.518 (3)
O3—C3 1.228 (3) C2—H2E 0.9900
O3—Li1i 1.880 (4) C2—H2F 0.9900
O4—C3 1.261 (3) C3—C4 1.516 (3)
O4—Li1 1.944 (4) C4—H4A 0.9900
N1—C2 1.472 (3) C4—H4B 0.9900
N1—H1A 0.94 (3) Li1—O3ii 1.880 (4)
N1—H1B 0.92 (4)
C1—O2—Li1 144.09 (18) O3—C3—O4 126.0 (2)
Li1—O1W—H1 123.4 (18) O3—C3—C4 118.73 (18)
Li1—O1W—H2 108 (2) O4—C3—C4 115.30 (17)
H1—O1W—H2 106 (3) O3—C3—Li1 96.65 (15)
C3—O3—Li1i 169.50 (19) C4—C3—Li1 134.84 (17)
C3—O4—Li1 116.16 (16) N2—C4—C3 111.84 (17)
C2—N1—H1A 114.4 (17) N2—C4—H4A 109.2
C2—N1—H1B 113.0 (18) C3—C4—H4A 109.2
H1A—N1—H1B 105 (3) N2—C4—H4B 109.2
C2—N1—H1C 111 (2) C3—C4—H4B 109.2
H1A—N1—H1C 105 (3) H4A—C4—H4B 107.9
H1B—N1—H1C 108 (3) O3ii—Li1—O1W 101.73 (17)
C4—N2—H2A 110 (2) O3ii—Li1—O2 116.6 (2)
C4—N2—H2B 110.4 (17) O1W—Li1—O2 118.6 (2)
H2A—N2—H2B 109 (3) O3ii—Li1—O4 103.87 (18)
C4—N2—H2C 109.9 (18) O1W—Li1—O4 111.3 (2)
H2A—N2—H2C 109 (2) O2—Li1—O4 103.93 (17)
H2B—N2—H2C 108 (3) O3ii—Li1—C3 128.00 (19)
O1—C1—O2 125.69 (19) O1W—Li1—C3 99.35 (16)
O1—C1—C2 118.81 (18) O2—Li1—C3 92.83 (15)
O2—C1—C2 115.49 (18) O4—Li1—C3 24.36 (7)
N1—C2—C1 112.13 (17) O3ii—Li1—H2 89.3 (7)
N1—C2—H2E 109.2 O1W—Li1—H2 20.0 (6)
C1—C2—H2E 109.2 O2—Li1—H2 112.4 (8)
N1—C2—H2F 109.2 O4—Li1—H2 130.3 (7)
C1—C2—H2F 109.2 C3—Li1—H2 119.3 (6)
H2E—C2—H2F 107.9
Li1—O2—C1—O1 168.2 (3) C1—O2—Li1—C3 −72.0 (3)
Li1—O2—C1—C2 −10.9 (4) C3—O4—Li1—O3ii −172.65 (17)
O1—C1—C2—N1 3.5 (3) C3—O4—Li1—O1W −63.9 (2)
O2—C1—C2—N1 −177.3 (2) C3—O4—Li1—O2 64.9 (2)
Li1i—O3—C3—O4 −14.7 (13) O3—C3—Li1—O3ii −133.0 (2)
Li1i—O3—C3—C4 165.1 (10) O4—C3—Li1—O3ii 9.1 (2)
Li1i—O3—C3—Li1 14.2 (11) C4—C3—Li1—O3ii 84.0 (3)
Li1—O4—C3—O3 49.0 (3) O3—C3—Li1—O1W −20.0 (2)
Li1—O4—C3—C4 −130.8 (2) O4—C3—Li1—O1W 122.0 (2)
O3—C3—C4—N2 6.3 (3) C4—C3—Li1—O1W −163.0 (2)
O4—C3—C4—N2 −173.94 (19) O3—C3—Li1—O2 99.58 (17)
Li1—C3—C4—N2 143.3 (2) O4—C3—Li1—O2 −118.4 (2)
C1—O2—Li1—O3ii 152.4 (3) C4—C3—Li1—O2 −43.4 (3)
C1—O2—Li1—O1W 30.3 (4) O3—C3—Li1—O4 −142.0 (3)
C1—O2—Li1—O4 −93.9 (3) C4—C3—Li1—O4 75.0 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4iii 0.94 (3) 1.83 (3) 2.774 (2) 176 (3)
N1—H1B···O1Wiv 0.92 (4) 2.15 (4) 2.989 (3) 151 (2)
N1—H1C···Br1v 0.86 (3) 2.61 (3) 3.353 (2) 146 (3)
N2—H2A···Br1 0.81 (3) 2.48 (3) 3.283 (2) 170 (3)
N2—H2B···O1vi 0.90 (3) 2.00 (3) 2.833 (3) 153 (2)
N2—H2C···O1vii 0.93 (3) 1.92 (3) 2.797 (2) 157 (3)
O1W—H1···O2i 0.82 (2) 1.88 (2) 2.692 (2) 172 (3)
O1W—H2···Br1ii 0.83 (2) 2.48 (2) 3.2923 (17) 169 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, −y+3/2, z+1/2; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z−1; (vii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2077).

References

  1. Baran, J., Drozd, M., Pietraszko, A., Trzebiatowska, M. & Ratajczak, H. J. (2003). Pol. J. Chem. 771, 1561–1577.
  2. Baran, J., Drozd, M., Ratajczak, H. & Pietraszko, A. (2009). J. Mol. Struct. 927, 43–53.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Fleck, M. (2008). Z. Kristallogr. 223, 222–232.
  5. Fleck, M. & Bohatý, L. (2004). Acta Cryst. C60, m291–m295. [DOI] [PubMed]
  6. Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125. [DOI] [PubMed]
  7. Iitaka, Y. (1960). Acta Cryst. 13, 35–45.
  8. Iitaka, Y. (1961). Acta Cryst. 14, 1–10.
  9. Marsh, R. E. (1958). Acta Cryst. 11, 654–663.
  10. Müller, G., Maier, G. M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121–131.
  11. Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468. [DOI] [PubMed]
  12. Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Stoe & Cie (2000). IPDS Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050660/aa2077sup1.cif

e-69-00m60-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050660/aa2077Isup2.hkl

e-69-00m60-Isup2.hkl (89.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES