Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 13;69(Pt 3):m148. doi: 10.1107/S1600536813003711

1,3-Dimethyl-1H-1,2,3-benzotriazol-3-ium tetra­chloridoferrate(III)

Zan Sun a, Dong-Cheng Hu a, Jia-Cheng Liu a,*
PMCID: PMC3588415  PMID: 23476495

Abstract

The asymmetric unit of the title salt, (C8H10N3)[FeCl4], contains one 1,3-dimethyl-1H-1,2,3-benzotriazol-3-ium cation and one tetra­chloridoferrate anion. The FeIII atom in the anion is tetra­hedrally coordinated by four Cl atoms. In the crystal, inter­actions are observed between the Cl atoms and the triazolium ring [Cl⋯centroid distances = 3.587 (3) and 3.866 (3) Å].

Related literature  

For related iron complexes, see: Hay et al. (2003); Liu et al. (2000); Lorenz et al. (2000); Shapley et al. (2003).graphic file with name e-69-0m148-scheme1.jpg

Experimental  

Crystal data  

  • (C8H10N3)[FeCl4]

  • M r = 345.84

  • Orthorhombic, Inline graphic

  • a = 10.2920 (5) Å

  • b = 12.5518 (6) Å

  • c = 22.5857 (9) Å

  • V = 2917.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.25 mm

Data collection  

  • Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012) T min = 0.578, T max = 0.647

  • 8114 measured reflections

  • 3016 independent reflections

  • 1828 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.183

  • S = 1.05

  • 3016 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003711/hy2615sup1.cif

e-69-0m148-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003711/hy2615Isup2.hkl

e-69-0m148-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are thankful for support of this study by the National Natural Science Foundation of China (grant No. J0730425) and the Gansu Provincial Natural Science Foundation of China (grant No. 0710RJZA113).

supplementary crystallographic information

Comment

Iron-containing compounds are ubiquitous throughout the field of coordination chemistry. Recently, a variety of iron compounds have been added to the list of iron coordination complexes (Hay et al., 2003; Liu et al., 2000; Lorenz et al., 2000; Shapley et al., 2003).

In the title compound (Fig. 1), the FeIII atom in the [FeCl4]- anion is four-coordinated in a distorted tetrahedral geometry. The Cl—Fe—Cl bond angles are in the range of 108.35 (6)–111.33 (8) °, while the Fe—Cl bond lengths are in the range of 2.1634 (17)–2.1867 (14) Å. Three Cl—Fe—Cl angles are smaller than tetrahedral and the other three are greater than tetrahedral one. In the crystal, interactions between the Cl atoms and the triazolium rings are present [Cl···centroid distances = 3.587 (3) and 3.866 (3) Å].

Experimental

FeCl3.6H2O (0.1 mmol, 27.0 mg) was dissolved in 15 ml CH3OH. To this yellow solution, one equivalent of 1,3-dimethyl-1H-benzo[1,2,3]triazolenium chlorate (0.1 mmol, 18.4 mg) was added with stirring. The mixture was filtered and held at room temperature to allow slow evaporation of solvent after stirring 30 min. Block crystals suitable for X-ray diffraction were obtained after one week (yield: 64%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the a axis.

Crystal data

(C8H10N3)[FeCl4] F(000) = 1384
Mr = 345.84 Dx = 1.575 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1751 reflections
a = 10.2920 (5) Å θ = 3.1–28.5°
b = 12.5518 (6) Å µ = 1.74 mm1
c = 22.5857 (9) Å T = 293 K
V = 2917.7 (2) Å3 Block, yellow
Z = 8 0.32 × 0.28 × 0.25 mm

Data collection

Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer 3016 independent reflections
Radiation source: fine-focus sealed tube 1828 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.0733 pixels mm-1 θmax = 26.5°, θmin = 3.1°
ω scans h = −12→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012) k = −15→12
Tmin = 0.578, Tmax = 0.647 l = −28→28
8114 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 1.072P] where P = (Fo2 + 2Fc2)/3
3016 reflections (Δ/σ)max < 0.001
147 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2130 (5) 0.5085 (4) 0.3377 (2) 0.0934 (14)
N2 0.1550 (5) 0.5572 (4) 0.3863 (2) 0.0907 (14)
N3 0.2259 (5) 0.5203 (4) 0.4309 (2) 0.0912 (13)
C1 0.3237 (4) 0.4541 (4) 0.4130 (2) 0.0650 (11)
C2 0.4177 (6) 0.3997 (5) 0.4452 (2) 0.0927 (17)
H2 0.4238 0.4034 0.4863 0.111*
C3 0.5016 (6) 0.3393 (5) 0.4106 (3) 0.0986 (17)
H3 0.5669 0.3006 0.4293 0.118*
C4 0.4922 (6) 0.3345 (6) 0.3510 (3) 0.1023 (18)
H4 0.5522 0.2937 0.3302 0.123*
C5 0.3950 (6) 0.3889 (5) 0.3193 (2) 0.0877 (16)
H5 0.3874 0.3845 0.2783 0.105*
C6 0.3140 (6) 0.4478 (5) 0.3524 (2) 0.0823 (15)
C7 0.1582 (6) 0.5291 (6) 0.2780 (3) 0.124 (3)
H7A 0.1317 0.4630 0.2604 0.186*
H7B 0.2230 0.5622 0.2535 0.186*
H7C 0.0844 0.5755 0.2814 0.186*
C8 0.1916 (6) 0.5507 (5) 0.4913 (2) 0.111 (2)
H8A 0.1229 0.6023 0.4903 0.166*
H8B 0.2662 0.5808 0.5106 0.166*
H8C 0.1632 0.4888 0.5127 0.166*
Fe1 0.53140 (7) 0.75129 (5) 0.36820 (3) 0.0621 (3)
Cl1 0.40700 (15) 0.76662 (12) 0.44622 (6) 0.0934 (5)
Cl2 0.6707 (2) 0.62448 (18) 0.38165 (8) 0.1478 (9)
Cl3 0.63300 (15) 0.90130 (13) 0.35368 (7) 0.0997 (5)
Cl4 0.40818 (16) 0.71994 (13) 0.29142 (6) 0.1007 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.089 (3) 0.084 (3) 0.108 (4) −0.025 (3) −0.029 (3) 0.027 (3)
N2 0.086 (3) 0.079 (3) 0.107 (4) −0.005 (3) −0.020 (3) 0.016 (3)
N3 0.094 (3) 0.083 (3) 0.097 (3) −0.019 (3) 0.010 (3) −0.012 (3)
C1 0.064 (3) 0.070 (3) 0.060 (3) −0.009 (2) 0.001 (2) 0.004 (2)
C2 0.105 (4) 0.108 (4) 0.064 (3) −0.027 (4) −0.012 (3) 0.008 (3)
C3 0.100 (4) 0.116 (5) 0.080 (4) 0.019 (4) −0.001 (3) 0.007 (4)
C4 0.097 (4) 0.127 (5) 0.083 (4) 0.001 (4) 0.002 (3) −0.012 (4)
C5 0.105 (4) 0.108 (4) 0.050 (3) −0.030 (3) 0.009 (3) −0.009 (3)
C6 0.089 (4) 0.087 (4) 0.071 (3) −0.036 (3) −0.003 (3) 0.003 (3)
C7 0.127 (5) 0.136 (6) 0.110 (5) −0.039 (4) −0.062 (4) 0.046 (4)
C8 0.130 (5) 0.109 (5) 0.093 (4) −0.037 (4) 0.042 (4) −0.043 (4)
Fe1 0.0725 (5) 0.0589 (5) 0.0548 (4) 0.0043 (3) 0.0006 (3) 0.0041 (3)
Cl1 0.1005 (10) 0.1047 (11) 0.0749 (9) 0.0156 (8) 0.0246 (8) 0.0135 (7)
Cl2 0.1852 (19) 0.1443 (18) 0.1138 (14) 0.1036 (16) 0.0155 (12) 0.0183 (11)
Cl3 0.1123 (11) 0.1022 (11) 0.0847 (10) −0.0438 (9) −0.0079 (8) 0.0060 (8)
Cl4 0.1173 (11) 0.1100 (11) 0.0748 (9) −0.0393 (9) −0.0193 (8) 0.0016 (8)

Geometric parameters (Å, º)

N1—C6 1.332 (7) C4—H4 0.9300
N1—N2 1.390 (7) C5—C6 1.342 (7)
N1—C7 1.485 (7) C5—H5 0.9300
N2—N3 1.327 (6) C7—H7A 0.9600
N3—C1 1.367 (6) C7—H7B 0.9600
N3—C8 1.460 (6) C7—H7C 0.9600
C1—C6 1.373 (7) C8—H8A 0.9600
C1—C2 1.390 (7) C8—H8B 0.9600
C2—C3 1.390 (8) C8—H8C 0.9600
C2—H2 0.9300 Fe1—Cl2 2.1636 (17)
C3—C4 1.351 (8) Fe1—Cl3 2.1786 (15)
C3—H3 0.9300 Fe1—Cl4 2.1840 (14)
C4—C5 1.408 (8) Fe1—Cl1 2.1867 (15)
C6—N1—N2 112.9 (5) N1—C6—C5 131.3 (6)
C6—N1—C7 128.6 (6) N1—C6—C1 105.8 (5)
N2—N1—C7 118.5 (5) C5—C6—C1 122.9 (6)
N3—N2—N1 102.2 (4) N1—C7—H7A 109.5
N2—N3—C1 113.1 (5) N1—C7—H7B 109.5
N2—N3—C8 119.1 (5) H7A—C7—H7B 109.5
C1—N3—C8 127.9 (5) N1—C7—H7C 109.5
N3—C1—C6 106.1 (5) H7A—C7—H7C 109.5
N3—C1—C2 131.0 (5) H7B—C7—H7C 109.5
C6—C1—C2 122.9 (5) N3—C8—H8A 109.5
C3—C2—C1 113.9 (5) N3—C8—H8B 109.5
C3—C2—H2 123.0 H8A—C8—H8B 109.5
C1—C2—H2 123.0 N3—C8—H8C 109.5
C4—C3—C2 122.7 (5) H8A—C8—H8C 109.5
C4—C3—H3 118.6 H8B—C8—H8C 109.5
C2—C3—H3 118.6 Cl2—Fe1—Cl3 109.81 (10)
C3—C4—C5 122.4 (6) Cl2—Fe1—Cl4 111.32 (8)
C3—C4—H4 118.8 Cl3—Fe1—Cl4 108.36 (6)
C5—C4—H4 118.8 Cl2—Fe1—Cl1 109.85 (7)
C6—C5—C4 115.1 (5) Cl3—Fe1—Cl1 109.04 (7)
C6—C5—H5 122.4 Cl4—Fe1—Cl1 108.41 (7)
C4—C5—H5 122.4
C6—N1—N2—N3 −1.1 (5) C3—C4—C5—C6 1.3 (8)
C7—N1—N2—N3 179.0 (4) N2—N1—C6—C5 −179.6 (5)
N1—N2—N3—C1 0.9 (5) C7—N1—C6—C5 0.4 (9)
N1—N2—N3—C8 −177.7 (4) N2—N1—C6—C1 0.9 (5)
N2—N3—C1—C6 −0.4 (5) C7—N1—C6—C1 −179.2 (5)
C8—N3—C1—C6 178.0 (5) C4—C5—C6—N1 180.0 (5)
N2—N3—C1—C2 −179.8 (5) C4—C5—C6—C1 −0.6 (7)
C8—N3—C1—C2 −1.4 (8) N3—C1—C6—N1 −0.3 (5)
N3—C1—C2—C3 180.0 (5) C2—C1—C6—N1 179.2 (5)
C6—C1—C2—C3 0.7 (7) N3—C1—C6—C5 −179.9 (5)
C1—C2—C3—C4 0.1 (8) C2—C1—C6—C5 −0.4 (7)
C2—C3—C4—C5 −1.1 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2615).

References

  1. Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.
  2. Liu, F., John, K. D., Scott, B. L., Baker, T. R., Ott, K. C. & Tumas, W. (2000). Angew. Chem. Int. Ed. 39, 3127–3130. [PubMed]
  3. Lorenz, V., Fischer, A. & Edelmann, F. T. (2000). Z. Anorg. Allg. Chem. 626, 1728–1730.
  4. Oxford Diffraction (2012). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  5. Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255–260.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003711/hy2615sup1.cif

e-69-0m148-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003711/hy2615Isup2.hkl

e-69-0m148-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES