Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 9;69(Pt 3):o358. doi: 10.1107/S1600536813001906

3-[(4-Oxo-4H-thio­chromen-3-yl)meth­yl]-4H-thio­chromen-4-one

M Somasundaram a, S Athavan a, K K Balasubramanian b, R Saiganesh b, S Kabilan a,*
PMCID: PMC3588462  PMID: 23476548

Abstract

The title mol­ecule, C19H12S2O2, lies on a twofold rotation axis. The thio­chromonone unit is essentially planar, with a maximum deviation of 0.0491 (14) Å. The dihedral angle between the thio­chromenone ring systems is 64.48 (4)°. In the crystal, there are weak π–π stacking inter­actions, with a centroid–centroid distance of 3.7147 (9) Å.

Related literature  

For backgound to bis-chromonones, see: Santhosh & Balasubramanian (1991); Panja et al. (2009). For related structures, see: Ambartsumyan et al. (2012); Nyburg et al. (1986); Li et al. (2010).graphic file with name e-69-0o358-scheme1.jpg

Experimental  

Crystal data  

  • C19H12O2S2

  • M r = 336.41

  • Monoclinic, Inline graphic

  • a = 11.9480 (5) Å

  • b = 11.8649 (5) Å

  • c = 11.1416 (5) Å

  • β = 108.918 (2)°

  • V = 1494.14 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.38 × 0.28 × 0.20 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.875, T max = 0.931

  • 5040 measured reflections

  • 1631 independent reflections

  • 1410 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.118

  • S = 0.88

  • 1631 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Jmol (Hanson, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001906/lh5551sup1.cif

e-69-0o358-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001906/lh5551Isup2.hkl

e-69-0o358-Isup2.hkl (80.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001906/lh5551Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813001906/lh5551Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University Grants Commission, New Delhi, India, for financial support in the form of a Major Research Project. In addition, they express their thanks to Dr Jai Anand Garg for his valuable support in the preparation of this structure report.

supplementary crystallographic information

Comment

Bis-chromonones linked at position 3 are biologically important motifs (Santhosh & Balasubramanian, 1991; Panja, et al., 2009). Analogues of these compounds prepared by replacing the oxygen atom in the heterocyclic core with sulfur are considered to be chemically inportant. Herein, we report the structure determination of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The molecule lies on a twofold rotation axis. The unique thiochromonone unit is essentially planar with a maximum deviation of 0.0491 (14) Å for atom C6. The planarity of this unit can be attributed to the sp2 hybridized nature of the aromatic benzene unit and the fused olefinic thiopyranone unit. This is similar to the case of a methylene bridged chromenone example found in the literature (Ambartsumyan et al., 2012). The dihedral angle between the two thiochromenone ring systems is 64.48 (4)°. The torsion angles about the methylene carbon C10 are 93.05 (13) Å for C8—C7—C10—C7i (symmetry code: (i) -x+1, y, -z+1/2) and -87.80 (11) Å for C6—C7—C10—C7i. The angle subtended at the bridging methylene carbon C10 by the olefinic carbons [C7—C10—C7i = 113.66 (17)°] and the olefinic bond length [C7—C8 = 1.344 (2) Å] are close to the respective values in known chromanone systems (Ambartsumyan et al., 2012). Examaples of thiochromone structures already appear in the literature (Nyburg et al., 1986; Li et al., 2010). In the crystal, there are weak π–π stacking interactions (Fig .2) with Cg1···Cg2ii = 3.7147 (9)Å where Cg1 and cg2 are the centroids of the S1/C8/C7/C6/C5/C9 and C1-C5/C9 rings (symmetry code: (ii) 3/2-x, 1/2-y, -z).

Experimental

To a stirred solution of 4-chloro-2H-thiochromene-3-carbaldehyde (0.5 g, 0.0025 mol) in freshly dried DMSO (6.0 mL) was added dried potassium fluoride (0.3 g, 0.005 mol) and then heated to 343-353K. After completion of the reaction by TLC, the reaction mass was cooled to 303-308K and then quenched with 50 ml of water. The mixture was extracted with ethyl acetate (2 x 30 ml). The combined organic portion was washed with water (2 x 25 mL), dried over anhydrous sodium sulphate and then concentrated under reduced pressure to yield a brown paste. Purification of the crude product by column chromatography yielded the title bis methylene chromanone. 50 mg of the title compound was dissolved in 2 ml of methanol, and warmed to 323K for complete dissolution, then filtered, and the clear solution was stored at room temperature. After 2 days, pale yellow crystals were formed.

Refinement

H atoms bonded to sp2 C atoms were placed in calculated positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The unique H atom conded to C10 was refined independently with an isotropic displacement factor.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (1-x, y, -z+1/2).

Fig. 2.

Fig. 2.

Part of the crystal structure illustrating the π..π stacking interactions.

Crystal data

C19H12O2S2 F(000) = 696
Mr = 336.41 Dx = 1.495 Mg m3
Monoclinic, C2/c Melting point = 489–493 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 11.9480 (5) Å Cell parameters from 2970 reflections
b = 11.8649 (5) Å θ = 2.5–28.2°
c = 11.1416 (5) Å µ = 0.36 mm1
β = 108.918 (2)° T = 298 K
V = 1494.14 (11) Å3 Block, yellow
Z = 4 0.38 × 0.28 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 1631 independent reflections
Radiation source: fine-focus sealed tube 1410 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −13→13
Tmin = 0.875, Tmax = 0.931 k = −15→15
5040 measured reflections l = −8→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4829P] where P = (Fo2 + 2Fc2)/3
1631 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.68093 (16) 0.04971 (13) −0.09101 (16) 0.0468 (4)
H1 0.6321 0.0231 −0.1689 0.056*
C2 0.79824 (17) 0.02577 (14) −0.05263 (17) 0.0510 (4)
H2 0.8291 −0.0174 −0.1041 0.061*
C3 0.87278 (15) 0.06556 (14) 0.06363 (17) 0.0481 (4)
H3 0.9535 0.0509 0.0887 0.058*
C4 0.82636 (14) 0.12635 (14) 0.14060 (15) 0.0408 (4)
H4 0.8763 0.1517 0.2186 0.049*
C5 0.70544 (14) 0.15121 (11) 0.10466 (13) 0.0324 (3)
C6 0.66133 (13) 0.21467 (12) 0.19414 (13) 0.0340 (3)
C7 0.53715 (13) 0.24814 (11) 0.15575 (13) 0.0331 (3)
C8 0.45826 (13) 0.22113 (13) 0.04278 (13) 0.0364 (4)
H8 0.3814 0.2467 0.0278 0.044*
C9 0.63250 (13) 0.11413 (12) −0.01442 (13) 0.0345 (3)
C10 0.5000 0.31787 (18) 0.2500 0.0384 (5)
H18 0.4303 (16) 0.3692 (14) 0.2050 (18) 0.043 (5)*
O1 0.72943 (11) 0.23896 (11) 0.29985 (11) 0.0513 (3)
S1 0.48288 (3) 0.14521 (3) −0.07650 (3) 0.04148 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0538 (12) 0.0488 (8) 0.0385 (8) −0.0005 (7) 0.0159 (7) −0.0020 (6)
C2 0.0548 (12) 0.0519 (9) 0.0530 (9) 0.0107 (8) 0.0265 (8) 0.0016 (7)
C3 0.0365 (10) 0.0540 (9) 0.0568 (10) 0.0096 (7) 0.0190 (8) 0.0131 (8)
C4 0.0316 (10) 0.0500 (8) 0.0374 (8) 0.0021 (6) 0.0066 (7) 0.0101 (6)
C5 0.0314 (9) 0.0372 (7) 0.0278 (7) −0.0021 (5) 0.0083 (6) 0.0080 (5)
C6 0.0290 (8) 0.0439 (7) 0.0273 (6) −0.0050 (6) 0.0068 (6) 0.0054 (5)
C7 0.0316 (9) 0.0382 (7) 0.0299 (6) −0.0017 (6) 0.0103 (6) 0.0062 (5)
C8 0.0269 (9) 0.0492 (8) 0.0319 (7) 0.0002 (6) 0.0079 (6) 0.0060 (5)
C9 0.0340 (9) 0.0386 (7) 0.0297 (7) −0.0019 (6) 0.0089 (6) 0.0054 (5)
C10 0.0396 (14) 0.0384 (10) 0.0384 (10) 0.000 0.0140 (9) 0.000
O1 0.0351 (7) 0.0820 (8) 0.0311 (6) −0.0044 (5) 0.0027 (5) −0.0081 (5)
S1 0.0317 (4) 0.0602 (3) 0.0272 (2) −0.00364 (15) 0.00220 (19) −0.00228 (14)

Geometric parameters (Å, º)

C1—C2 1.356 (3) C5—C6 1.476 (2)
C1—C9 1.403 (2) C6—O1 1.2291 (18)
C1—H1 0.9300 C6—C7 1.460 (2)
C2—C3 1.395 (3) C7—C8 1.344 (2)
C2—H2 0.9300 C7—C10 1.5120 (18)
C3—C4 1.368 (2) C8—S1 1.7082 (15)
C3—H3 0.9300 C8—H8 0.9300
C4—C5 1.400 (2) C9—S1 1.7344 (15)
C4—H4 0.9300 C10—C7i 1.5120 (18)
C5—C9 1.401 (2) C10—H18 1.022 (18)
C2—C1—C9 120.69 (16) O1—C6—C5 119.75 (14)
C2—C1—H1 119.7 C7—C6—C5 119.50 (12)
C9—C1—H1 119.7 C8—C7—C6 123.18 (13)
C1—C2—C3 120.35 (16) C8—C7—C10 120.42 (12)
C1—C2—H2 119.8 C6—C7—C10 116.40 (11)
C3—C2—H2 119.8 C7—C8—S1 127.52 (12)
C4—C3—C2 119.60 (15) C7—C8—H8 116.2
C4—C3—H3 120.2 S1—C8—H8 116.2
C2—C3—H3 120.2 C5—C9—C1 119.64 (15)
C3—C4—C5 121.49 (15) C5—C9—S1 123.71 (12)
C3—C4—H4 119.3 C1—C9—S1 116.64 (12)
C5—C4—H4 119.3 C7—C10—C7i 113.66 (17)
C4—C5—C9 118.16 (14) C7—C10—H18 111.2 (10)
C4—C5—C6 118.40 (13) C7i—C10—H18 106.9 (10)
C9—C5—C6 123.43 (14) C8—S1—C9 102.54 (7)
O1—C6—C7 120.75 (14)
C9—C1—C2—C3 −0.4 (3) C6—C7—C8—S1 0.0 (2)
C1—C2—C3—C4 1.8 (3) C10—C7—C8—S1 179.14 (11)
C2—C3—C4—C5 −0.9 (2) C4—C5—C9—C1 2.8 (2)
C3—C4—C5—C9 −1.4 (2) C6—C5—C9—C1 −176.99 (12)
C3—C4—C5—C6 178.43 (13) C4—C5—C9—S1 −176.06 (10)
C4—C5—C6—O1 −3.8 (2) C6—C5—C9—S1 4.2 (2)
C9—C5—C6—O1 175.94 (13) C2—C1—C9—C5 −2.0 (2)
C4—C5—C6—C7 175.98 (12) C2—C1—C9—S1 176.96 (13)
C9—C5—C6—C7 −4.2 (2) C8—C7—C10—C7i 93.05 (13)
O1—C6—C7—C8 −178.10 (14) C6—C7—C10—C7i −87.80 (11)
C5—C6—C7—C8 2.1 (2) C7—C8—S1—C9 −0.25 (16)
O1—C6—C7—C10 2.8 (2) C5—C9—S1—C8 −1.80 (14)
C5—C6—C7—C10 −177.05 (12) C1—C9—S1—C8 179.31 (11)

Symmetry code: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5551).

References

  1. Ambartsumyan, A. A., Vasiléva, T. T., Chakhovskaya, O. V., Mysova, N. E., Tuskaev, V. A., Khrustalev, V. N. & Kochetkov, K. A. (2012). Russ. J. Org. Chem. 48, 451–455.
  2. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.
  4. Li, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694. [DOI] [PMC free article] [PubMed]
  5. Nyburg, S. C., Prasad, L., Leong, T. S. & Still, I. W. J. (1986). Acta Cryst. C42, 816–821.
  6. Panja, S. K., Maiti, S., Drew, M. G. B. & Bandyopadhyay, Ch. (2009). Tetrahedron, 65, 1276–1280.
  7. Santhosh, K. C. & Balasubramanian, K. K. (1991). Tetrahedron Lett. 32, 7727–7730.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001906/lh5551sup1.cif

e-69-0o358-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001906/lh5551Isup2.hkl

e-69-0o358-Isup2.hkl (80.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001906/lh5551Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813001906/lh5551Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES