Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 9;69(Pt 3):o373–o374. doi: 10.1107/S160053681300370X

Methyl 4-(4-fluoro­anilino)-1,2,6-tris­(4-fluoro­phen­yl)-1,2,5,6-tetra­hydro­pyri­dine-3-carboxyl­ate

Sumati Anthal a, Goutam Brahmachari b, Suvankar Das b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC3588473  PMID: 23476561

Abstract

In the title mol­ecule, C31H24F4N2O2, the tetra­hydro­pyridine ring adopts a distorted boat conformation. An intra­molecular N—H⋯O hydrogen bond is formed by the amino group and ccarboxyl C=O atom. The crystal structure features weak C—H⋯F and C—H⋯O inter­actions.

Related literature  

For biological activity of functionalized piperidine derivatives, see: Zhou et al. (2007); Misra et al. (2009); Bin et al. (2001); Agrawal & Somani (2009); Jaen et al. (1988). For general background to functionalized piperidines, see: Kamei et al. (2005). For related structures, see: Sambyal et al. (2011); Brahmachari & Das (2012); Khan et al. (2010); Anthal et al. (2013). For asymmetry parameters, see: Duax et al. (1975).graphic file with name e-69-0o373-scheme1.jpg

Experimental  

Crystal data  

  • C31H24F4N2O2

  • M r = 532.52

  • Triclinic, Inline graphic

  • a = 9.7990 (2) Å

  • b = 10.7316 (4) Å

  • c = 13.7395 (4) Å

  • α = 110.797 (3)°

  • β = 100.338 (2)°

  • γ = 96.323 (2)°

  • V = 1304.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.899, T max = 1.000

  • 42990 measured reflections

  • 5413 independent reflections

  • 3730 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.118

  • S = 1.05

  • 5413 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300370X/gk2551sup1.cif

e-69-0o373-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300370X/gk2551Isup2.hkl

e-69-0o373-Isup2.hkl (259.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300370X/gk2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1 0.86 2.05 2.695 (2) 131
C20—H20⋯F2i 0.93 2.54 3.384 (2) 152
C32—H32⋯O1ii 0.93 2.47 3.311 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. VKG thanks the University of Jammu for financial support.

supplementary crystallographic information

Comment

Functionalized piperidines, very particularly 1,4-disubstituted piperidine scaffolds, are found to be useful in designing a variety of medicinal entities exhibiting a broad spectrum of pharmacological activities that include antibacterial (Zhou et al., 2007), antimalarial (Misra et al., 2009), anti-hypertensive, anticonvulsant, anti-inflammatory (Bin et al., 2001), and enzyme inhibitory activity (Agrawal & Somani, 2009; Jaen et al., 1988). Moreover, a large number of compounds bearing piperidine scaffold have already entered into preclinical and clinical trials over the last few years (Kamei et al., 2005). Hence, investigation of the structural features of biologically relevant piperidine derivatives is demanding. In continuation of our structural studies of densely functionalized piperidines (Sambyal et al., 2011; Brahmachari & Das, 2012) we present here the crystal structure of the title compound. The molecular structure of the title compound is illustrated in Fig.1. The bond lengths and angles of the title compound are normal and correspond to those observed in related structures (Khan et al., 2010; Anthal et al., 2013). In the title molecule, tetrahydropyridine ring adopts a distorted boat conformation with asymmetry parameters [ΔCs(C2)=10.10] and [ΔCs(C3-C4)=15.48] (Duax et al., 1975). In the crystal, an intramolecular hydrogen bond N9-H9···O1 is found. This intramolecular interaction leads to the formation of a pseudo-six membered ring comprising atoms O1, C7, C3, C4, N9 and H9. The molecular structure is stablized by N—H···O intramolecular interaction and crystal packing is stablized by C—H···F and C—H···O intermolecular interactions (Table 1). Molecules are linked via C—H···F and C—H···O hydrogen bonds to form chains along [010](Fig. 2).

Experimental

An oven-dried screw cap reaction tube was charged with a magnetic stir bar, 4-fluoroaniline (2 mmol), methyl acetoacetate (1 mmol) and Bi(NO3)3.5H2O (10 mol%) in 4 ml ethanol; the mixture was stirred at room temperature for 20 min, and then 4-fluorobenzaldehyde (2 mmol) was added to the reaction mixture and stirring was continued up to 12 h to complete the reaction (monitored by TLC). On completion of the reaction, a thick white precipitate was obtained. The solid residue was filtered off and washed with cold ethanol–water. The solid mass was dissolved in hot ethyl acetate–ethanol mixture and filtered off when bismuth salt separated out; the filtrate on standing afforded white crystals of the title compound, characterized by elemental analyses and spectral studies including FT—IR, 1H-NMR, and 13C-NMR. For X-ray study, single crystals were prepared by further recrystallization by slow evaporation from ethanol-ethyl acetate-water solution. Methyl 1,2,6-tris(4-fluorophenyl)-4-((4-fluorophenyl)amino)-1,2,5,6- tetrahydropyridine-3-carboxylate : white crystals; mp 452–454 K. Anal. Calcd for C31H24F4N2O2: C 69.92, H 4.54, N 5.26; found: C 69.95, H 4.52, N 5.28.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å and N—H distance of 0.86 Å and with Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. Short contacts are shown with dashed lines.

Crystal data

C31H24F4N2O2 Z = 2
Mr = 532.52 F(000) = 552
Triclinic, P1 Dx = 1.355 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.7990 (2) Å Cell parameters from 14371 reflections
b = 10.7316 (4) Å θ = 3.5–29.0°
c = 13.7395 (4) Å µ = 0.10 mm1
α = 110.797 (3)° T = 293 K
β = 100.338 (2)° Block, white
γ = 96.323 (2)° 0.30 × 0.20 × 0.20 mm
V = 1304.81 (7) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 5413 independent reflections
Radiation source: fine-focus sealed tube 3730 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.1049 pixels mm-1 θmax = 26.5°, θmin = 3.5°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.899, Tmax = 1.000 l = −17→17
42990 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1709P] where P = (Fo2 + 2Fc2)/3
5413 reflections (Δ/σ)max = 0.001
353 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. 1H NMR (400 MHz, CDCl3): δH 2.62 (dd, J = 2.4, 15.2 Hz, 1H), 2.78 (dd, J = 5.2, 15 Hz, 1H), 3.91 (s, 3H), 5.04 (br d, 1H), 6.27 (br s, 1H), 6.33–6.39(m, 4H), 6.78 (t, J = 8.8 Hz, 2H), 6.84 (t, J = 8.8 Hz, 2H), 6.93–6.99 (m, 4H), 7.07–7.11 (m, 2H), 7.19–7.25 (m, 2H), 10.17 (br s, 1H). 13C NMR (100 MHz, CDCl3): δC 33.71, 51.19, 55.19, 57.45, 97.64, 113.88, 113.95, 114.98, 115.2, 115.30, 115.51, 115.73, 115.96, 127.88, 127.96, 128.12, 128.20, 133.62, 133.64, 138.05, 138.99, 143.06, 154.10, 156.03, 156.44, 159.67, 160.37, 160.83, 162.12, 162.80, 163.27, 168.38. IR νmax (KBr): 3240, 3065, 2945, 2838, 1653, 1591, 1506, 1450, 1371, 1269, 1229, 1076, 812, 771, 685 cm-1. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05599 (13) 0.35453 (13) −0.02481 (9) 0.0522 (3)
O2 0.25451 (13) 0.51103 (13) 0.02833 (9) 0.0553 (3)
N1 0.38897 (13) 0.47214 (13) 0.29805 (10) 0.0384 (3)
F1 0.16292 (17) 1.01431 (15) 0.51876 (13) 0.1073 (5)
F2 0.97011 (11) 0.61739 (14) 0.44660 (11) 0.0792 (4)
F3 0.36636 (18) −0.16496 (14) 0.06807 (15) 0.1252 (6)
F4 −0.31258 (16) −0.11300 (15) 0.23046 (12) 0.1002 (5)
C2 0.30643 (16) 0.54303 (16) 0.24088 (12) 0.0360 (4)
H2 0.3679 0.5755 0.2025 0.043*
C3 0.18153 (16) 0.44415 (16) 0.15708 (12) 0.0367 (4)
C4 0.10236 (16) 0.35791 (16) 0.18759 (12) 0.0372 (4)
C5 0.15506 (16) 0.36802 (17) 0.30004 (12) 0.0395 (4)
H5A 0.1036 0.2934 0.3110 0.047*
H5B 0.1403 0.4525 0.3504 0.047*
C6 0.31341 (16) 0.36283 (16) 0.31870 (12) 0.0361 (4)
H6 0.3484 0.3785 0.3943 0.043*
C7 0.15522 (17) 0.43097 (17) 0.04696 (13) 0.0401 (4)
C8 0.2415 (3) 0.4972 (2) −0.08105 (16) 0.0754 (7)
H8A 0.2506 0.4070 −0.1235 0.113*
H8B 0.3144 0.5618 −0.0846 0.113*
H8C 0.1507 0.5135 −0.1081 0.113*
N9 −0.01024 (14) 0.26238 (15) 0.12273 (11) 0.0476 (4)
H9 −0.0379 0.2597 0.0589 0.057*
C10 0.26522 (16) 0.66857 (16) 0.31793 (12) 0.0365 (4)
C11 0.15179 (18) 0.72134 (18) 0.28316 (14) 0.0467 (4)
H11 0.0984 0.6782 0.2131 0.056*
C12 0.1167 (2) 0.8370 (2) 0.35088 (17) 0.0586 (5)
H12 0.0396 0.8709 0.3271 0.070*
C13 0.1962 (2) 0.9001 (2) 0.45242 (17) 0.0618 (5)
C14 0.3100 (2) 0.8534 (2) 0.49011 (16) 0.0650 (6)
H14 0.3640 0.8990 0.5598 0.078*
C15 0.3432 (2) 0.73677 (19) 0.42233 (13) 0.0514 (5)
H15 0.4197 0.7033 0.4475 0.062*
C16 0.53521 (16) 0.50829 (16) 0.33293 (12) 0.0358 (4)
C17 0.61195 (17) 0.62124 (18) 0.32556 (14) 0.0461 (4)
H17 0.5643 0.6733 0.2947 0.055*
C18 0.75664 (18) 0.65696 (19) 0.36303 (15) 0.0520 (5)
H18 0.8059 0.7324 0.3575 0.062*
C19 0.82704 (17) 0.5806 (2) 0.40835 (14) 0.0495 (4)
C20 0.75808 (17) 0.46901 (18) 0.41701 (13) 0.0446 (4)
H20 0.8079 0.4179 0.4476 0.053*
C21 0.61273 (17) 0.43295 (17) 0.37959 (12) 0.0395 (4)
H21 0.5653 0.3570 0.3855 0.047*
C22 0.33464 (16) 0.22233 (16) 0.25164 (13) 0.0376 (4)
C23 0.35639 (18) 0.19043 (19) 0.14950 (13) 0.0484 (4)
H23 0.3650 0.2581 0.1223 0.058*
C24 0.3656 (2) 0.0598 (2) 0.08718 (16) 0.0664 (6)
H24 0.3781 0.0386 0.0180 0.080*
C25 0.3560 (2) −0.0368 (2) 0.1291 (2) 0.0742 (7)
C26 0.3379 (2) −0.0102 (2) 0.2300 (2) 0.0761 (7)
H26 0.3334 −0.0781 0.2572 0.091*
C27 0.3264 (2) 0.12074 (19) 0.29126 (17) 0.0576 (5)
H27 0.3128 0.1404 0.3601 0.069*
C28 −0.08772 (17) 0.16492 (17) 0.15122 (13) 0.0412 (4)
C29 −0.20066 (19) 0.19542 (19) 0.19642 (14) 0.0507 (4)
H29 −0.2260 0.2797 0.2086 0.061*
C30 −0.2760 (2) 0.1026 (2) 0.22363 (16) 0.0609 (5)
H30 −0.3518 0.1232 0.2547 0.073*
C31 −0.2376 (2) −0.0200 (2) 0.20425 (16) 0.0609 (5)
C32 −0.1273 (2) −0.0550 (2) 0.15877 (16) 0.0639 (6)
H32 −0.1042 −0.1403 0.1457 0.077*
C33 −0.0510 (2) 0.0396 (2) 0.13272 (15) 0.0544 (5)
H33 0.0254 0.0187 0.1026 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0623 (8) 0.0492 (8) 0.0333 (6) 0.0029 (6) −0.0044 (6) 0.0117 (6)
O2 0.0675 (8) 0.0600 (8) 0.0367 (7) 0.0003 (7) 0.0078 (6) 0.0224 (6)
N1 0.0352 (7) 0.0357 (8) 0.0428 (8) 0.0036 (6) 0.0012 (6) 0.0178 (6)
F1 0.1155 (11) 0.0732 (9) 0.1012 (11) 0.0462 (8) 0.0230 (9) −0.0112 (8)
F2 0.0355 (6) 0.0991 (10) 0.1020 (10) 0.0026 (6) 0.0006 (6) 0.0478 (8)
F3 0.1320 (14) 0.0455 (8) 0.1517 (15) 0.0252 (8) 0.0197 (11) −0.0127 (9)
F4 0.1154 (11) 0.0859 (10) 0.1022 (11) −0.0199 (8) 0.0182 (9) 0.0544 (9)
C2 0.0386 (8) 0.0365 (9) 0.0317 (8) 0.0047 (7) 0.0035 (6) 0.0146 (7)
C3 0.0381 (8) 0.0356 (9) 0.0314 (8) 0.0067 (7) 0.0031 (6) 0.0095 (7)
C4 0.0344 (8) 0.0385 (9) 0.0332 (8) 0.0084 (7) 0.0038 (6) 0.0088 (7)
C5 0.0388 (9) 0.0425 (10) 0.0326 (8) 0.0039 (7) 0.0067 (7) 0.0109 (7)
C6 0.0394 (9) 0.0383 (9) 0.0282 (8) 0.0049 (7) 0.0036 (6) 0.0128 (7)
C7 0.0483 (10) 0.0349 (9) 0.0352 (9) 0.0116 (8) 0.0060 (7) 0.0119 (7)
C8 0.1054 (18) 0.0825 (16) 0.0432 (11) 0.0043 (13) 0.0191 (11) 0.0329 (11)
N9 0.0469 (8) 0.0512 (9) 0.0350 (7) −0.0055 (7) −0.0031 (6) 0.0154 (7)
C10 0.0396 (9) 0.0344 (9) 0.0349 (8) 0.0029 (7) 0.0052 (7) 0.0156 (7)
C11 0.0471 (10) 0.0413 (10) 0.0466 (10) 0.0063 (8) 0.0006 (8) 0.0165 (8)
C12 0.0543 (11) 0.0463 (11) 0.0735 (14) 0.0167 (9) 0.0100 (10) 0.0214 (10)
C13 0.0688 (13) 0.0451 (12) 0.0626 (13) 0.0172 (10) 0.0195 (11) 0.0062 (10)
C14 0.0734 (14) 0.0617 (13) 0.0410 (11) 0.0175 (11) 0.0030 (9) 0.0010 (10)
C15 0.0565 (11) 0.0529 (11) 0.0383 (10) 0.0170 (9) 0.0025 (8) 0.0118 (9)
C16 0.0376 (9) 0.0346 (9) 0.0290 (8) 0.0054 (7) 0.0034 (6) 0.0075 (7)
C17 0.0432 (10) 0.0448 (10) 0.0502 (10) 0.0057 (8) 0.0044 (8) 0.0221 (9)
C18 0.0446 (10) 0.0494 (11) 0.0591 (12) −0.0024 (8) 0.0094 (8) 0.0221 (9)
C19 0.0317 (9) 0.0610 (12) 0.0478 (10) 0.0051 (8) 0.0030 (7) 0.0155 (9)
C20 0.0433 (10) 0.0489 (11) 0.0362 (9) 0.0138 (8) 0.0034 (7) 0.0115 (8)
C21 0.0425 (9) 0.0366 (9) 0.0344 (8) 0.0052 (7) 0.0035 (7) 0.0111 (7)
C22 0.0336 (8) 0.0351 (9) 0.0393 (9) 0.0013 (7) 0.0024 (7) 0.0129 (7)
C23 0.0493 (10) 0.0511 (11) 0.0405 (10) 0.0146 (8) 0.0052 (8) 0.0136 (8)
C24 0.0613 (13) 0.0671 (15) 0.0492 (12) 0.0206 (11) 0.0031 (9) −0.0010 (11)
C25 0.0605 (13) 0.0387 (12) 0.0953 (19) 0.0088 (10) 0.0072 (12) −0.0018 (12)
C26 0.0708 (15) 0.0408 (12) 0.124 (2) 0.0070 (10) 0.0310 (14) 0.0373 (14)
C27 0.0602 (12) 0.0484 (12) 0.0743 (14) 0.0096 (9) 0.0254 (10) 0.0309 (11)
C28 0.0390 (9) 0.0409 (10) 0.0343 (9) 0.0006 (7) 0.0009 (7) 0.0094 (7)
C29 0.0530 (11) 0.0451 (11) 0.0495 (10) 0.0103 (8) 0.0117 (8) 0.0128 (9)
C30 0.0555 (12) 0.0673 (14) 0.0609 (12) 0.0068 (10) 0.0203 (10) 0.0239 (11)
C31 0.0667 (13) 0.0560 (13) 0.0542 (12) −0.0094 (10) 0.0038 (10) 0.0256 (10)
C32 0.0830 (15) 0.0419 (12) 0.0604 (13) 0.0123 (10) 0.0023 (11) 0.0188 (10)
C33 0.0550 (11) 0.0527 (12) 0.0529 (11) 0.0169 (9) 0.0105 (9) 0.0164 (9)

Geometric parameters (Å, º)

O1—C7 1.2234 (19) C14—C15 1.382 (2)
O2—C7 1.346 (2) C14—H14 0.9300
O2—C8 1.437 (2) C15—H15 0.9300
N1—C16 1.3902 (19) C16—C17 1.399 (2)
N1—C6 1.4578 (19) C16—C21 1.404 (2)
N1—C2 1.4771 (19) C17—C18 1.379 (2)
F1—C13 1.357 (2) C17—H17 0.9300
F2—C19 1.3652 (19) C18—C19 1.367 (3)
F3—C25 1.359 (2) C18—H18 0.9300
F4—C31 1.362 (2) C19—C20 1.363 (2)
C2—C3 1.513 (2) C20—C21 1.385 (2)
C2—C10 1.536 (2) C20—H20 0.9300
C2—H2 0.9800 C21—H21 0.9300
C3—C4 1.367 (2) C22—C27 1.382 (2)
C3—C7 1.441 (2) C22—C23 1.383 (2)
C4—N9 1.346 (2) C23—C24 1.382 (3)
C4—C5 1.499 (2) C23—H23 0.9300
C5—C6 1.537 (2) C24—C25 1.355 (3)
C5—H5A 0.9700 C24—H24 0.9300
C5—H5B 0.9700 C25—C26 1.361 (3)
C6—C22 1.522 (2) C26—C27 1.387 (3)
C6—H6 0.9800 C26—H26 0.9300
C8—H8A 0.9600 C27—H27 0.9300
C8—H8B 0.9600 C28—C29 1.378 (2)
C8—H8C 0.9600 C28—C33 1.378 (2)
N9—C28 1.430 (2) C29—C30 1.371 (3)
N9—H9 0.8600 C29—H29 0.9300
C10—C15 1.384 (2) C30—C31 1.357 (3)
C10—C11 1.387 (2) C30—H30 0.9300
C11—C12 1.383 (3) C31—C32 1.365 (3)
C11—H11 0.9300 C32—C33 1.380 (3)
C12—C13 1.355 (3) C32—H32 0.9300
C12—H12 0.9300 C33—H33 0.9300
C13—C14 1.365 (3)
C7—O2—C8 116.47 (15) C14—C15—H15 119.2
C16—N1—C6 119.96 (12) C10—C15—H15 119.2
C16—N1—C2 121.58 (13) N1—C16—C17 122.49 (14)
C6—N1—C2 118.45 (12) N1—C16—C21 120.70 (14)
N1—C2—C3 110.16 (12) C17—C16—C21 116.81 (14)
N1—C2—C10 112.28 (12) C18—C17—C16 121.44 (16)
C3—C2—C10 113.35 (13) C18—C17—H17 119.3
N1—C2—H2 106.9 C16—C17—H17 119.3
C3—C2—H2 106.9 C19—C18—C17 119.45 (17)
C10—C2—H2 106.9 C19—C18—H18 120.3
C4—C3—C7 120.82 (14) C17—C18—H18 120.3
C4—C3—C2 117.19 (13) C20—C19—F2 119.03 (16)
C7—C3—C2 121.68 (14) C20—C19—C18 121.73 (16)
N9—C4—C3 124.80 (14) F2—C19—C18 119.24 (17)
N9—C4—C5 119.74 (14) C19—C20—C21 118.97 (16)
C3—C4—C5 115.31 (13) C19—C20—H20 120.5
C4—C5—C6 108.80 (12) C21—C20—H20 120.5
C4—C5—H5A 109.9 C20—C21—C16 121.61 (16)
C6—C5—H5A 109.9 C20—C21—H21 119.2
C4—C5—H5B 109.9 C16—C21—H21 119.2
C6—C5—H5B 109.9 C27—C22—C23 118.21 (17)
H5A—C5—H5B 108.3 C27—C22—C6 119.57 (15)
N1—C6—C22 113.71 (12) C23—C22—C6 122.17 (15)
N1—C6—C5 109.48 (12) C22—C23—C24 121.17 (19)
C22—C6—C5 109.88 (12) C22—C23—H23 119.4
N1—C6—H6 107.9 C24—C23—H23 119.4
C22—C6—H6 107.9 C25—C24—C23 118.6 (2)
C5—C6—H6 107.9 C25—C24—H24 120.7
O1—C7—O2 121.68 (15) C23—C24—H24 120.7
O1—C7—C3 125.38 (16) C24—C25—F3 118.5 (3)
O2—C7—C3 112.93 (14) C24—C25—C26 122.6 (2)
O2—C8—H8A 109.5 F3—C25—C26 118.9 (2)
O2—C8—H8B 109.5 C25—C26—C27 118.4 (2)
H8A—C8—H8B 109.5 C25—C26—H26 120.8
O2—C8—H8C 109.5 C27—C26—H26 120.8
H8A—C8—H8C 109.5 C22—C27—C26 121.0 (2)
H8B—C8—H8C 109.5 C22—C27—H27 119.5
C4—N9—C28 125.43 (14) C26—C27—H27 119.5
C4—N9—H9 117.3 C29—C28—C33 119.57 (17)
C28—N9—H9 117.3 C29—C28—N9 120.08 (16)
C15—C10—C11 117.64 (15) C33—C28—N9 120.34 (16)
C15—C10—C2 121.57 (14) C30—C29—C28 120.60 (18)
C11—C10—C2 120.71 (14) C30—C29—H29 119.7
C12—C11—C10 121.19 (16) C28—C29—H29 119.7
C12—C11—H11 119.4 C31—C30—C29 118.48 (19)
C10—C11—H11 119.4 C31—C30—H30 120.8
C13—C12—C11 118.93 (18) C29—C30—H30 120.8
C13—C12—H12 120.5 C30—C31—F4 118.8 (2)
C11—C12—H12 120.5 C30—C31—C32 122.91 (19)
F1—C13—C12 119.10 (19) F4—C31—C32 118.3 (2)
F1—C13—C14 118.73 (19) C31—C32—C33 118.21 (19)
C12—C13—C14 122.17 (18) C31—C32—H32 120.9
C13—C14—C15 118.48 (18) C33—C32—H32 120.9
C13—C14—H14 120.8 C28—C33—C32 120.22 (18)
C15—C14—H14 120.8 C28—C33—H33 119.9
C14—C15—C10 121.58 (17) C32—C33—H33 119.9
C16—N1—C2—C3 144.95 (14) C2—C10—C15—C14 176.90 (17)
C6—N1—C2—C3 −35.70 (18) C6—N1—C16—C17 −173.09 (14)
C16—N1—C2—C10 −87.70 (17) C2—N1—C16—C17 6.3 (2)
C6—N1—C2—C10 91.65 (16) C6—N1—C16—C21 5.7 (2)
N1—C2—C3—C4 46.48 (19) C2—N1—C16—C21 −174.97 (14)
C10—C2—C3—C4 −80.28 (17) N1—C16—C17—C18 178.43 (16)
N1—C2—C3—C7 −127.14 (15) C21—C16—C17—C18 −0.4 (2)
C10—C2—C3—C7 106.10 (16) C16—C17—C18—C19 0.0 (3)
C7—C3—C4—N9 −5.0 (2) C17—C18—C19—C20 0.4 (3)
C2—C3—C4—N9 −178.70 (14) C17—C18—C19—F2 −179.16 (16)
C7—C3—C4—C5 170.58 (14) F2—C19—C20—C21 179.08 (15)
C2—C3—C4—C5 −3.1 (2) C18—C19—C20—C21 −0.5 (3)
N9—C4—C5—C6 126.42 (15) C19—C20—C21—C16 0.1 (2)
C3—C4—C5—C6 −49.43 (19) N1—C16—C21—C20 −178.54 (14)
C16—N1—C6—C22 −71.66 (17) C17—C16—C21—C20 0.3 (2)
C2—N1—C6—C22 108.98 (15) N1—C6—C22—C27 151.32 (15)
C16—N1—C6—C5 165.02 (13) C5—C6—C22—C27 −85.58 (18)
C2—N1—C6—C5 −14.34 (17) N1—C6—C22—C23 −31.4 (2)
C4—C5—C6—N1 57.41 (16) C5—C6—C22—C23 91.67 (17)
C4—C5—C6—C22 −68.15 (16) C27—C22—C23—C24 1.9 (3)
C8—O2—C7—O1 −2.9 (2) C6—C22—C23—C24 −175.43 (16)
C8—O2—C7—C3 175.84 (16) C22—C23—C24—C25 −1.5 (3)
C4—C3—C7—O1 7.4 (3) C23—C24—C25—F3 −179.41 (17)
C2—C3—C7—O1 −179.21 (15) C23—C24—C25—C26 −0.1 (3)
C4—C3—C7—O2 −171.29 (14) C24—C25—C26—C27 1.2 (3)
C2—C3—C7—O2 2.1 (2) F3—C25—C26—C27 −179.50 (19)
C3—C4—N9—C28 175.11 (15) C23—C22—C27—C26 −0.7 (3)
C5—C4—N9—C28 −0.3 (2) C6—C22—C27—C26 176.63 (17)
N1—C2—C10—C15 25.0 (2) C25—C26—C27—C22 −0.7 (3)
C3—C2—C10—C15 150.68 (16) C4—N9—C28—C29 89.3 (2)
N1—C2—C10—C11 −158.12 (14) C4—N9—C28—C33 −91.4 (2)
C3—C2—C10—C11 −32.5 (2) C33—C28—C29—C30 0.4 (3)
C15—C10—C11—C12 −0.9 (3) N9—C28—C29—C30 179.73 (16)
C2—C10—C11—C12 −177.81 (16) C28—C29—C30—C31 −0.5 (3)
C10—C11—C12—C13 0.9 (3) C29—C30—C31—F4 −179.58 (17)
C11—C12—C13—F1 179.37 (18) C29—C30—C31—C32 −0.1 (3)
C11—C12—C13—C14 0.0 (3) C30—C31—C32—C33 0.8 (3)
F1—C13—C14—C15 179.77 (19) F4—C31—C32—C33 −179.70 (17)
C12—C13—C14—C15 −0.9 (3) C29—C28—C33—C32 0.3 (3)
C13—C14—C15—C10 0.9 (3) N9—C28—C33—C32 −179.00 (16)
C11—C10—C15—C14 0.0 (3) C31—C32—C33—C28 −0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9—H9···O1 0.86 2.05 2.695 (2) 131
C20—H20···F2i 0.93 2.54 3.384 (2) 152
C32—H32···O1ii 0.93 2.47 3.311 (3) 151

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2551).

References

  1. Agrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638–652. [DOI] [PubMed]
  2. Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299–o300. [DOI] [PMC free article] [PubMed]
  3. Bin, H., Crider, A. M. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265–286. [DOI] [PubMed]
  4. Brahmachari, G. & Das, S. (2012). Tetrahedron Lett 53, 1479–1484.
  5. Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A. & Meltzer, L. T. (1988). J. Med. Chem. 31, 1621–1625. [DOI] [PubMed]
  8. Kamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990–2993. [DOI] [PubMed]
  9. Khan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762–7772.
  10. Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625–633. [DOI] [PubMed]
  11. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  12. Sambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868–873.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Zhou, Y., Gregor, V. E., Ayida, B. K., Winters, G. C., Sun, Z., Murphy, D., Haley, G., Bailey, D., Froelich, J. M., Fish, S., Webber, S. E., Hermann, T. & Wall, D. (2007). Bioorg. Med. Chem. Lett. 17, 1206–1210. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300370X/gk2551sup1.cif

e-69-0o373-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300370X/gk2551Isup2.hkl

e-69-0o373-Isup2.hkl (259.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300370X/gk2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES