Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 2;69(Pt 3):o330–o331. doi: 10.1107/S1600536813002894

1-(2-Furo­yl)-3-(2-meth­oxy-4-nitro­phen­yl)thio­urea

Seema Pratap a, Durga P Singh a, Sushil K Gupta b, Sema Öztürk Yildirim c, Ray J Butcher d,*
PMCID: PMC3588461  PMID: 23476526

Abstract

The asymmetric unit of the title compound, C13H11N3O5S, contains two independent mol­ecules, which are linked by a pair of inter­molecular N—H⋯S hydrogen bonds, forming an R 2 2(8) ring motif. The central thio­urea core forms dihedral angles of 3.02 (12) and 14.00 (10)° with the essentially planar furoyl groups [maximum deviations = 0.030 (2) and 0.057 (2) Å] in the two mol­ecules and dihedral angles of 2.43 (13) and 8.03 (12)° with the benzene rings. The dihedral angles between the furoyl and benzene rings in the two mol­ecules are 3.97 (10) and 5.98 (9)°. The trans–cis geometry of the thio­urea group is stabilized by three intra­molecular N—H⋯O hydrogen bonds involving carbonyl and meth­oxy O atoms with the H atom of the cis-thio­amide group and between furan O atom and the other thio­amide H atom. There is also a weak intra­molecular C—H⋯S inter­action in each mol­ecule.

Related literature  

For background to anion receptors, see: Doyle & Jacobsen (2007); Gale et al. (2008); Svetlana (2007). For aroyl thio­ureas as ionophores, see: Wilson et al. (2010); Pérez et al. (2008) and as catalysts, see: Yang et al. (2004); Dai et al. (2004). For related structures, see: Koch (2001); Pérez et al. (2008); Singh et al. (2012a ,b ,c ). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o330-scheme1.jpg

Experimental  

Crystal data  

  • C13H11N3O5S

  • M r = 321.31

  • Triclinic, Inline graphic

  • a = 7.9474 (6) Å

  • b = 13.0122 (10) Å

  • c = 13.4215 (11) Å

  • α = 87.734 (6)°

  • β = 77.014 (7)°

  • γ = 86.945 (7)°

  • V = 1350.00 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.43 mm−1

  • T = 123 K

  • 0.69 × 0.21 × 0.04 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] T min = 0.441, T max = 0.909

  • 9239 measured reflections

  • 5400 independent reflections

  • 4064 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.134

  • S = 1.03

  • 5400 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002894/lh5568sup1.cif

e-69-0o330-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002894/lh5568Isup2.hkl

e-69-0o330-Isup2.hkl (264.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002894/lh5568Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A 0.88 2.24 2.684 (2) 111
N2A—H2AA⋯O2A 0.88 1.91 2.654 (2) 142
N2A—H2AA⋯O3A 0.88 2.09 2.552 (2) 112
N1B—H1BA⋯O1B 0.88 2.25 2.683 (2) 111
N2B—H2BA⋯O2B 0.88 1.92 2.653 (2) 140
N2B—H2BA⋯O3B 0.88 2.11 2.554 (2) 111
C8A—H8AA⋯S1A 0.95 2.52 3.198 (2) 129
C8B—H8BA⋯S1B 0.95 2.52 3.189 (2) 128

Acknowledgments

SP and DPS are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

supplementary crystallographic information

Comment

There is a growing interest in the synthesis of new substituted thiourea derivatives owing to their diverse applicability in the pharmaceutical industry, material science and analytical chemistry. The hydrogen-bonding ability of the thiourea moiety has extensively been used in construction of anion receptors (Doyle & Jacobsen, 2007; Gale et al., 2008; Svetlana 2007). Further, aroyl thioureas have been successfully used in environmental control, as ionophores in ion-selective electrodes (Wilson et al.,2010; Pérez et al., 2008). Recently, these compounds have been employed successfully as catalysts in the palladium-catalyzed Suzuki and Heck reactions (Yang et al., 2004; Dai et al., 2004). In view of the above and in continuation of our work on thiourea derivatives (Singh et al., 2012a,b,c), the crystal structure of 1-(2-furoyl)-3-(2-methoxy- 4-nitrophenyl)thiourea has been determined (Fig.1).

The asymmetric unit of the structure contains two molecules, which are linked by a pair of intermolecular N—H···S hydrogen bonds forming an R22(8) motif. The main bond lengths are within the ranges obtained for similar compounds (Koch 2001; Pérez et al., 2008, Singh et al. 2012c). The C6A—S1A [1.667 (2) Å], C6B—S1B [1.665 (2) Å] and C5A—O2A [1.226 (3) Å], C5B—O2B [1.224 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C5A—N1A [1.390 (3) Å], C6A—N1A [1.391 (3) Å], C6A—N2A [1.349 (3) Å], C7A—N2A [1.405 (3) Å] and C5B—N1B [1.389 (3) Å], C6B—N1B [1.397 (3) Å], C6B—N2B [1.348 (3) Å], C7B—N2B [1.406 (3) Å] are shorter than the normal C—N single-bond length of about 1.48 Å (Allen et al., 1987). These results can be explained by the existence of resonance in this part of the molecule. The essentially planar furoyl groups (C1A-C5A/O1A/O2A with maxixum deviation of 0.030 (2)Å for O2A) and (C1B-C5B/O1B/O2B with maximum deviation of 0.057 (2)Å for O2B) groups are inclined at angles of 3.02 (12)° and 14.00 (10)° with respect to the plane formed by the thiourea group (N1/N3/C6/S1), whereas the benzene (C7A-C12A and C7B-C12B) rings are inclined at angles of 2.43 (13)° and 8.03 (12)° with the thiourea plane, respectively. The dihedral angles in two independent molecules between the furoyl groups and benzene rings are 3.97 (10)° and 5.98 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by three intramolecular N—H···O hydrogen bonds involving carbonyl (O2A/O2B) and methoxy (O3A/O3B) O atoms with the H atom of the cis-thioamide group and between furan (O1A/O1B) O atom and the other thioamide H atom (Table 1). In addition, an intramolecular C—H···S interaction is also observed in each molecule (Table 1).

Experimental

A solution of 2-furoyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added drop wise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was heated to reflux for 50 minutes. After cooling to room temperature, a solution of 2-methoxy-4-nitroaniline (0.01 mol) in dry acetone (25 ml) was added slowly and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The resulting solid product was crystallized from dimethyl sulphoxide yielding light yellow X-ray quality single crystals. Yield: 82%; M.P.: 451–453 K. Anal. Calc. for C13H11N3O5S (%): C, 48.59; H, 3.45; N, 13.07. Found: C, 48.40; H, 3.48; N, 12.96.

Refinement

All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.95-0.98 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···O and intermolecular N—H···S hydrogen bonds.

Crystal data

C13H11N3O5S Z = 4
Mr = 321.31 F(000) = 664
Triclinic, P1 Dx = 1.581 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.9474 (6) Å Cell parameters from 2786 reflections
b = 13.0122 (10) Å θ = 3.4–75.6°
c = 13.4215 (11) Å µ = 2.43 mm1
α = 87.734 (6)° T = 123 K
β = 77.014 (7)° Long plate, colorless
γ = 86.945 (7)° 0.69 × 0.21 × 0.04 mm
V = 1350.00 (18) Å3

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 5400 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4064 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 10.5081 pixels mm-1 θmax = 75.8°, θmin = 3.4°
ω scans h = −6→9
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] k = −15→16
Tmin = 0.441, Tmax = 0.909 l = −15→16
9239 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0713P)2] where P = (Fo2 + 2Fc2)/3
5400 reflections (Δ/σ)max < 0.001
399 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.36097 (8) 0.11036 (4) 0.27285 (4) 0.03539 (16)
S1B 0.59249 (8) 0.38403 (4) 0.24534 (4) 0.03632 (16)
O1A 0.5944 (2) 0.35328 (11) 0.46572 (13) 0.0332 (3)
O2A 0.3761 (2) 0.14473 (12) 0.60923 (13) 0.0352 (4)
O3A 0.1883 (2) −0.06917 (12) 0.63465 (12) 0.0338 (3)
O4A −0.1054 (3) −0.37579 (13) 0.55069 (14) 0.0421 (4)
O5A −0.0861 (3) −0.36147 (13) 0.38735 (14) 0.0407 (4)
O1B 0.3641 (2) 0.14072 (11) 0.04830 (12) 0.0324 (3)
O2B 0.6346 (2) 0.32954 (12) −0.09340 (13) 0.0357 (4)
O3B 0.8303 (2) 0.54209 (12) −0.11942 (12) 0.0347 (4)
O4B 1.0361 (2) 0.85635 (13) 0.13539 (13) 0.0387 (4)
O5B 1.1180 (2) 0.84800 (13) −0.02921 (13) 0.0398 (4)
N1A 0.4231 (2) 0.18859 (14) 0.43709 (14) 0.0298 (4)
H1AA 0.4660 0.2370 0.3924 0.036*
N2A 0.2838 (2) 0.03587 (13) 0.46879 (14) 0.0283 (4)
H2AA 0.2932 0.0474 0.5314 0.034*
N3A −0.0598 (2) −0.33027 (13) 0.46753 (15) 0.0304 (4)
N1B 0.5391 (2) 0.30242 (13) 0.08037 (14) 0.0299 (4)
H1BA 0.4777 0.2607 0.1260 0.036*
N2B 0.6826 (2) 0.45407 (13) 0.04855 (14) 0.0285 (4)
H2BA 0.6776 0.4411 −0.0146 0.034*
N3B 1.0386 (2) 0.81488 (14) 0.05402 (15) 0.0308 (4)
C1A 0.6737 (3) 0.43079 (16) 0.49908 (19) 0.0344 (5)
H1AB 0.7340 0.4830 0.4563 0.041*
C2A 0.6548 (3) 0.42318 (17) 0.6015 (2) 0.0357 (5)
H2AB 0.6978 0.4684 0.6428 0.043*
C3A 0.5584 (3) 0.33487 (18) 0.63570 (19) 0.0344 (5)
H3AA 0.5245 0.3090 0.7041 0.041*
C4A 0.5245 (3) 0.29491 (16) 0.55114 (17) 0.0297 (4)
C5A 0.4348 (3) 0.20312 (16) 0.53730 (17) 0.0288 (4)
C6A 0.3526 (3) 0.10763 (16) 0.39819 (17) 0.0285 (4)
C7A 0.1995 (3) −0.05422 (15) 0.45914 (17) 0.0269 (4)
C8A 0.1628 (3) −0.09002 (16) 0.37023 (16) 0.0295 (4)
H8AA 0.1967 −0.0521 0.3076 0.035*
C9A 0.0774 (3) −0.18036 (16) 0.37248 (17) 0.0302 (4)
H9AA 0.0520 −0.2049 0.3120 0.036*
C10A 0.0297 (3) −0.23418 (15) 0.46458 (17) 0.0276 (4)
C11A 0.0633 (3) −0.20163 (16) 0.55529 (17) 0.0288 (4)
H11A 0.0289 −0.2404 0.6174 0.035*
C12A 0.1482 (3) −0.11100 (16) 0.55243 (16) 0.0274 (4)
C13A 0.1296 (3) −0.1174 (2) 0.73323 (18) 0.0393 (5)
H13A 0.1554 −0.0746 0.7859 0.059*
H13B 0.1887 −0.1853 0.7353 0.059*
H13C 0.0046 −0.1254 0.7460 0.059*
C1B 0.2969 (3) 0.05868 (16) 0.01333 (19) 0.0340 (5)
H1BB 0.2204 0.0125 0.0550 0.041*
C2B 0.3542 (3) 0.05241 (17) −0.0883 (2) 0.0361 (5)
H2BB 0.3257 0.0021 −0.1304 0.043*
C3B 0.4655 (3) 0.13491 (18) −0.12144 (19) 0.0358 (5)
H3BA 0.5265 0.1504 −0.1893 0.043*
C4B 0.4665 (3) 0.18683 (16) −0.03598 (18) 0.0303 (4)
C5B 0.5544 (3) 0.27857 (16) −0.02133 (17) 0.0298 (4)
C6B 0.6086 (3) 0.38421 (15) 0.11951 (17) 0.0281 (4)
C7B 0.7665 (3) 0.54421 (15) 0.05886 (17) 0.0266 (4)
C8B 0.7740 (3) 0.58953 (16) 0.15028 (17) 0.0311 (4)
H8BA 0.7187 0.5587 0.2137 0.037*
C9B 0.8613 (3) 0.67881 (16) 0.14927 (17) 0.0313 (4)
H9BA 0.8652 0.7101 0.2114 0.038*
C10B 0.9425 (3) 0.72156 (15) 0.05632 (17) 0.0290 (4)
C11B 0.9372 (3) 0.67978 (16) −0.03685 (17) 0.0295 (4)
H11B 0.9934 0.7112 −0.0997 0.035*
C12B 0.8477 (3) 0.59132 (16) −0.03526 (17) 0.0284 (4)
C13B 0.9012 (3) 0.5872 (2) −0.21823 (18) 0.0390 (5)
H13D 0.8889 0.5406 −0.2715 0.058*
H13E 1.0239 0.5989 −0.2242 0.058*
H13F 0.8392 0.6530 −0.2265 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0491 (3) 0.0307 (3) 0.0268 (3) −0.0122 (2) −0.0068 (2) −0.0023 (2)
S1B 0.0523 (3) 0.0293 (3) 0.0280 (3) −0.0125 (2) −0.0078 (2) −0.0018 (2)
O1A 0.0408 (8) 0.0242 (7) 0.0361 (8) −0.0058 (6) −0.0108 (7) −0.0012 (6)
O2A 0.0453 (9) 0.0306 (8) 0.0303 (8) −0.0094 (7) −0.0080 (7) −0.0025 (6)
O3A 0.0459 (9) 0.0298 (8) 0.0283 (8) −0.0098 (6) −0.0120 (7) −0.0016 (6)
O4A 0.0576 (11) 0.0345 (9) 0.0336 (9) −0.0177 (7) −0.0058 (8) 0.0015 (7)
O5A 0.0594 (11) 0.0308 (8) 0.0373 (9) −0.0141 (7) −0.0190 (8) −0.0030 (7)
O1B 0.0398 (8) 0.0245 (7) 0.0338 (8) −0.0050 (6) −0.0089 (7) −0.0034 (6)
O2B 0.0456 (9) 0.0313 (8) 0.0304 (8) −0.0090 (7) −0.0064 (7) −0.0042 (6)
O3B 0.0462 (9) 0.0331 (8) 0.0259 (8) −0.0107 (7) −0.0078 (7) −0.0036 (6)
O4B 0.0550 (10) 0.0313 (8) 0.0334 (8) −0.0120 (7) −0.0142 (8) −0.0050 (6)
O5B 0.0488 (10) 0.0351 (9) 0.0348 (9) −0.0139 (7) −0.0054 (7) −0.0014 (7)
N1A 0.0375 (10) 0.0244 (8) 0.0278 (9) −0.0058 (7) −0.0070 (7) −0.0010 (7)
N2A 0.0377 (9) 0.0239 (8) 0.0247 (8) −0.0047 (7) −0.0085 (7) −0.0045 (6)
N3A 0.0342 (9) 0.0237 (8) 0.0337 (10) −0.0043 (7) −0.0073 (8) −0.0035 (7)
N1B 0.0373 (9) 0.0221 (8) 0.0301 (9) −0.0049 (7) −0.0060 (7) −0.0026 (7)
N2B 0.0364 (9) 0.0235 (8) 0.0272 (8) −0.0034 (7) −0.0092 (7) −0.0048 (7)
N3B 0.0345 (9) 0.0266 (9) 0.0330 (9) −0.0040 (7) −0.0106 (8) −0.0018 (7)
C1A 0.0383 (12) 0.0236 (10) 0.0436 (13) −0.0042 (8) −0.0129 (10) −0.0041 (9)
C2A 0.0397 (12) 0.0258 (10) 0.0433 (13) −0.0013 (9) −0.0117 (10) −0.0096 (9)
C3A 0.0372 (11) 0.0333 (11) 0.0339 (11) −0.0010 (9) −0.0090 (9) −0.0089 (9)
C4A 0.0323 (10) 0.0247 (10) 0.0323 (11) −0.0014 (8) −0.0072 (9) −0.0024 (8)
C5A 0.0302 (10) 0.0250 (10) 0.0319 (11) −0.0010 (8) −0.0074 (8) −0.0064 (8)
C6A 0.0319 (10) 0.0238 (9) 0.0301 (10) −0.0016 (8) −0.0066 (8) −0.0045 (8)
C7A 0.0307 (10) 0.0204 (9) 0.0297 (10) −0.0021 (7) −0.0067 (8) −0.0033 (8)
C8A 0.0386 (11) 0.0232 (10) 0.0259 (10) −0.0022 (8) −0.0054 (8) −0.0020 (7)
C9A 0.0389 (11) 0.0252 (10) 0.0281 (10) −0.0037 (8) −0.0098 (9) −0.0038 (8)
C10A 0.0298 (10) 0.0213 (9) 0.0319 (11) −0.0033 (7) −0.0064 (8) −0.0043 (8)
C11A 0.0329 (10) 0.0243 (10) 0.0286 (10) −0.0031 (8) −0.0051 (8) −0.0019 (8)
C12A 0.0310 (10) 0.0253 (10) 0.0268 (10) −0.0006 (8) −0.0078 (8) −0.0050 (8)
C13A 0.0498 (14) 0.0432 (13) 0.0276 (11) −0.0134 (11) −0.0119 (10) 0.0004 (9)
C1B 0.0388 (12) 0.0235 (10) 0.0425 (13) −0.0049 (8) −0.0135 (10) −0.0031 (9)
C2B 0.0419 (12) 0.0285 (11) 0.0417 (12) −0.0011 (9) −0.0162 (10) −0.0073 (9)
C3B 0.0431 (12) 0.0306 (11) 0.0348 (11) 0.0012 (9) −0.0109 (10) −0.0069 (9)
C4B 0.0347 (11) 0.0234 (10) 0.0333 (11) 0.0005 (8) −0.0088 (9) −0.0036 (8)
C5B 0.0343 (11) 0.0249 (10) 0.0313 (10) 0.0003 (8) −0.0093 (9) −0.0056 (8)
C6B 0.0320 (10) 0.0224 (9) 0.0298 (10) −0.0011 (8) −0.0065 (8) −0.0039 (8)
C7B 0.0294 (10) 0.0213 (9) 0.0297 (10) −0.0013 (7) −0.0076 (8) −0.0028 (8)
C8B 0.0415 (12) 0.0253 (10) 0.0262 (10) −0.0035 (8) −0.0061 (9) −0.0007 (8)
C9B 0.0418 (12) 0.0270 (10) 0.0266 (10) −0.0031 (9) −0.0101 (9) −0.0038 (8)
C10B 0.0322 (10) 0.0209 (9) 0.0351 (11) −0.0021 (8) −0.0096 (9) −0.0020 (8)
C11B 0.0329 (10) 0.0255 (10) 0.0299 (10) −0.0038 (8) −0.0065 (8) 0.0008 (8)
C12B 0.0323 (10) 0.0254 (10) 0.0280 (10) 0.0007 (8) −0.0075 (8) −0.0055 (8)
C13B 0.0496 (14) 0.0418 (13) 0.0260 (11) −0.0118 (10) −0.0070 (10) −0.0017 (9)

Geometric parameters (Å, º)

S1A—C6A 1.668 (2) C3A—C4A 1.353 (3)
S1B—C6B 1.665 (2) C3A—H3AA 0.9500
O1A—C1A 1.358 (3) C4A—C5A 1.462 (3)
O1A—C4A 1.375 (3) C7A—C8A 1.393 (3)
O2A—C5A 1.226 (3) C7A—C12A 1.417 (3)
O3A—C12A 1.356 (3) C8A—C9A 1.385 (3)
O3A—C13A 1.432 (3) C8A—H8AA 0.9500
O4A—N3A 1.231 (3) C9A—C10A 1.382 (3)
O5A—N3A 1.229 (3) C9A—H9AA 0.9500
O1B—C1B 1.363 (3) C10A—C11A 1.390 (3)
O1B—C4B 1.373 (3) C11A—C12A 1.385 (3)
O2B—C5B 1.224 (3) C11A—H11A 0.9500
O3B—C12B 1.357 (3) C13A—H13A 0.9800
O3B—C13B 1.435 (3) C13A—H13B 0.9800
O4B—N3B 1.233 (3) C13A—H13C 0.9800
O5B—N3B 1.227 (3) C1B—C2B 1.341 (4)
N1A—C5A 1.390 (3) C1B—H1BB 0.9500
N1A—C6A 1.391 (3) C2B—C3B 1.421 (3)
N1A—H1AA 0.8800 C2B—H2BB 0.9500
N2A—C6A 1.349 (3) C3B—C4B 1.356 (3)
N2A—C7A 1.405 (3) C3B—H3BA 0.9500
N2A—H2AA 0.8800 C4B—C5B 1.456 (3)
N3A—C10A 1.466 (3) C7B—C8B 1.397 (3)
N1B—C5B 1.389 (3) C7B—C12B 1.415 (3)
N1B—C6B 1.397 (3) C8B—C9B 1.383 (3)
N1B—H1BA 0.8800 C8B—H8BA 0.9500
N2B—C6B 1.348 (3) C9B—C10B 1.380 (3)
N2B—C7B 1.406 (3) C9B—H9BA 0.9500
N2B—H2BA 0.8800 C10B—C11B 1.393 (3)
N3B—C10B 1.464 (3) C11B—C12B 1.382 (3)
C1A—C2A 1.349 (4) C11B—H11B 0.9500
C1A—H1AB 0.9500 C13B—H13D 0.9800
C2A—C3A 1.418 (3) C13B—H13E 0.9800
C2A—H2AB 0.9500 C13B—H13F 0.9800
C1A—O1A—C4A 106.15 (18) C12A—C11A—H11A 121.0
C12A—O3A—C13A 118.46 (17) C10A—C11A—H11A 121.0
C1B—O1B—C4B 106.16 (18) O3A—C12A—C11A 124.7 (2)
C12B—O3B—C13B 118.39 (18) O3A—C12A—C7A 114.87 (18)
C5A—N1A—C6A 128.54 (19) C11A—C12A—C7A 120.42 (19)
C5A—N1A—H1AA 115.7 O3A—C13A—H13A 109.5
C6A—N1A—H1AA 115.7 O3A—C13A—H13B 109.5
C6A—N2A—C7A 130.85 (19) H13A—C13A—H13B 109.5
C6A—N2A—H2AA 114.6 O3A—C13A—H13C 109.5
C7A—N2A—H2AA 114.6 H13A—C13A—H13C 109.5
O5A—N3A—O4A 123.17 (19) H13B—C13A—H13C 109.5
O5A—N3A—C10A 118.71 (19) C2B—C1B—O1B 110.3 (2)
O4A—N3A—C10A 118.12 (18) C2B—C1B—H1BB 124.8
C5B—N1B—C6B 128.25 (19) O1B—C1B—H1BB 124.8
C5B—N1B—H1BA 115.9 C1B—C2B—C3B 107.5 (2)
C6B—N1B—H1BA 115.9 C1B—C2B—H2BB 126.3
C6B—N2B—C7B 130.55 (19) C3B—C2B—H2BB 126.3
C6B—N2B—H2BA 114.7 C4B—C3B—C2B 105.6 (2)
C7B—N2B—H2BA 114.7 C4B—C3B—H3BA 127.2
O5B—N3B—O4B 123.18 (19) C2B—C3B—H3BA 127.2
O5B—N3B—C10B 118.14 (19) C3B—C4B—O1B 110.5 (2)
O4B—N3B—C10B 118.68 (19) C3B—C4B—C5B 131.3 (2)
C2A—C1A—O1A 110.5 (2) O1B—C4B—C5B 118.24 (19)
C2A—C1A—H1AB 124.7 O2B—C5B—N1B 123.56 (19)
O1A—C1A—H1AB 124.7 O2B—C5B—C4B 122.1 (2)
C1A—C2A—C3A 106.9 (2) N1B—C5B—C4B 114.33 (19)
C1A—C2A—H2AB 126.5 N2B—C6B—N1B 114.56 (19)
C3A—C2A—H2AB 126.5 N2B—C6B—S1B 127.98 (16)
C4A—C3A—C2A 106.0 (2) N1B—C6B—S1B 117.46 (16)
C4A—C3A—H3AA 127.0 C8B—C7B—N2B 126.6 (2)
C2A—C3A—H3AA 127.0 C8B—C7B—C12B 119.26 (19)
C3A—C4A—O1A 110.37 (19) N2B—C7B—C12B 114.10 (19)
C3A—C4A—C5A 131.5 (2) C9B—C8B—C7B 120.6 (2)
O1A—C4A—C5A 118.06 (19) C9B—C8B—H8BA 119.7
O2A—C5A—N1A 123.84 (19) C7B—C8B—H8BA 119.7
O2A—C5A—C4A 121.8 (2) C10B—C9B—C8B 118.8 (2)
N1A—C5A—C4A 114.39 (19) C10B—C9B—H9BA 120.6
N2A—C6A—N1A 114.52 (19) C8B—C9B—H9BA 120.6
N2A—C6A—S1A 127.94 (16) C9B—C10B—C11B 122.7 (2)
N1A—C6A—S1A 117.54 (16) C9B—C10B—N3B 119.4 (2)
C8A—C7A—N2A 126.9 (2) C11B—C10B—N3B 117.8 (2)
C8A—C7A—C12A 119.44 (19) C12B—C11B—C10B 118.2 (2)
N2A—C7A—C12A 113.62 (18) C12B—C11B—H11B 120.9
C9A—C8A—C7A 120.5 (2) C10B—C11B—H11B 120.9
C9A—C8A—H8AA 119.7 O3B—C12B—C11B 125.0 (2)
C7A—C8A—H8AA 119.7 O3B—C12B—C7B 114.55 (18)
C10A—C9A—C8A 118.63 (19) C11B—C12B—C7B 120.5 (2)
C10A—C9A—H9AA 120.7 O3B—C13B—H13D 109.5
C8A—C9A—H9AA 120.7 O3B—C13B—H13E 109.5
C9A—C10A—C11A 123.01 (19) H13D—C13B—H13E 109.5
C9A—C10A—N3A 118.99 (19) O3B—C13B—H13F 109.5
C11A—C10A—N3A 118.00 (19) H13D—C13B—H13F 109.5
C12A—C11A—C10A 118.0 (2) H13E—C13B—H13F 109.5
C4A—O1A—C1A—C2A −0.4 (3) C4B—O1B—C1B—C2B 0.3 (3)
O1A—C1A—C2A—C3A 0.4 (3) O1B—C1B—C2B—C3B 0.2 (3)
C1A—C2A—C3A—C4A −0.3 (3) C1B—C2B—C3B—C4B −0.5 (3)
C2A—C3A—C4A—O1A 0.0 (3) C2B—C3B—C4B—O1B 0.7 (3)
C2A—C3A—C4A—C5A 178.1 (2) C2B—C3B—C4B—C5B −179.2 (2)
C1A—O1A—C4A—C3A 0.2 (3) C1B—O1B—C4B—C3B −0.6 (2)
C1A—O1A—C4A—C5A −178.12 (19) C1B—O1B—C4B—C5B 179.31 (19)
C6A—N1A—C5A—O2A −2.6 (4) C6B—N1B—C5B—O2B −0.4 (4)
C6A—N1A—C5A—C4A 177.3 (2) C6B—N1B—C5B—C4B 179.5 (2)
C3A—C4A—C5A—O2A −1.4 (4) C3B—C4B—C5B—O2B 6.9 (4)
O1A—C4A—C5A—O2A 176.6 (2) O1B—C4B—C5B—O2B −173.0 (2)
C3A—C4A—C5A—N1A 178.8 (2) C3B—C4B—C5B—N1B −173.1 (2)
O1A—C4A—C5A—N1A −3.2 (3) O1B—C4B—C5B—N1B 7.0 (3)
C7A—N2A—C6A—N1A 178.6 (2) C7B—N2B—C6B—N1B −179.1 (2)
C7A—N2A—C6A—S1A −0.9 (4) C7B—N2B—C6B—S1B 0.4 (4)
C5A—N1A—C6A—N2A 1.7 (3) C5B—N1B—C6B—N2B 8.1 (3)
C5A—N1A—C6A—S1A −178.79 (18) C5B—N1B—C6B—S1B −171.41 (18)
C6A—N2A—C7A—C8A −1.7 (4) C6B—N2B—C7B—C8B −8.5 (4)
C6A—N2A—C7A—C12A 178.8 (2) C6B—N2B—C7B—C12B 172.3 (2)
N2A—C7A—C8A—C9A −179.6 (2) N2B—C7B—C8B—C9B −179.9 (2)
C12A—C7A—C8A—C9A −0.2 (3) C12B—C7B—C8B—C9B −0.7 (3)
C7A—C8A—C9A—C10A −0.1 (3) C7B—C8B—C9B—C10B −0.8 (3)
C8A—C9A—C10A—C11A 0.2 (3) C8B—C9B—C10B—C11B 1.5 (4)
C8A—C9A—C10A—N3A −179.6 (2) C8B—C9B—C10B—N3B −178.69 (19)
O5A—N3A—C10A—C9A 1.8 (3) O5B—N3B—C10B—C9B 175.9 (2)
O4A—N3A—C10A—C9A −178.1 (2) O4B—N3B—C10B—C9B −4.1 (3)
O5A—N3A—C10A—C11A −178.0 (2) O5B—N3B—C10B—C11B −4.3 (3)
O4A—N3A—C10A—C11A 2.1 (3) O4B—N3B—C10B—C11B 175.7 (2)
C9A—C10A—C11A—C12A 0.1 (3) C9B—C10B—C11B—C12B −0.6 (3)
N3A—C10A—C11A—C12A 179.86 (19) N3B—C10B—C11B—C12B 179.55 (19)
C13A—O3A—C12A—C11A −4.4 (3) C13B—O3B—C12B—C11B −3.6 (3)
C13A—O3A—C12A—C7A 175.4 (2) C13B—O3B—C12B—C7B 176.9 (2)
C10A—C11A—C12A—O3A 179.4 (2) C10B—C11B—C12B—O3B 179.6 (2)
C10A—C11A—C12A—C7A −0.3 (3) C10B—C11B—C12B—C7B −0.9 (3)
C8A—C7A—C12A—O3A −179.34 (19) C8B—C7B—C12B—O3B −178.96 (19)
N2A—C7A—C12A—O3A 0.1 (3) N2B—C7B—C12B—O3B 0.4 (3)
C8A—C7A—C12A—C11A 0.4 (3) C8B—C7B—C12B—C11B 1.5 (3)
N2A—C7A—C12A—C11A 179.88 (19) N2B—C7B—C12B—C11B −179.13 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O1A 0.88 2.24 2.684 (2) 111
N2A—H2AA···O2A 0.88 1.91 2.654 (2) 142
N2A—H2AA···O3A 0.88 2.09 2.552 (2) 112
N1B—H1BA···O1B 0.88 2.25 2.683 (2) 111
N2B—H2BA···O2B 0.88 1.92 2.653 (2) 140
N2B—H2BA···O3B 0.88 2.11 2.554 (2) 111
C8A—H8AA···S1A 0.95 2.52 3.198 (2) 129
C8B—H8BA···S1B 0.95 2.52 3.189 (2) 128

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5568).

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Dai, M., Liang, B., Wang, C., Chen, J. & Yang, Z. (2004). Org. Lett. 6, 221–224. [DOI] [PubMed]
  6. Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743. [DOI] [PubMed]
  7. Gale, P. A., García-Garrido, S. E. & Garric, J. (2008). Chem. Soc. Rev. 37, 151–190. [DOI] [PubMed]
  8. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  9. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012a). Acta Cryst. E68, o2882–o2883. [DOI] [PMC free article] [PubMed]
  12. Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012c). Acta Cryst. E68, o3300–o3301. [DOI] [PMC free article] [PubMed]
  13. Singh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012b). Acta Cryst. E68, o3295. [DOI] [PMC free article] [PubMed]
  14. Svetlana, B. T. (2007). Eur. J. Org. Chem. 2007, 1701–1716.
  15. Wilson, D., Ángeles Arada, M. de los, Alegret, S. & Valle, M. del (2010). J. Hazard. Mater. 181, 140–146. [DOI] [PubMed]
  16. Yang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577–1580. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002894/lh5568sup1.cif

e-69-0o330-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002894/lh5568Isup2.hkl

e-69-0o330-Isup2.hkl (264.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002894/lh5568Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES