Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 16;69(Pt 3):o390. doi: 10.1107/S1600536813004121

2-Chloro-6-[(2,4-dimeth­oxy­benz­yl)amino]-9-isopropyl-9H-purine

Radka Novotná a, Zdeněk Trávníček a,*
PMCID: PMC3588409  PMID: 23476575

Abstract

In the title compound, C17H20ClN5O2, the benzene ring and the purine ring system make a dihedral angle of 78.56 (4)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers. C—H⋯O and C—H⋯Cl contacts further link the mol­ecules, forming a three-dimensional network.

Related literature  

For the synthesis, see: Oh et al. (1999). For related structures, see: Trávníček & Popa (2007a ,b ); Trávníček et al. (2010); Čajan & Trávníček (2011). For the cytotoxic activity of related compounds, see: Benson et al. (2005); Meijer et al. (1997); Štarha et al. (2010); Vrzal et al. (2010).graphic file with name e-69-0o390-scheme1.jpg

Experimental  

Crystal data  

  • C17H20ClN5O2

  • M r = 361.83

  • Triclinic, Inline graphic

  • a = 7.8620 (2) Å

  • b = 9.20164 (18) Å

  • c = 13.3027 (3) Å

  • α = 82.4472 (18)°

  • β = 74.803 (2)°

  • γ = 66.012 (2)°

  • V = 848.16 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.30 mm

Data collection  

  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.908, T max = 0.930

  • 7228 measured reflections

  • 2965 independent reflections

  • 2704 reflections with I > 2σ(I)

  • R int = 0.009

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.079

  • S = 1.10

  • 2965 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004121/ng5316sup1.cif

e-69-0o390-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004121/ng5316Isup2.hkl

e-69-0o390-Isup2.hkl (145.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004121/ng5316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N7i 0.88 2.16 2.9465 (15) 148
C16—H16C⋯Cl1ii 0.98 2.78 3.4607 (15) 127
C19—H19A⋯O2iii 0.98 2.57 3.4709 (17) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by Palacký University (PrF_2012_009). The authors wish to thank Dr Igor Popa for carrying out the NMR spectroscopy measurements and Mr Tomáš Šilha for performing the CHN elemental analyses.

supplementary crystallographic information

Comment

The title compound (I) is derived from 6-benzylaminopurine, which is along with its derivatives classified among plant growth hormones called cytokinins, which influence crucial biochemical processes, such as cell cycle and division, in plant tissues. Suitable substitutions on the 6-benzylaminopurine skeleton, particularly in the C2 and N9 positions, lead to the formation of compounds that can act as inhibitors of enzymes cyclin dependent kinases in various phases of the human cell cycle (Meijer et al., 1997). One representative of such derivatives, (R)-Roscovitine, i.e. 2-[(R)-(1-ethyl-2-hydroxyethylamino)]-6-(benzylamino)-9-isopropylpurine (Seliciclib or CYC202), has entered the IIb phase of clinical trials in patients with nonsmall cell lung cancer (Benson et al., 2005). Moreover, 6-benzylaminopurine derivatives have been successfully used as N-donor ligands in transition metal complexes exhibiting varied types of biological activity. Even the title compound (I) has been employed as a ligand in the preparation of highly anticancer active platinum(II) oxalato complexes whose in vitro cytotoxic activity against various human cancer cells exceeded the commercially applied drug cisplatin (Štarha et al., 2010; Vrzal et al., 2010).

The molecular structure of (I) consists of discrete molecules of a three-substituted adenine derivative, 2-chloro-6-[(2,4-dimethoxybenzyl)amino]-9-isopropylpurine (Fig. 1). It is basically derived from the 6-benzylaminopurine skeleton by substitutions of H atoms by the methoxy groups in the positions 2 and 4 on the benzene ring, by chlorine, and the isopropyl group in the position C2, and N9, of purine, respectively. The molecule contains two heterocyclic rings pyrimidine and imidazole, which are almost coplanar, since they form a dihedral angle of 2.02 (5)°. Additionally, there is also a benzene ring present in the structure of (I) which is similarly to the other two rings essentially planar. The maximum deviations from the least-square planes fitted through the non-hydrogen atoms for each of the rings are as follows: 0.0102 (14) Å for C4 in pyrimidine, 0.0025 (14) Å for C8 in imidazole and 0.007 (2) Å for C14 in benzene. The benzene and purine ring systems form a dihedral angle of 78.56 (4)°.

The crystal structure of (I) consists of the molecules of 2-chloro-6-[(2,4-dimethoxybenzyl)amino]-9-isopropylpurine organized into centrosymmetric dimers connected by N—H···N hydrogen bonds (Table 1, Fig. 2). Additionally, varied types of non-covalent contacts are present in the structure of (I), namely C—H···O [d(C19···O2iii) = 3.471 (2) Å; d(C17···O1iv) = 3.358 (2) Å; symmetry codes: (iii) x, y, 1 + z; (iv) 1 - x, 1 - y, -z], C—H···Cl [d(C16···Cl1ii) = 3.820 (2) Å; d(C20···Cl1v) = 3.461 (2) Å; symmetry codes: (ii) 1 - x, 2 - y, -z; (v) 2 - x, 2 - y, 1 - z], C—H···N [d(C17···N1vi) = 3.435 (2) Å], C—H···C [d(C17···C2vi) = 3.603 (2) Å; symmetry code: (vi) 2 - x, 1 - y, -z] as well as C···Cl contacts [d(C8···Cl1vii) = 3.3888 (11) Å; symmetry code: (vii) 1 - x, 2 - y, 1 - z] (Fig. 3 and 4), forming an extended three-dimensional network.

Experimental

Compound (I) was prepared, as a prospective ligand for syntheses of transition metal complexes, by the procedure described previously (Oh et al., 1999). The resulting product was recrystallized from hot ethanol and crystals suitable for X-ray analysis were formed after several days of slow evaporation at room temperature. The crystals were characterized by elemental analysis, NMR spectroscopy and single-crystal X-ray analysis. 1H NMR (DMF-d7, TMS, 298 K, p.p.m.): 8.28 (s, 1H, C8H), 8.23 (t, 6.8, N6H, 1H), 7.23 (d, 8.2, C15H, 1H), 6.62 (d, 2.4, C12H, 1H), 6.49 (dd, 8.2, 2.4, C14H, 1H), 4.76 (sep, 6.8, C18H, 1H), 4.72 (d, 5.9, C9H, 2H), 3.89 (s, C16H, 3H), 3.80 (s, C17H, 3H), 1.58 (d, 6.8, C19H, C20H, 6H). 13C NMR (DMF-d7, TMS, 298 K, p.p.m.): δ 161.03 (C13), 158.99 (C11), 156.27 (C6), 154.01 (C2), 150.49 (C4), 139.96 (C8), 129.37 (C15), 120.32 (C10), 119.71 (C5), 104.90 (C14), 98.93 (C12), 55.88 (C16), 55.65 (C17), 47.90 (C18), 39.36 (C9), 22.42 (C19, C20). 15N NMR (DMF-d7, relative to DMF, 298 K, p.p.m.): δ 241.1 (N7), 228.5 (N1), 224.1 (N3), 179.6 (N9), 91.8 (N6). Analysis calculated for C17H20ClN5O2: C, 56.4; H, 5.6; N, 19.4. Found: C, 56.4; H, 5.9; N, 19.0%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer. The 1H, 13C and 15N NMR spectra of the DMF-d7 solutions were obtained at 300 K on a Varian 400 spectrometer at 400.00 MHz, 100.58 MHz and 40.53 MHz respectively. 1H and 13C spectra were calibrated using tetramethylsilane (TMS) as a reference. The 15N NMR spectrum was measured relative to the DMF signals.

Refinement

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (I) with the non-hydrogen atoms depicted as thermal ellipsoids at the 50% probability level shown with the atom numbering.

Fig. 2.

Fig. 2.

A part of the crystal structure of (I) showing the N—H···N hydrogen bonds connecting the individual molecules into centrosymmetric dimers (symmetry code: (i) -x + 1, -y + 1, -z + 1). Hydrogen atoms not involved in the contacts were omitted for clarity.

Fig. 3.

Fig. 3.

A part of the crystal structure of (I) showing the centrosymmetric dimers connected by C···Cl non-covalent contacts (symmetry codes: (i) -x + 1, -y + 1, -z + 1; (vii) 1 - x, 2 - y, 1 - z). Hydrogen atoms not involved in the contacts were omitted for clarity.

Fig. 4.

Fig. 4.

A part of the crystal structure of (I) showing the present non-covalent interactions of the C—H···O, C—H···Cl, C—H···N, C—H···C types (symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, -z; (iii) x, y, 1 + z; (iv) 1 - x, 1 - y, -z; (v) 2 - x, 2 - y, 1 - z; (vi) 2 - x, 1 - y, -z). Hydrogen atoms not involved in the contacts were omitted for clarity.

Crystal data

C17H20ClN5O2 Z = 2
Mr = 361.83 F(000) = 380
Triclinic, P1 Dx = 1.417 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8620 (2) Å Cell parameters from 7872 reflections
b = 9.20164 (18) Å θ = 3.0–31.9°
c = 13.3027 (3) Å µ = 0.25 mm1
α = 82.4472 (18)° T = 100 K
β = 74.803 (2)° Prism, colourless
γ = 66.012 (2)° 0.40 × 0.35 × 0.30 mm
V = 848.16 (3) Å3

Data collection

Agilent Xcalibur Sapphire2 diffractometer 2965 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2704 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.009
Detector resolution: 8.3611 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −10→8
Tmin = 0.908, Tmax = 0.930 l = −15→15
7228 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2812P] where P = (Fo2 + 2Fc2)/3
2965 reflections (Δ/σ)max = 0.001
230 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.70269 (5) 1.09303 (4) 0.25218 (2) 0.02037 (12)
O1 0.32700 (14) 0.87203 (11) 0.09283 (7) 0.0211 (2)
O2 0.83383 (14) 0.47675 (11) −0.12752 (7) 0.0219 (2)
N1 0.58970 (15) 0.86255 (13) 0.31864 (8) 0.0154 (2)
N3 0.75392 (16) 0.92987 (13) 0.42340 (8) 0.0158 (2)
N6 0.48258 (16) 0.65791 (13) 0.35975 (8) 0.0157 (2)
H6 0.4819 0.5716 0.3970 0.019*
N7 0.63884 (16) 0.60705 (13) 0.55906 (8) 0.0164 (2)
N9 0.77924 (15) 0.76630 (13) 0.58170 (8) 0.0149 (2)
C2 0.67876 (18) 0.94292 (15) 0.34373 (10) 0.0151 (3)
C4 0.72769 (18) 0.81144 (15) 0.48852 (10) 0.0143 (3)
C5 0.64099 (18) 0.71309 (15) 0.47514 (10) 0.0145 (3)
C6 0.56932 (18) 0.74185 (15) 0.38453 (10) 0.0142 (3)
C8 0.72325 (19) 0.64331 (15) 0.62003 (10) 0.0170 (3)
H8 0.7432 0.5891 0.6844 0.020*
C9 0.38927 (19) 0.70512 (16) 0.27300 (10) 0.0157 (3)
H9A 0.3342 0.8228 0.2670 0.019*
H9B 0.2820 0.6692 0.2888 0.019*
C10 0.51862 (18) 0.64023 (15) 0.16885 (10) 0.0148 (3)
C11 0.47845 (18) 0.72793 (15) 0.07743 (10) 0.0156 (3)
C12 0.58604 (19) 0.67038 (16) −0.01979 (10) 0.0171 (3)
H12 0.5559 0.7309 −0.0809 0.021*
C13 0.73911 (19) 0.52284 (16) −0.02749 (10) 0.0173 (3)
C14 0.7841 (2) 0.43487 (16) 0.06153 (11) 0.0187 (3)
H14 0.8896 0.3352 0.0566 0.022*
C15 0.67172 (19) 0.49520 (15) 0.15851 (10) 0.0178 (3)
H15 0.7016 0.4343 0.2196 0.021*
C16 0.2745 (2) 0.96545 (17) 0.00354 (11) 0.0259 (3)
H16A 0.3842 0.9866 −0.0399 0.039*
H16B 0.1682 1.0665 0.0256 0.039*
H16C 0.2350 0.9077 −0.0367 0.039*
C17 0.9907 (2) 0.32597 (17) −0.14131 (12) 0.0253 (3)
H17A 1.0488 0.3093 −0.2158 0.038*
H17B 0.9447 0.2416 −0.1120 0.038*
H17C 1.0861 0.3235 −0.1056 0.038*
C18 0.89162 (19) 0.83166 (15) 0.62220 (10) 0.0161 (3)
H18 0.8547 0.9460 0.5990 0.019*
C19 0.8456 (2) 0.82494 (17) 0.74010 (10) 0.0199 (3)
H19A 0.8871 0.7136 0.7649 0.030*
H19B 0.7073 0.8793 0.7669 0.030*
H19C 0.9125 0.8776 0.7649 0.030*
C20 1.1021 (2) 0.74454 (19) 0.57366 (12) 0.0267 (3)
H20A 1.1445 0.6337 0.5995 0.040*
H20B 1.1762 0.7962 0.5925 0.040*
H20C 1.1219 0.7474 0.4977 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0287 (2) 0.02086 (19) 0.01726 (18) −0.01511 (15) −0.00878 (14) 0.00570 (13)
O1 0.0227 (5) 0.0188 (5) 0.0140 (5) 0.0003 (4) −0.0057 (4) 0.0005 (4)
O2 0.0223 (5) 0.0198 (5) 0.0176 (5) −0.0041 (4) 0.0001 (4) −0.0037 (4)
N1 0.0163 (5) 0.0155 (6) 0.0139 (5) −0.0065 (5) −0.0019 (4) −0.0005 (4)
N3 0.0176 (6) 0.0145 (5) 0.0153 (6) −0.0066 (5) −0.0037 (4) 0.0000 (4)
N6 0.0220 (6) 0.0169 (6) 0.0122 (5) −0.0109 (5) −0.0061 (5) 0.0024 (4)
N7 0.0208 (6) 0.0163 (6) 0.0131 (5) −0.0085 (5) −0.0038 (4) 0.0003 (4)
N9 0.0184 (6) 0.0153 (5) 0.0130 (5) −0.0078 (5) −0.0050 (4) −0.0005 (4)
C2 0.0158 (6) 0.0134 (6) 0.0139 (6) −0.0049 (5) −0.0012 (5) −0.0003 (5)
C4 0.0141 (6) 0.0132 (6) 0.0127 (6) −0.0031 (5) −0.0012 (5) −0.0022 (5)
C5 0.0144 (6) 0.0145 (6) 0.0134 (6) −0.0048 (5) −0.0016 (5) −0.0027 (5)
C6 0.0123 (6) 0.0133 (6) 0.0142 (6) −0.0033 (5) −0.0003 (5) −0.0029 (5)
C8 0.0223 (7) 0.0160 (6) 0.0144 (6) −0.0098 (6) −0.0030 (5) −0.0002 (5)
C9 0.0180 (6) 0.0178 (7) 0.0141 (6) −0.0087 (5) −0.0062 (5) 0.0012 (5)
C10 0.0178 (7) 0.0164 (7) 0.0153 (6) −0.0108 (5) −0.0054 (5) 0.0004 (5)
C11 0.0153 (6) 0.0150 (6) 0.0182 (7) −0.0068 (5) −0.0049 (5) −0.0004 (5)
C12 0.0206 (7) 0.0174 (7) 0.0146 (6) −0.0084 (6) −0.0058 (5) 0.0024 (5)
C13 0.0178 (7) 0.0190 (7) 0.0173 (7) −0.0098 (6) −0.0022 (5) −0.0032 (5)
C14 0.0195 (7) 0.0131 (6) 0.0228 (7) −0.0045 (5) −0.0068 (6) −0.0012 (5)
C15 0.0231 (7) 0.0163 (7) 0.0179 (7) −0.0098 (6) −0.0094 (6) 0.0031 (5)
C16 0.0278 (8) 0.0227 (7) 0.0181 (7) 0.0001 (6) −0.0084 (6) 0.0033 (6)
C17 0.0223 (7) 0.0218 (7) 0.0265 (8) −0.0052 (6) 0.0006 (6) −0.0071 (6)
C18 0.0198 (7) 0.0155 (6) 0.0168 (7) −0.0091 (5) −0.0063 (5) −0.0012 (5)
C19 0.0240 (7) 0.0232 (7) 0.0162 (7) −0.0114 (6) −0.0065 (6) −0.0013 (5)
C20 0.0212 (8) 0.0354 (9) 0.0258 (8) −0.0124 (7) −0.0010 (6) −0.0129 (6)

Geometric parameters (Å, º)

Cl1—C2 1.7537 (13) C10—C11 1.4021 (18)
O1—C11 1.3703 (16) C11—C12 1.3824 (19)
O1—C16 1.4213 (16) C12—C13 1.3948 (19)
O2—C13 1.3700 (16) C12—H12 0.9500
O2—C17 1.4270 (17) C13—C14 1.3847 (19)
N1—C2 1.3256 (17) C14—C15 1.3947 (19)
N1—C6 1.3574 (17) C14—H14 0.9500
N3—C2 1.3130 (17) C15—H15 0.9500
N3—C4 1.3496 (17) C16—H16A 0.9800
N6—C6 1.3353 (17) C16—H16B 0.9800
N6—C9 1.4532 (16) C16—H16C 0.9800
N6—H6 0.8800 C17—H17A 0.9800
N7—C8 1.3201 (17) C17—H17B 0.9800
N7—C5 1.3841 (17) C17—H17C 0.9800
N9—C4 1.3655 (16) C18—C19 1.5131 (18)
N9—C8 1.3676 (17) C18—C20 1.5153 (19)
N9—C18 1.4831 (16) C18—H18 1.0000
C4—C5 1.3866 (18) C19—H19A 0.9800
C5—C6 1.4113 (18) C19—H19B 0.9800
C8—H8 0.9500 C19—H19C 0.9800
C9—C10 1.5151 (18) C20—H20A 0.9800
C9—H9A 0.9900 C20—H20B 0.9800
C9—H9B 0.9900 C20—H20C 0.9800
C10—C15 1.3799 (19)
C11—O1—C16 117.98 (10) C13—C12—H12 120.2
C13—O2—C17 117.58 (11) O2—C13—C14 125.13 (12)
C2—N1—C6 117.18 (11) O2—C13—C12 114.52 (12)
C2—N3—C4 109.33 (11) C14—C13—C12 120.35 (12)
C6—N6—C9 121.82 (11) C13—C14—C15 118.82 (12)
C6—N6—H6 119.1 C13—C14—H14 120.6
C9—N6—H6 119.1 C15—C14—H14 120.6
C8—N7—C5 103.89 (11) C10—C15—C14 122.29 (12)
C4—N9—C8 105.86 (10) C10—C15—H15 118.9
C4—N9—C18 124.22 (11) C14—C15—H15 118.9
C8—N9—C18 129.61 (11) O1—C16—H16A 109.5
N3—C2—N1 132.07 (12) O1—C16—H16B 109.5
N3—C2—Cl1 114.30 (10) H16A—C16—H16B 109.5
N1—C2—Cl1 113.62 (9) O1—C16—H16C 109.5
N3—C4—N9 126.58 (12) H16A—C16—H16C 109.5
N3—C4—C5 127.06 (12) H16B—C16—H16C 109.5
N9—C4—C5 106.35 (11) O2—C17—H17A 109.5
N7—C5—C4 110.24 (11) O2—C17—H17B 109.5
N7—C5—C6 133.27 (12) H17A—C17—H17B 109.5
C4—C5—C6 116.46 (12) O2—C17—H17C 109.5
N6—C6—N1 118.06 (11) H17A—C17—H17C 109.5
N6—C6—C5 124.07 (12) H17B—C17—H17C 109.5
N1—C6—C5 117.87 (11) N9—C18—C19 111.14 (10)
N7—C8—N9 113.66 (12) N9—C18—C20 108.83 (10)
N7—C8—H8 123.2 C19—C18—C20 113.22 (12)
N9—C8—H8 123.2 N9—C18—H18 107.8
N6—C9—C10 114.74 (11) C19—C18—H18 107.8
N6—C9—H9A 108.6 C20—C18—H18 107.8
C10—C9—H9A 108.6 C18—C19—H19A 109.5
N6—C9—H9B 108.6 C18—C19—H19B 109.5
C10—C9—H9B 108.6 H19A—C19—H19B 109.5
H9A—C9—H9B 107.6 C18—C19—H19C 109.5
C15—C10—C11 117.63 (12) H19A—C19—H19C 109.5
C15—C10—C9 123.29 (12) H19B—C19—H19C 109.5
C11—C10—C9 119.04 (11) C18—C20—H20A 109.5
O1—C11—C12 123.76 (11) C18—C20—H20B 109.5
O1—C11—C10 114.88 (11) H20A—C20—H20B 109.5
C12—C11—C10 121.36 (12) C18—C20—H20C 109.5
C11—C12—C13 119.54 (12) H20A—C20—H20C 109.5
C11—C12—H12 120.2 H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6···N7i 0.88 2.16 2.9465 (15) 148
C16—H16C···Cl1ii 0.98 2.78 3.4607 (15) 127
C19—H19A···O2iii 0.98 2.57 3.4709 (17) 154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5316).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Benson, C., Kaye, S., Workman, P., Garret, M., Walton, M. & de Bono, J. (2005). Br. J. Cancer, 92, 7–12. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Čajan, M. & Trávníček, Z. (2011). J. Mol. Struct. 994, 350–359.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Meijer, L., Borgne, A., Mulner, O., Chong, J. P. J., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J. G. & Moulinoux, J. P. (1997). Eur. J. Biochem. 243, 527–536. [DOI] [PubMed]
  7. Oh, C. H., Lee, S. C., Lee, K. S., Woo, E. R., Hong, C. Y., Yang, B. S., Baek, D. J. & Cho, J. H. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 187–190. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Štarha, P., Trávníček, Z. & Popa, I. (2010). J. Inorg. Biochem. 104, 639–647. [DOI] [PubMed]
  10. Trávníček, Z. & Popa, I. (2007a). Acta Cryst. E63, o629–o631.
  11. Trávníček, Z. & Popa, I. (2007b). Acta Cryst. E63, o728–o730.
  12. Trávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405–417. [DOI] [PubMed]
  13. Vrzal, R., Štarha, P., Dvořák, Z. & Trávníček, Z. (2010). J. Inorg. Biochem. 104, 1130–1132. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004121/ng5316sup1.cif

e-69-0o390-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004121/ng5316Isup2.hkl

e-69-0o390-Isup2.hkl (145.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004121/ng5316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES