Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 2;69(Pt 3):o328–o329. doi: 10.1107/S1600536813001888

The halogen-bonded adduct 1,4-bis(pyri­din-4-yl)buta-1,3-diyne–1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexa­deca­fluoro-1,8-diiodo­octane (1/1)

Gabriella Cavallo a, Giovanni Marras b, Pierangelo Metrangolo a, Tullio Pilati a, Giancarlo Terraneo a,*
PMCID: PMC3588426  PMID: 23476525

Abstract

In the crystal structure of the title compound, C8F16I2·C14H8N2, the mol­ecules form infinite chains parallel to [2-11] through two symmetry-independent C—I⋯N halogen bonds (XBs). As commonly found, the perfluoro­alkyl mol­ecules segregate from the hydro­carbon ones, forming a layered structure. Apart from the XBs, the only contact below the sum of van der Waals radii is a weak H⋯F contact. The topology of the network is a nice example of the paradigm of the expansion of ditopic starting modules; the XB leads to the construction of infinite supramolecular chains along [2-11] formed by alternating XB donors and acceptors.

Related literature  

For the use of bis-(4-pyrid­yl)buta-1,3-diine in crystal engeneering based on hydrogen bonding and transition metal binding, see: Nakamura et al. (2003); Curtis et al. (2005); Maekawa et al. (2000); Badruz Zaman et al. (2001); Allan et al. (1988). For N⋯I halogen bonds based on α,ω-diiodo­per­fluoro­carbons, see: Neukirch et al. (2005); Navarrini et al. (2000); Liantonio et al. (2003); Bertani et al. (2002); Metrangolo et al. (2004, 2008); Fox et al. (2004); Dey et al. (2009). For segregation of perfluoro­alkyl chains, see: Fox et al. (2008). For chirality and order/disorder of long perfluoro­alkyl chains, see: Monde et al. (2006). For the synthesis of bis-(4-pyrid­yl)buta-1,3-diine, see: Della Ciana & Haim (1984).graphic file with name e-69-0o328-scheme1.jpg

Experimental  

Crystal data  

  • C8F16I2·C14H8N2

  • M r = 858.10

  • Triclinic, Inline graphic

  • a = 5.4849 (11) Å

  • b = 14.302 (2) Å

  • c = 18.354 (3) Å

  • α = 111.40 (2)°

  • β = 90.35 (2)°

  • γ = 94.03 (2)°

  • V = 1336.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 295 K

  • 0.36 × 0.12 × 0.10 mm

Data collection  

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.734, T max = 1.000

  • 15067 measured reflections

  • 6100 independent reflections

  • 4600 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.114

  • S = 1.02

  • 6100 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001888/fy2080sup1.cif

e-69-0o328-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001888/fy2080Isup2.hkl

e-69-0o328-Isup2.hkl (334.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001888/fy2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Halogen and hydrogen-bonding contacts (Å, °).

C—XY XY C—XY
C1—I1⋯N1 2.863 (4) 177.93 (16)
C8—I2⋯N2i 2.887 (4) 175.39 (16)
C1—F1⋯H9ii 2.60 145.3

Symmetry codes: (i) = −2 + x, 1 + y, −1 + z; (ii) = −x, 1 − y, 1 − z.

Acknowledgments

GC, PM and GT acknowledge the Fondazione Cariplo (projects 2009–2550 and 2010–1351) for financial support.

supplementary crystallographic information

Comment

Bis-(4-pyridyl)buta-1,3-diine (1) (Allan et al., 1988) has been used as ditopic hydrogen bonding (HB) acceptor in crystal engineering (Nakamura et al., 2003; Curtis et al., 2005) and in transition metals complexes (Badruz Zaman et al., 2001; Maekawa et al., 2000), but it has never been used in halogen bonding (XB) adducts formation. Our group has shown that α,ω-diiodoperfluorocarbons are very good ditopic XB donors, both towards neutral (Fox et al., 2004) and ionic (Metrangolo et al., 2008) electron-donors. As expected, when solutions of (1) and 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane (2), are mixed, the (1)···(2) adduct quickly precipitates (Fig. 1). It forms an infinite one-dimensional and non-covalent polymer through short XBs (Table 1). In our experience, this kind of nearly linear adduct has normally Z' = 1/2, that is, both molecules lie on crystallographic elements of symmetry, more frequently Ci, but also C2 (see Table 2). Here instead, both molecules are in general position and Z' is 1. The cause of the molecular symmetry breaking is an F···H contact, the only interaction shorter than the sum of the van der Waals radii beside the I···N XBs. (Table 1). As happens in most structures containing perfluorocarbons and hydrocarbons moieties (see for example Fox et al., 2008), the two components segregate and a layered structure is formed (Fig. 2).

Experimental

(1) was synthetized according to Della Ciana & Haim (1984); (2) was from Aldrich. The adduct was obtained by slow evaporation from a 1:1 solution of the two components in chloroform.

Refinement

The lowest energy conformation of long perfluoroalkanes is chiral in due to the sterically hindered F···F contacts between 1,3 positioned CF2 groups (Monde et al., 2006). Their crystals frequently show a superposition, in the same crystallographic site, of the two more common conformers: all-trans+ and all-trans- (see, for example, Dey <i1,4-bis(pyridin-4-yl)buta-1,3-diyne–1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane (1/1)>et al., 2009), which in some cases have unequal occupancy factors. This is particularly visible for –CF3 terminated chains, that is, for α,ω-dihaloperfluorocarbons, which have the two endings strongly interacting with any electron-donor site. This type of disorder is difficult to observe, at least at room temperature, because it is masked by the large ADPs of perfluoroalkyl chains. This is due to the very weak interactions that their chains give with any environment. In the present study, splitting of some fluorine atoms was suggested by SHELXL but did not give good results. In spite of the use of a lot of restraints and constraints, at the price of a large increase of refined parameters, the final R1, wR2 and Δρ did not change significantly. The correlations between couples of parameters involving split atoms were very high, many of them being in the range 0.95–0.99. For these reasons we decided to use the ordered model of refinement. All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the a axis, showing the alternating perfluorocarbon/hydrocarbon layers.

Crystal data

C8F16I2·C14H8N2 Z = 2
Mr = 858.10 F(000) = 808
Triclinic, P1 Dx = 2.132 Mg m3
a = 5.4849 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.302 (2) Å Cell parameters from 981 reflections
c = 18.354 (3) Å θ = 2.4–27.4°
α = 111.40 (2)° µ = 2.48 mm1
β = 90.35 (2)° T = 295 K
γ = 94.03 (2)° Elongated prism, colourless
V = 1336.4 (4) Å3 0.36 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD area detector diffractometer 4600 reflections with I > 2σ(I)
ω and φ scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Bruker, 2010) θmax = 27.5°, θmin = 2.3°
Tmin = 0.734, Tmax = 1.000 h = −7→7
15067 measured reflections k = −18→18
6100 independent reflections l = −23→23

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.5679P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
6100 reflections Δρmax = 0.90 e Å3
379 parameters Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.11335 (6) 0.46492 (2) 0.32421 (2) 0.06421 (11)
C1 −0.0850 (8) 0.5404 (4) 0.2631 (3) 0.0616 (10)
F1 −0.1957 (7) 0.6162 (3) 0.3136 (2) 0.1019 (12)
F2 −0.2603 (6) 0.4751 (3) 0.2165 (2) 0.0938 (10)
C2 0.0789 (7) 0.5809 (3) 0.2117 (2) 0.0525 (9)
F3 0.2403 (6) 0.6512 (3) 0.25989 (19) 0.0936 (10)
F4 0.1996 (6) 0.5068 (2) 0.16550 (18) 0.0852 (9)
C3 −0.0565 (8) 0.6289 (3) 0.1613 (2) 0.0598 (10)
F5 −0.1913 (8) 0.6966 (3) 0.2048 (2) 0.1254 (16)
F6 −0.2101 (6) 0.5560 (3) 0.1115 (2) 0.1027 (12)
C4 0.1092 (8) 0.6720 (3) 0.1114 (2) 0.0558 (9)
F7 0.2517 (11) 0.7470 (4) 0.1598 (3) 0.170 (3)
F8 0.2464 (7) 0.6031 (4) 0.0697 (3) 0.1272 (17)
C5 −0.0268 (8) 0.7128 (3) 0.0561 (2) 0.0569 (10)
F9 −0.1635 (10) 0.7821 (4) 0.0985 (2) 0.152 (2)
F10 −0.1735 (7) 0.6388 (3) 0.0088 (2) 0.1142 (14)
C6 0.1400 (8) 0.7555 (3) 0.0062 (2) 0.0546 (9)
F11 0.2902 (7) 0.8298 (3) 0.0525 (2) 0.1111 (13)
F12 0.2741 (6) 0.6821 (3) −0.0373 (2) 0.0963 (11)
C7 0.0006 (7) 0.7947 (3) −0.0502 (2) 0.0519 (9)
F13 −0.1322 (6) 0.8675 (2) −0.00739 (17) 0.0850 (9)
F14 −0.1497 (6) 0.7197 (2) −0.09729 (17) 0.0826 (9)
C8 0.1623 (9) 0.8356 (4) −0.1016 (3) 0.0651 (11)
F15 0.3155 (6) 0.9102 (3) −0.0564 (2) 0.1065 (12)
F16 0.2988 (7) 0.7622 (3) −0.1455 (2) 0.1068 (13)
I2 −0.04797 (6) 0.88682 (2) −0.17707 (2) 0.06339 (11)
C9 0.4885 (9) 0.3202 (4) 0.5119 (3) 0.0669 (12)
H1B 0.4645 0.3284 0.5639 0.080*
C10 0.3452 (9) 0.3656 (4) 0.4747 (3) 0.0758 (13)
H10 0.2236 0.4041 0.5031 0.091*
N1 0.3700 (8) 0.3578 (3) 0.4013 (3) 0.0730 (11)
C11 0.5425 (10) 0.3021 (5) 0.3621 (3) 0.0775 (14)
H11 0.5607 0.2952 0.3101 0.093*
C12 0.6971 (9) 0.2536 (4) 0.3932 (3) 0.0689 (12)
H12 0.8175 0.2160 0.3634 0.083*
C13 0.6682 (7) 0.2623 (3) 0.4706 (2) 0.0553 (9)
C14 0.8229 (8) 0.2136 (4) 0.5068 (3) 0.0616 (10)
C15 0.9543 (9) 0.1761 (4) 0.5378 (3) 0.0651 (11)
C16 1.1066 (9) 0.1343 (4) 0.5753 (3) 0.0646 (11)
C17 1.2428 (9) 0.0982 (4) 0.6076 (3) 0.0654 (11)
C18 1.3964 (8) 0.0545 (3) 0.6481 (2) 0.0565 (10)
C19 1.3530 (9) 0.0648 (4) 0.7250 (3) 0.0678 (11)
H19 1.2238 0.0998 0.7514 0.081*
C20 1.5051 (9) 0.0220 (4) 0.7606 (3) 0.0674 (11)
H20 1.4754 0.0291 0.8121 0.081*
N2 1.6933 (7) −0.0291 (3) 0.7268 (2) 0.0699 (10)
C21 1.7289 (9) −0.0398 (4) 0.6527 (3) 0.0743 (13)
H21 1.8567 −0.0769 0.6274 0.089*
C22 1.5882 (9) 0.0006 (4) 0.6113 (3) 0.0706 (13)
H22 1.6214 −0.0082 0.5597 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.06808 (19) 0.0752 (2) 0.06554 (19) 0.00504 (14) −0.00501 (13) 0.04518 (15)
C1 0.065 (3) 0.071 (3) 0.062 (2) 0.017 (2) 0.009 (2) 0.037 (2)
F1 0.132 (3) 0.111 (2) 0.094 (2) 0.070 (2) 0.056 (2) 0.0628 (19)
F2 0.0727 (18) 0.119 (3) 0.116 (3) −0.0210 (18) −0.0270 (17) 0.079 (2)
C2 0.054 (2) 0.057 (2) 0.052 (2) 0.0110 (18) 0.0002 (17) 0.0243 (18)
F3 0.108 (2) 0.100 (2) 0.084 (2) −0.0334 (19) −0.0355 (18) 0.0554 (18)
F4 0.103 (2) 0.101 (2) 0.0805 (18) 0.0584 (18) 0.0315 (16) 0.0569 (16)
C3 0.068 (3) 0.067 (2) 0.056 (2) 0.021 (2) 0.006 (2) 0.034 (2)
F5 0.171 (4) 0.146 (3) 0.112 (3) 0.114 (3) 0.073 (3) 0.091 (2)
F6 0.091 (2) 0.135 (3) 0.110 (3) −0.040 (2) −0.0437 (19) 0.087 (2)
C4 0.061 (2) 0.058 (2) 0.060 (2) 0.0006 (19) −0.0104 (18) 0.0354 (19)
F7 0.238 (5) 0.165 (4) 0.139 (3) −0.132 (4) −0.127 (4) 0.120 (3)
F8 0.122 (3) 0.180 (4) 0.158 (3) 0.098 (3) 0.080 (3) 0.138 (3)
C5 0.067 (2) 0.060 (2) 0.049 (2) 0.021 (2) 0.0048 (18) 0.0245 (18)
F9 0.222 (5) 0.187 (4) 0.122 (3) 0.158 (4) 0.109 (3) 0.118 (3)
F10 0.107 (3) 0.161 (3) 0.101 (2) −0.058 (2) −0.046 (2) 0.092 (3)
C6 0.061 (2) 0.057 (2) 0.053 (2) 0.0073 (18) −0.0054 (18) 0.0279 (18)
F11 0.130 (3) 0.118 (3) 0.105 (2) −0.055 (2) −0.068 (2) 0.077 (2)
F12 0.101 (2) 0.128 (3) 0.102 (2) 0.069 (2) 0.0459 (18) 0.081 (2)
C7 0.057 (2) 0.054 (2) 0.050 (2) 0.0100 (17) −0.0028 (17) 0.0253 (17)
F13 0.105 (2) 0.098 (2) 0.0755 (17) 0.0553 (18) 0.0257 (16) 0.0516 (16)
F14 0.095 (2) 0.0869 (19) 0.0769 (18) −0.0257 (16) −0.0342 (16) 0.0497 (15)
C8 0.062 (3) 0.079 (3) 0.070 (3) 0.009 (2) −0.001 (2) 0.045 (2)
F15 0.093 (2) 0.131 (3) 0.123 (3) −0.044 (2) −0.047 (2) 0.089 (2)
F16 0.110 (2) 0.147 (3) 0.109 (2) 0.073 (2) 0.051 (2) 0.090 (2)
I2 0.07009 (19) 0.0747 (2) 0.06057 (18) 0.00691 (14) −0.00418 (13) 0.04264 (15)
C9 0.061 (2) 0.090 (3) 0.062 (3) 0.006 (2) 0.000 (2) 0.042 (2)
C10 0.066 (3) 0.093 (3) 0.088 (3) 0.026 (3) 0.008 (2) 0.052 (3)
N1 0.064 (2) 0.091 (3) 0.086 (3) 0.011 (2) −0.005 (2) 0.058 (2)
C11 0.078 (3) 0.110 (4) 0.066 (3) 0.006 (3) −0.002 (2) 0.057 (3)
C12 0.068 (3) 0.087 (3) 0.063 (3) 0.017 (2) 0.004 (2) 0.038 (2)
C13 0.050 (2) 0.064 (2) 0.060 (2) 0.0001 (18) −0.0102 (17) 0.034 (2)
C14 0.062 (2) 0.073 (3) 0.062 (2) 0.003 (2) −0.0062 (19) 0.039 (2)
C15 0.067 (3) 0.069 (3) 0.070 (3) 0.010 (2) −0.009 (2) 0.038 (2)
C16 0.067 (3) 0.071 (3) 0.067 (3) 0.008 (2) −0.006 (2) 0.038 (2)
C17 0.066 (3) 0.071 (3) 0.069 (3) 0.010 (2) −0.008 (2) 0.038 (2)
C18 0.061 (2) 0.057 (2) 0.062 (2) 0.0009 (18) −0.0117 (19) 0.0348 (19)
C19 0.070 (3) 0.076 (3) 0.057 (2) 0.012 (2) −0.007 (2) 0.023 (2)
C20 0.075 (3) 0.080 (3) 0.055 (2) 0.002 (2) −0.010 (2) 0.036 (2)
N2 0.064 (2) 0.086 (3) 0.077 (3) −0.001 (2) −0.0163 (19) 0.051 (2)
C21 0.066 (3) 0.091 (3) 0.081 (3) 0.020 (3) −0.002 (2) 0.047 (3)
C22 0.064 (3) 0.104 (4) 0.062 (3) 0.016 (3) 0.000 (2) 0.051 (3)

Geometric parameters (Å, º)

I1—C1 2.154 (4) C9—C10 1.376 (6)
C1—F1 1.330 (5) C9—C13 1.377 (7)
C1—F2 1.345 (6) C9—H1B 0.9300
C1—C2 1.540 (6) C10—N1 1.320 (7)
C2—F4 1.316 (5) C10—H10 0.9300
C2—F3 1.338 (5) N1—C11 1.321 (7)
C2—C3 1.552 (5) C11—C12 1.376 (7)
C3—F5 1.290 (5) C11—H11 0.9300
C3—F6 1.344 (6) C12—C13 1.390 (6)
C3—C4 1.545 (6) C12—H12 0.9300
C4—F8 1.298 (6) C13—C14 1.436 (6)
C4—F7 1.315 (5) C14—C15 1.185 (6)
C4—C5 1.552 (6) C15—C16 1.375 (6)
C5—F9 1.303 (5) C16—C17 1.204 (6)
C5—F10 1.312 (6) C17—C18 1.434 (6)
C5—C6 1.546 (6) C18—C22 1.378 (7)
C6—F11 1.319 (5) C18—C19 1.389 (6)
C6—F12 1.336 (5) C19—C20 1.362 (6)
C6—C7 1.563 (5) C19—H19 0.9300
C7—F13 1.322 (5) C20—N2 1.330 (7)
C7—F14 1.330 (5) C20—H20 0.9300
C7—C8 1.536 (6) N2—C21 1.329 (6)
C8—F15 1.324 (6) C21—C22 1.372 (6)
C8—F16 1.346 (6) C21—H21 0.9300
C8—I2 2.151 (4) C22—H22 0.9300
F1—C1—F2 107.3 (4) F15—C8—F16 107.0 (4)
F1—C1—C2 109.0 (4) F15—C8—C7 109.4 (4)
F2—C1—C2 108.1 (4) F16—C8—C7 108.8 (4)
F1—C1—I1 110.5 (3) F15—C8—I2 109.8 (3)
F2—C1—I1 108.9 (3) F16—C8—I2 109.3 (3)
C2—C1—I1 112.9 (3) C7—C8—I2 112.5 (3)
F4—C2—F3 108.4 (4) C10—C9—C13 118.7 (4)
F4—C2—C1 108.5 (3) C10—C9—H1B 120.6
F3—C2—C1 107.0 (3) C13—C9—H1B 120.6
F4—C2—C3 109.1 (3) N1—C10—C9 123.9 (5)
F3—C2—C3 108.2 (3) N1—C10—H10 118.1
C1—C2—C3 115.4 (3) C9—C10—H10 118.1
F5—C3—F6 106.3 (4) C10—N1—C11 117.0 (4)
F5—C3—C4 110.6 (4) N1—C11—C12 124.2 (5)
F6—C3—C4 107.1 (3) N1—C11—H11 117.9
F5—C3—C2 110.1 (4) C12—C11—H11 117.9
F6—C3—C2 107.0 (4) C11—C12—C13 118.1 (5)
C4—C3—C2 115.2 (3) C11—C12—H12 120.9
F8—C4—F7 108.2 (5) C13—C12—H12 120.9
F8—C4—C3 109.2 (3) C9—C13—C12 118.1 (4)
F7—C4—C3 107.6 (4) C9—C13—C14 120.8 (4)
F8—C4—C5 108.6 (4) C12—C13—C14 121.1 (4)
F7—C4—C5 107.7 (4) C15—C14—C13 178.1 (5)
C3—C4—C5 115.4 (4) C14—C15—C16 178.8 (6)
F9—C5—F10 107.2 (5) C17—C16—C15 179.1 (6)
F9—C5—C6 109.6 (4) C16—C17—C18 177.5 (5)
F10—C5—C6 108.5 (3) C22—C18—C19 118.6 (4)
F9—C5—C4 108.2 (4) C22—C18—C17 120.8 (4)
F10—C5—C4 107.9 (4) C19—C18—C17 120.6 (4)
C6—C5—C4 115.2 (4) C20—C19—C18 118.1 (5)
F11—C6—F12 108.1 (4) C20—C19—H19 121.0
F11—C6—C5 109.6 (4) C18—C19—H19 121.0
F12—C6—C5 107.9 (3) N2—C20—C19 124.4 (4)
F11—C6—C7 108.4 (3) N2—C20—H20 117.8
F12—C6—C7 108.0 (3) C19—C20—H20 117.8
C5—C6—C7 114.7 (3) C21—N2—C20 116.6 (4)
F13—C7—F14 108.4 (4) N2—C21—C22 123.8 (5)
F13—C7—C8 108.1 (3) N2—C21—H21 118.1
F14—C7—C8 107.8 (3) C22—C21—H21 118.1
F13—C7—C6 108.2 (3) C21—C22—C18 118.4 (4)
F14—C7—C6 108.5 (3) C21—C22—H22 120.8
C8—C7—C6 115.6 (3) C18—C22—H22 120.8
F1—C1—C2—F4 176.0 (4) F10—C5—C6—F12 −62.3 (5)
F2—C1—C2—F4 −67.7 (4) C4—C5—C6—F12 58.8 (5)
I1—C1—C2—F4 52.8 (4) F9—C5—C6—C7 −58.7 (5)
F1—C1—C2—F3 59.2 (5) F10—C5—C6—C7 58.1 (5)
F2—C1—C2—F3 175.5 (4) C4—C5—C6—C7 179.1 (3)
I1—C1—C2—F3 −64.0 (4) F11—C6—C7—F13 −63.1 (5)
F1—C1—C2—C3 −61.3 (5) F12—C6—C7—F13 −179.9 (4)
F2—C1—C2—C3 55.0 (5) C5—C6—C7—F13 59.8 (5)
I1—C1—C2—C3 175.5 (3) F11—C6—C7—F14 179.6 (4)
F4—C2—C3—F5 175.0 (4) F12—C6—C7—F14 62.7 (5)
F3—C2—C3—F5 −67.2 (5) C5—C6—C7—F14 −57.6 (5)
C1—C2—C3—F5 52.6 (6) F11—C6—C7—C8 58.3 (5)
F4—C2—C3—F6 59.9 (5) F12—C6—C7—C8 −58.5 (5)
F3—C2—C3—F6 177.6 (4) C5—C6—C7—C8 −178.8 (4)
C1—C2—C3—F6 −62.6 (5) F13—C7—C8—F15 63.4 (5)
F4—C2—C3—C4 −59.1 (5) F14—C7—C8—F15 −179.7 (4)
F3—C2—C3—C4 58.7 (5) C6—C7—C8—F15 −58.0 (5)
C1—C2—C3—C4 178.5 (4) F13—C7—C8—F16 180.0 (4)
F5—C3—C4—F8 178.5 (4) F14—C7—C8—F16 −63.1 (4)
F6—C3—C4—F8 −66.0 (5) C6—C7—C8—F16 58.5 (5)
C2—C3—C4—F8 52.9 (5) F13—C7—C8—I2 −58.8 (4)
F5—C3—C4—F7 61.3 (6) F14—C7—C8—I2 58.1 (4)
F6—C3—C4—F7 176.8 (4) C6—C7—C8—I2 179.7 (3)
C2—C3—C4—F7 −64.3 (5) C13—C9—C10—N1 −0.5 (8)
F5—C3—C4—C5 −58.9 (5) C9—C10—N1—C11 0.6 (8)
F6—C3—C4—C5 56.6 (5) C10—N1—C11—C12 −0.8 (8)
C2—C3—C4—C5 175.5 (4) N1—C11—C12—C13 1.0 (9)
F8—C4—C5—F9 −179.8 (4) C10—C9—C13—C12 0.6 (7)
F7—C4—C5—F9 −62.9 (6) C10—C9—C13—C14 179.8 (5)
C3—C4—C5—F9 57.2 (6) C11—C12—C13—C9 −0.8 (7)
F8—C4—C5—F10 64.5 (5) C11—C12—C13—C14 179.9 (5)
F7—C4—C5—F10 −178.6 (4) C22—C18—C19—C20 0.9 (7)
C3—C4—C5—F10 −58.5 (5) C17—C18—C19—C20 −179.8 (5)
F8—C4—C5—C6 −56.9 (5) C18—C19—C20—N2 0.0 (8)
F7—C4—C5—C6 60.1 (6) C19—C20—N2—C21 −1.3 (8)
C3—C4—C5—C6 −179.8 (3) C20—N2—C21—C22 1.7 (8)
F9—C5—C6—F11 63.5 (5) N2—C21—C22—C18 −0.8 (9)
F10—C5—C6—F11 −179.7 (4) C19—C18—C22—C21 −0.5 (7)
C4—C5—C6—F11 −58.7 (5) C17—C18—C22—C21 −179.8 (5)
F9—C5—C6—F12 −179.0 (4)

Halogen and hydrogen-bonding contacts (Å, °).

C—X···Y X···Y C—X···Y
C1—I1···N1 2.863 (4) 177.93 (16)
C8—I2···N2i 2.887 (4) 175.39 (16)
C1—F1···H9ii 2.60 145.3

Symmetry codes: (i) = -2+x, 1+y, -1+z; (ii) = -x, 1-y, 1-z.

Crystallographic symmetry site of single molecules in one-dimensional adducts between some molecules containg two basic N atoms and α,ω-diiodoperfluoroalkanes previously studied by our group.

Molecule A Molecul B A site B site
C14H8N2a I-(CF2)8-I C1 C1
C10H16N2b I-(CF2)8-Ic C1 C1
C12H26N2O2d I-(CF2)8-I Ci C2
C10H16N2e Br-(CF2)8-Br C2 Ci
C13H14N2f I-(CF2)8-I Ci Ci
CN-(CH2)4-CNg I-(CF2)2-I Ci Ci
CN-(CH2)4-CNg I-(CF2)4-I Ci Ci
CN-(CH2)6-CNg I-(CF2)4-I Ci Ci
CN-(CH2)4-CNg I-(CF2)6-I Ci Ci
CN-(CH2)6-CNg I-(CF2)6-I Ci Ci
CN-(CH2)4-CNg I-(CF2)8-I Ci Ci
CN-(CH2)6-CNg I-(CF2)8-I Ci Ci
C10H8N4h I-(CF2)8-I C1 Ci
C10H8N4i I-(CF2)4-I C1 Ci

(a) This work. (b) N,N,N',N'-tetramethyl-p-phenylenediamine (Neukirch et al., 2005). (c) Unusually, the conformation of I-(CF2)8-I is ttgtt. (d) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Navarrini et al., 2000). (e) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Liantonio et al., 2003). (f) 1,3-di-(4-pyridyl)propane (Bertani et al., 2002). (g) Metrangolo et al. (2004). (h) 4,4'-azobispyridine (Fox et al., 2004). (i) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Dey et al., 2009).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2080).

References

  1. Allan, J. R., Barrow, M. J., Beaumont, P. C., Macindoe, L. A., Milburn, G. H. W. & Werninck, A. R. (1988). Inorg. Chim. Acta, 148, 85–90.
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Badruz Zaman, M. D., Smith, M. D. & Zur Loye, H.-C. (2001). Chem. Mater. 13, 3534–3541.
  4. Bertani, R., Metrangolo, P., Moiana, A., Perez, E., Pilati, T., Resnati, G., Rico-Lattes, I. & Sassi, A. (2002). Adv. Mater. 14, 1197–1201.
  5. Bruker (2010). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  7. Curtis, S. M., Le, N., Fowler, F. W. & Lauher, J. W. (2005). Cryst. Growth Des. 5, 2313–2321.
  8. Della Ciana, L. & Haim, A. (1984). J. Heterocycl. Chem. 21, 607–608.
  9. Dey, A., Metrangolo, P., Pilati, T., Resnati, G., Terraneo, G. & Wlassics, I. (2009). J. Fluorine Chem. 130, 816–823.
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271–281.
  12. Fox, D., Metrangolo, P., Pasini, D., Pilati, T., Resnati, G. & Terraneo, G. (2008). CrystEngComm, 10, 1132–1136.
  13. Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des. 3, 799–803.
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  15. Maekawa, M., Konaka, H., Suenaga, Y., Takayoshi Kuroda-Sowa, T. & Munakata, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4160–4166.
  16. Metrangolo, P., Meyer, F., Pilati, T. & Resnati, G. (2008). Chem. Commun. pp. 1635–1637. [DOI] [PubMed]
  17. Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2004). Chem. Commun. pp. 1492–1493. [DOI] [PubMed]
  18. Monde, K., Miura, N., Hashimoto, M., Taniguchi, T. & Inabe, T. (2006). J. Am. Chem. Soc. 128, 6000–6001. [DOI] [PubMed]
  19. Nakamura, A., Sato, T. & Kuroda, R. (2003). CrystEngComm, 5, 318–325.
  20. Navarrini, W., Metrangolo, P., Pilati, T. & Resnati, G. (2000). New J. Chem. 24, 777–780.
  21. Neukirch, H., Guido, E., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2005). Chem. Commun. pp. 1534–1536. [DOI] [PubMed]
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001888/fy2080sup1.cif

e-69-0o328-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001888/fy2080Isup2.hkl

e-69-0o328-Isup2.hkl (334.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001888/fy2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES