Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 16;69(Pt 3):o391. doi: 10.1107/S1600536813004236

2-[N-(4-Meth­oxy­phen­yl)acetamido]-1,3-thia­zol-4-yl acetate

Volodymyr Horishny a, Roman Lesyk a, Andrzej K Gzella b,c,*
PMCID: PMC3588441  PMID: 23476576

Abstract

The structural analysis of the title compound, C14H14N2O4S, particularly the presence of an acetyl group at the exocyclic N atom and the C(H)—C(O2CMe)—N acet­oxy group in the thia­zole ring, may indicate that one of the starting materials, i.e. 2-(4-meth­oxy­anilino)-1,3-thia­zol-4(5H)-one, exists in the reaction mixture, at least partially, as a tautomer with an exocyclic amine N atom and an enol group. The acet­oxy and acetyl groups deviate from the thia­zole plane by 69.17 (6) and 7.25 (19)°, respectively. The thia­zole and benzene rings form a dihedral angle of 73.50 (4)°. In the crystal, centrosymmetrically related mol­ecules are connected into dimeric aggregates via C—H⋯O inter­actions.

Related literature  

For the biological activity of 2-ar­yl(heter­yl)amino­thia­zol-4-one derivatives, see: Ates et al. (2000); Eleftheriou et al. (2012); Eriksson et al. (2007); Lesyk & Zimenkovsky (2004); Lesyk et al. (2003, 2011); Rout & Mahapatra (1955); Subtel’na et al. (2010). For prototropic tautomerism studies, see: Lesyk et al. (2003); Subtel’na et al. (2010). For bond-length data, see: Allen et al. (1987). For a related structural study, see: Horishny et al. (2013).graphic file with name e-69-0o391-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O4S

  • M r = 306.33

  • Triclinic, Inline graphic

  • a = 8.9445 (5) Å

  • b = 9.5736 (8) Å

  • c = 9.9078 (9) Å

  • α = 115.509 (9)°

  • β = 93.381 (6)°

  • γ = 108.144 (6)°

  • V = 708.95 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 130 K

  • 0.50 × 0.50 × 0.10 mm

Data collection  

  • Agilent Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.860, T max = 1.000

  • 12469 measured reflections

  • 3445 independent reflections

  • 3075 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.06

  • 3445 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004236/tk5195sup1.cif

e-69-0o391-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004236/tk5195Isup2.hkl

e-69-0o391-Isup2.hkl (165.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004236/tk5195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O20i 0.93 2.53 3.200 (2) 129

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Significant popularity of thiazolidine scaffolds in drug design is grounded on the broad spectrum of biological activity of their derivatives. Among thiazolidine derivatives the group of 2-aryl(heteryl)aminothiazol-4-one derivatives is one of the most promising (Lesyk & Zimenkovsky, 2004; Lesyk et al., 2011). 2-Aryl(heteryl)aminothiazol-4-one activities covers antibacterial (Ates et al., 2000), antifungal (Rout & Mahapatra, 1955), anti-inflammatory (Lesyk et al., 2003; Eleftheriou et al., 2012) and anticancer activities (Subtel'na et al., 2010; Eriksson et al., 2007). Moreover, literature reports indicate existence of prototropic tautomeric forms of 3-unsubstituted 2-aryl(heteryl)aminothiazol-4-ones both in solutions and solid phase which can be of significant importance for biological activity (Lesyk et al., 2003; Subtel'na et al., 2010). Dictated by these observations, the aim of the presented work was synthesis of the compound (I) as starting substance for further design of new biologically active compounds.

The investigations on the structure of the title compound, a product of the reaction of 2-(4-methoxyanilino)-1,3-thiazol-4-one with acetyl anhydride, showed the presence of an acetoxy group at C4 and an acetyl functionality at N6 (Fig. 1). Similar observations were made for the product obtained by the identical method from 2-(2,4-dimethoxyanilino)-1,3-thiazol-4-one. The presence of the C4 acetoxy and N6 acetyl groups in the structure of compound (I) and 2-[N-(2,4-dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate (Horishny et al., 2013) may indicate that the starting materials, i.e. 2-(4-methoxyanilino)-1,3-thiazol-4-one and 2-(2,4-dimethoxyanilino)-1,3-thiazol-4-one, exist in the reaction mixture at least partially as tautomers with an exocyclic amine nitrogen and an enol moiety (H—)C5═C4—OH within the five-membered heterocyclic ring.

The C4 acetoxy group and N6 acetyl functionality are oriented differently in relation to the planar thiazole ring. The first one forms a dihedral angle of 79.22 (5)° with the mean plane of this ring whereas the second one is tilted only slightly [dihedral angle: 7.25 (19)°] (Fig. 1).

Both the C7═O8 carbonyl group relative to the C2—N6 bond and the C21═ O22 carbonyl group in relation to the C4—O20 bond have the same synperiplanar conformation. The torsional angles C2—N6—C7—O8 and C4—O18—C19—O20 are 4.96 (19) and -1.67 (19)°, respectively. The C13 methoxy group is approximately coplanar with the phenyl ring – the torsion angle is 1.9 (2)°. The flat phenyl and thiazole rings form a dihedral angle of 73.50 (4)°.

The bond lengths and angles in compound (I) are similar to those observed in 2-[N-(2,4-dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate (Horishny et al., 2013). The N6—C7 distance [1.3876 (16) Å] is longer (by about 8σ) than the normal (O═)C—N tertiary amide distance [1.346 (5) Å, Allen et al., 1987].

In the crystal structure, the molecules of (I) are connected by the C5—H5···O21i hydrogen bonds into centrosymmetric dimers (Table 1, Fig. 2).

Experimental

2-(4-Methoxyanilino)thiazol-4-one in the medium of acetic anhydride was refluxed for 2 h. The obtained solution was evaporated in vacuum and the residue was recrystallized twice from benzene–hexane (1:1) mixtures.

Refinement

All H atoms were located into the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) together with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The hydrogen bonding (dotted lines) in the title structure. Symmetry code: (i) -x,1 - y,1 - z. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C14H14N2O4S Z = 2
Mr = 306.33 F(000) = 320
Triclinic, P1 Dx = 1.435 Mg m3
Hall symbol: -P 1 Melting point = 399–401 K
a = 8.9445 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5736 (8) Å Cell parameters from 5310 reflections
c = 9.9078 (9) Å θ = 2.3–29.1°
α = 115.509 (9)° µ = 0.25 mm1
β = 93.381 (6)° T = 130 K
γ = 108.144 (6)° Block, yellow
V = 708.95 (10) Å3 0.50 × 0.50 × 0.10 mm

Data collection

Agilent Xcalibur Atlas diffractometer 3445 independent reflections
Radiation source: fine-focus sealed tube 3075 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 10.3088 pixels mm-1 θmax = 29.1°, θmin = 2.3°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→12
Tmin = 0.860, Tmax = 1.000 l = −12→13
12469 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.2987P] where P = (Fo2 + 2Fc2)/3
3445 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.09020 (4) 0.14762 (4) 0.45516 (4) 0.02269 (10)
C2 0.03052 (15) 0.08180 (16) 0.32947 (14) 0.0177 (2)
N3 0.16077 (13) 0.19958 (13) 0.34043 (12) 0.0191 (2)
C4 0.16774 (16) 0.34906 (16) 0.45435 (15) 0.0215 (3)
C5 0.04751 (17) 0.34910 (17) 0.52956 (16) 0.0249 (3)
H5 0.0399 0.4428 0.6090 0.030*
N6 −0.00495 (12) −0.08552 (13) 0.22511 (12) 0.0182 (2)
C7 −0.14419 (16) −0.20995 (17) 0.21360 (16) 0.0233 (3)
O8 −0.24272 (12) −0.17289 (13) 0.28765 (13) 0.0308 (2)
C9 −0.16476 (18) −0.38706 (18) 0.10871 (18) 0.0305 (3)
H9A −0.2535 −0.4615 0.1245 0.046*
H9B −0.0678 −0.4040 0.1305 0.046*
H9C −0.1861 −0.4089 0.0040 0.046*
C10 0.11162 (15) −0.12397 (15) 0.13403 (14) 0.0182 (2)
C11 0.25487 (16) −0.11824 (17) 0.20057 (15) 0.0220 (3)
H11 0.2770 −0.0887 0.3042 0.026*
C12 0.36650 (16) −0.15662 (17) 0.11261 (16) 0.0237 (3)
H12 0.4633 −0.1527 0.1569 0.028*
C13 0.33070 (16) −0.20089 (16) −0.04265 (16) 0.0229 (3)
C14 0.18573 (17) −0.20726 (17) −0.10887 (15) 0.0240 (3)
H14 0.1623 −0.2383 −0.2128 0.029*
C15 0.07619 (16) −0.16761 (16) −0.02071 (15) 0.0213 (3)
H15 −0.0201 −0.1701 −0.0645 0.026*
O16 0.42891 (13) −0.24239 (14) −0.14095 (12) 0.0321 (2)
C17 0.57663 (19) −0.2456 (2) −0.0825 (2) 0.0358 (4)
H17A 0.6389 −0.1390 0.0039 0.054*
H17B 0.6368 −0.2696 −0.1611 0.054*
H17C 0.5537 −0.3304 −0.0509 0.054*
O18 0.30433 (12) 0.49009 (12) 0.49350 (11) 0.0263 (2)
C19 0.31110 (16) 0.56737 (17) 0.40442 (16) 0.0238 (3)
O20 0.20654 (12) 0.51567 (14) 0.29430 (12) 0.0311 (2)
C21 0.46079 (18) 0.7203 (2) 0.4657 (2) 0.0372 (4)
H21A 0.5421 0.6945 0.4116 0.056*
H21B 0.4991 0.7596 0.5730 0.056*
H21C 0.4376 0.8053 0.4520 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02568 (18) 0.02852 (19) 0.02403 (18) 0.01508 (14) 0.01369 (13) 0.01672 (15)
C2 0.0191 (6) 0.0226 (6) 0.0167 (6) 0.0101 (5) 0.0062 (4) 0.0118 (5)
N3 0.0194 (5) 0.0210 (5) 0.0186 (5) 0.0081 (4) 0.0053 (4) 0.0102 (4)
C4 0.0252 (6) 0.0201 (6) 0.0195 (6) 0.0085 (5) 0.0027 (5) 0.0098 (5)
C5 0.0336 (7) 0.0255 (7) 0.0211 (6) 0.0165 (6) 0.0092 (5) 0.0117 (6)
N6 0.0182 (5) 0.0195 (5) 0.0183 (5) 0.0067 (4) 0.0064 (4) 0.0100 (4)
C7 0.0215 (6) 0.0257 (7) 0.0246 (7) 0.0057 (5) 0.0047 (5) 0.0157 (6)
O8 0.0236 (5) 0.0334 (6) 0.0390 (6) 0.0084 (4) 0.0141 (4) 0.0207 (5)
C9 0.0312 (7) 0.0221 (7) 0.0329 (8) 0.0028 (6) 0.0072 (6) 0.0135 (6)
C10 0.0212 (6) 0.0159 (5) 0.0181 (6) 0.0069 (5) 0.0075 (5) 0.0084 (5)
C11 0.0238 (6) 0.0241 (6) 0.0188 (6) 0.0087 (5) 0.0057 (5) 0.0110 (5)
C12 0.0208 (6) 0.0247 (6) 0.0258 (7) 0.0086 (5) 0.0051 (5) 0.0122 (6)
C13 0.0286 (7) 0.0173 (6) 0.0235 (7) 0.0086 (5) 0.0122 (5) 0.0095 (5)
C14 0.0343 (7) 0.0217 (6) 0.0158 (6) 0.0108 (5) 0.0068 (5) 0.0084 (5)
C15 0.0249 (6) 0.0200 (6) 0.0196 (6) 0.0085 (5) 0.0036 (5) 0.0098 (5)
O16 0.0367 (6) 0.0362 (6) 0.0288 (5) 0.0192 (5) 0.0182 (4) 0.0148 (5)
C17 0.0318 (8) 0.0345 (8) 0.0471 (10) 0.0178 (7) 0.0216 (7) 0.0192 (7)
O18 0.0276 (5) 0.0202 (5) 0.0259 (5) 0.0053 (4) 0.0000 (4) 0.0097 (4)
C19 0.0227 (6) 0.0233 (6) 0.0278 (7) 0.0112 (5) 0.0095 (5) 0.0120 (6)
O20 0.0288 (5) 0.0357 (6) 0.0291 (5) 0.0071 (4) 0.0047 (4) 0.0194 (5)
C21 0.0253 (7) 0.0317 (8) 0.0537 (10) 0.0046 (6) 0.0024 (7) 0.0245 (8)

Geometric parameters (Å, º)

S1—C5 1.7233 (15) C11—H11 0.9300
S1—C2 1.7379 (12) C12—C13 1.3944 (19)
C2—N3 1.3046 (16) C12—H12 0.9300
C2—N6 1.3979 (17) C13—O16 1.3649 (16)
N3—C4 1.3678 (17) C13—C14 1.390 (2)
C4—C5 1.3439 (19) C14—C15 1.3835 (18)
C4—O18 1.3899 (16) C14—H14 0.9300
C5—H5 0.9300 C15—H15 0.9300
N6—C7 1.3876 (16) O16—C17 1.4258 (19)
N6—C10 1.4494 (15) C17—H17A 0.9600
C7—O8 1.2196 (17) C17—H17B 0.9600
C7—C9 1.501 (2) C17—H17C 0.9600
C9—H9A 0.9600 O18—C19 1.3677 (17)
C9—H9B 0.9600 C19—O20 1.1984 (17)
C9—H9C 0.9600 C19—C21 1.491 (2)
C10—C11 1.3801 (18) C21—H21A 0.9600
C10—C15 1.3907 (18) C21—H21B 0.9600
C11—C12 1.3953 (18) C21—H21C 0.9600
C5—S1—C2 88.70 (6) C13—C12—C11 119.01 (12)
N3—C2—N6 121.23 (11) C13—C12—H12 120.5
N3—C2—S1 115.46 (10) C11—C12—H12 120.5
N6—C2—S1 123.30 (9) O16—C13—C14 114.88 (12)
C2—N3—C4 108.79 (11) O16—C13—C12 124.64 (13)
C5—C4—N3 118.01 (12) C14—C13—C12 120.48 (12)
C5—C4—O18 123.64 (12) C15—C14—C13 120.23 (12)
N3—C4—O18 118.17 (11) C15—C14—H14 119.9
C4—C5—S1 109.03 (10) C13—C14—H14 119.9
C4—C5—H5 125.5 C14—C15—C10 119.31 (12)
S1—C5—H5 125.5 C14—C15—H15 120.3
C7—N6—C2 120.87 (11) C10—C15—H15 120.3
C7—N6—C10 121.59 (11) C13—O16—C17 117.97 (12)
C2—N6—C10 117.51 (10) O16—C17—H17A 109.5
O8—C7—N6 119.90 (12) O16—C17—H17B 109.5
O8—C7—C9 123.04 (12) H17A—C17—H17B 109.5
N6—C7—C9 117.05 (12) O16—C17—H17C 109.5
C7—C9—H9A 109.5 H17A—C17—H17C 109.5
C7—C9—H9B 109.5 H17B—C17—H17C 109.5
H9A—C9—H9B 109.5 C19—O18—C4 117.42 (10)
C7—C9—H9C 109.5 O20—C19—O18 122.46 (12)
H9A—C9—H9C 109.5 O20—C19—C21 126.78 (13)
H9B—C9—H9C 109.5 O18—C19—C21 110.75 (12)
C11—C10—C15 120.86 (12) C19—C21—H21A 109.5
C11—C10—N6 120.11 (11) C19—C21—H21B 109.5
C15—C10—N6 119.03 (11) H21A—C21—H21B 109.5
C10—C11—C12 120.11 (12) C19—C21—H21C 109.5
C10—C11—H11 119.9 H21A—C21—H21C 109.5
C12—C11—H11 119.9 H21B—C21—H21C 109.5
C5—S1—C2—N3 −0.81 (10) C7—N6—C10—C15 75.64 (16)
C5—S1—C2—N6 177.79 (11) C2—N6—C10—C15 −106.51 (13)
N6—C2—N3—C4 −177.87 (11) C15—C10—C11—C12 −0.1 (2)
S1—C2—N3—C4 0.76 (13) N6—C10—C11—C12 179.45 (11)
C2—N3—C4—C5 −0.29 (16) C10—C11—C12—C13 −0.1 (2)
C2—N3—C4—O18 174.95 (10) C11—C12—C13—O16 −179.44 (12)
N3—C4—C5—S1 −0.30 (15) C11—C12—C13—C14 −0.2 (2)
O18—C4—C5—S1 −175.25 (10) O16—C13—C14—C15 −179.91 (12)
C2—S1—C5—C4 0.58 (10) C12—C13—C14—C15 0.8 (2)
N3—C2—N6—C7 −179.65 (11) C13—C14—C15—C10 −1.00 (19)
S1—C2—N6—C7 1.83 (17) C11—C10—C15—C14 0.63 (19)
N3—C2—N6—C10 2.48 (17) N6—C10—C15—C14 −178.89 (11)
S1—C2—N6—C10 −176.04 (9) C14—C13—O16—C17 −177.34 (12)
C2—N6—C7—O8 4.96 (19) C12—C13—O16—C17 1.9 (2)
C10—N6—C7—O8 −177.26 (12) C5—C4—O18—C19 −102.83 (15)
C2—N6—C7—C9 −174.65 (12) N3—C4—O18—C19 82.22 (15)
C10—N6—C7—C9 3.14 (18) C4—O18—C19—O20 −1.67 (19)
C7—N6—C10—C11 −103.88 (14) C4—O18—C19—C21 177.30 (12)
C2—N6—C10—C11 73.97 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O20i 0.93 2.53 3.200 (2) 129

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5195).

References

  1. Agilent (2011). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Ates, O., Altintas, H. & Otukb, G. (2000). Arzneim. Forsch. 6, 569–575. [DOI] [PubMed]
  4. Eleftheriou, P., Geronikaki, A., Hadjipavlou-Litina, D., Vicini, P., Filz, O., Filimonov, D., Poroikov, V., Shailendra, S., Chaudhaery, S. S., Roy, K. K. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 111–124. [DOI] [PubMed]
  5. Eriksson, B., Kurz, G., Hedberg, C. & Westman, J. (2007). Patent No. WO2007010273.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Horishny, V., Lesyk, R., Kowiel, M. & Gzella, A. K. (2013). Acta Cryst. E69, o356–o357. [DOI] [PMC free article] [PubMed]
  8. Lesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547–1577.
  9. Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell, 27, 107–117.
  10. Lesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457–466. [PubMed]
  11. Rout, M. K. & Mahapatra, G. N. (1955). J. Am. Chem. Soc. 5, 2427–2428.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Subtel’na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5090–5102. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004236/tk5195sup1.cif

e-69-0o391-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004236/tk5195Isup2.hkl

e-69-0o391-Isup2.hkl (165.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004236/tk5195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES