Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 23;69(Pt 3):o435–o436. doi: 10.1107/S160053681300490X

Ethyl 2-amino-4-(4-bromo­phen­yl)-6-meth­oxy-4H-benzo[h]chromene-3-carboxyl­ate

Ahmed M El-Agrody a,b, Ahmed M Fouda a, Mohamed A Al-Omar c,d, Abd El-Galil E Amr d,e,, Seik Weng Ng f,g, Edward R T Tiekink f,*
PMCID: PMC3588478  PMID: 23476606

Abstract

In the title compound, C23H20BrNO4, the pyran ring has a flattened boat conformation with the O and methine C atoms lying to one side of the plane [0.160 (5) and 0.256 (6) Å, respectively] defined by the remaining atoms. Nevertheless, the 4H-benzo[h]chromene ring system approximates a plane (r.m.s. deviation = 0.116 Å) with the bromo­benzene ring almost perpendicular [dihedral angle = 83.27 (16)°] and the ester group coplanar [C—C—C—O = 3.4 (5)°]; the meth­oxy substituent is also coplanar [C—O—C—C = 174.5 (3)°]. In addition to an intra­molecular N—H⋯O(ester carbon­yl) hydrogen bond, the ester carbonyl O atom also forms an inter­molecular N—H⋯O hydrogen bond with the second amine H atom, generating a zigzag supra­molecular chain along the c axis in the crystal packing. The chains are linked into layers in the bc plane by N—H⋯Br hydrogen bonds, and these layers are consolidated into a three-dimensional architecture by C—H⋯π inter­actions.

Related literature  

For background to the pharmaceutical activity of 4H-chromene and its derivatives, see: Abd-El-Aziz et al. (2004, 2007); Kemnitzer et al. (2007); Alvey et al. (2009). For the isostructural 4-fluoro analogue, see: El-Agrody et al. (2012).graphic file with name e-69-0o435-scheme1.jpg

Experimental  

Crystal data  

  • C23H20BrNO4

  • M r = 454.31

  • Monoclinic, Inline graphic

  • a = 13.1543 (14) Å

  • b = 16.8110 (18) Å

  • c = 9.3672 (12) Å

  • β = 96.628 (10)°

  • V = 2057.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.828, T max = 1.000

  • 12041 measured reflections

  • 4740 independent reflections

  • 2533 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.164

  • S = 1.02

  • 4740 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300490X/hg5295sup1.cif

e-69-0o435-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300490X/hg5295Isup2.hkl

e-69-0o435-Isup2.hkl (232.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300490X/hg5295Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1,C2,C7–C10, C17–C22 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O2 0.88 (1) 2.09 (5) 2.744 (5) 131 (5)
N1—H1⋯O2i 0.88 (1) 2.22 (2) 3.075 (5) 163 (3)
N1—H2⋯Br1ii 0.88 (4) 2.76 (4) 3.547 (4) 149 (5)
C4—H4⋯Cg1i 0.93 2.90 3.673 (5) 142
C6—H6⋯Cg2iii 0.93 2.98 3.743 (5) 140
C23—H23CCg3iii 0.96 2.70 3.593 (5) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

supplementary crystallographic information

Comment

4H-Chromene and its derivatives are biologically interesting compounds known for their anti-microbial, anti-fungal and other pharmaceutical activities (Alvey et al., 2009; Kemnitzer et al., 2007). In continuation of on-going interest in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives (Abd-El-Aziz et al., 2004; Abd-El-Aziz et al., 2007), the crystal structure of the title compound, (I), is described herein.

The molecular structure of (I), Fig. 1, is isostructural to the recently reported 4-fluoro analogue (El-Agrody et al., 2012). The pyran ring has a flattened boat conformation with the O1 and C11 atoms lying 0.160 (5) and 0.256 (6) Å, respectively, out of the plane defined by the four remaining atoms (r.m.s. deviation = 0.0174 Å). Overall, the 4H-benzo[h]chromene ring system is approximately planar with the r.m.s. deviation of the 14 non-hydrogen atoms being 0.116 Å. The bromobenzene ring is almost perpendicular to this plane, forming a dihedral angle of 83.27 (16)°. By contrast, the ester group, with an anti conformation [C14—O3—C15—C16 torsion angle = -166.9 (4)°], is co-planar [C11—C12—C14—O3 = 3.4 (5)°] due, in part, to an intramolecular N—H···O2 hydrogen bond, Table 1. The methoxy [C23—O4—C7—C7 = 174.5 (3)°] substituent is also co-planar to the ring to which it is attached.

Zigzag (glide symmetry) supramolecular chains along the c axis feature in the crystal packing owing to N—H···O2 hydrogen bonding, Fig. 2 and Table 1. Chains are linked into layers in the bc plane by N—H···Br hydrogen bonds involving the H atom involved in the intramolecular interaction to the O2 atom, Table 1. A consequence of this interaction is that the Br1 and O2 atoms are brought into close proximity, i.e. Br1···O2i = 3.179 (3) Å [i: -x, 1/2 + y, 3/2 - z]. The three-dimensional architecture is consolidated by C—H···π interactions, Fig. 3 and Table 1.

Experimental

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with ethyl α-cyano-p-bromocinnamate (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred after 2 h. The solid product was collected by filtration and recrystallized from ethanol to give (I); M.pt: 438–439 K.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound-H atom was refined with the distance restraint N—H = 0.88±0.01 Å and free Uiso.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the zigzag supramolecular chain along the c axis in (I) sustained by N—H···N hydrogen bonds, shown as blue dashed lines.

Fig. 3.

Fig. 3.

view in projection down the c axis of the crystal packing in (I). The N—H···N, N—H···Br and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.

Crystal data

C23H20BrNO4 F(000) = 928
Mr = 454.31 Dx = 1.467 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1932 reflections
a = 13.1543 (14) Å θ = 2.8–27.5°
b = 16.8110 (18) Å µ = 2.03 mm1
c = 9.3672 (12) Å T = 295 K
β = 96.628 (10)° Plate, light-orange
V = 2057.6 (4) Å3 0.30 × 0.20 × 0.03 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4740 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2533 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.054
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.9°
ω scan h = −16→17
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −21→21
Tmin = 0.828, Tmax = 1.000 l = −7→12
12041 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.7996P] where P = (Fo2 + 2Fc2)/3
4740 reflections (Δ/σ)max = 0.001
270 parameters Δρmax = 0.91 e Å3
2 restraints Δρmin = −0.90 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.04105 (4) 0.70821 (4) 0.50571 (7) 0.0900 (3)
O1 0.30720 (18) 0.30429 (15) 0.7238 (3) 0.0464 (7)
O2 0.1283 (2) 0.34197 (17) 1.0635 (3) 0.0539 (7)
O3 0.1749 (2) 0.47024 (17) 1.0602 (3) 0.0558 (7)
O4 0.6285 (2) 0.50690 (18) 0.6512 (3) 0.0634 (8)
N1 0.1869 (3) 0.2527 (2) 0.8418 (4) 0.0538 (9)
H2 0.138 (3) 0.260 (4) 0.897 (5) 0.11 (2)*
H1 0.182 (3) 0.2203 (18) 0.768 (3) 0.044 (12)*
C1 0.3874 (3) 0.3580 (2) 0.7136 (4) 0.0397 (9)
C2 0.4654 (3) 0.3302 (2) 0.6337 (4) 0.0399 (9)
C3 0.4637 (3) 0.2537 (2) 0.5709 (4) 0.0447 (9)
H3 0.4095 0.2194 0.5807 0.054*
C4 0.5416 (3) 0.2300 (3) 0.4959 (4) 0.0533 (11)
H4 0.5404 0.1792 0.4562 0.064*
C5 0.6228 (3) 0.2812 (3) 0.4783 (5) 0.0613 (12)
H5 0.6752 0.2644 0.4267 0.074*
C6 0.6260 (3) 0.3553 (3) 0.5359 (5) 0.0579 (12)
H6 0.6802 0.3889 0.5223 0.069*
C7 0.5480 (3) 0.3824 (2) 0.6167 (4) 0.0436 (9)
C8 0.5483 (3) 0.4599 (2) 0.6797 (4) 0.0464 (10)
C9 0.4730 (3) 0.4824 (2) 0.7582 (4) 0.0463 (10)
H9 0.4756 0.5325 0.8007 0.056*
C10 0.3900 (3) 0.4308 (2) 0.7768 (4) 0.0409 (9)
C11 0.3054 (3) 0.4576 (2) 0.8616 (4) 0.0428 (9)
H11 0.3369 0.4829 0.9501 0.051*
C12 0.2446 (3) 0.3864 (2) 0.9034 (4) 0.0390 (9)
C13 0.2453 (3) 0.3168 (2) 0.8286 (4) 0.0394 (9)
C14 0.1773 (3) 0.3946 (2) 1.0137 (4) 0.0428 (9)
C15 0.1070 (4) 0.4882 (3) 1.1673 (5) 0.0741 (14)
H15A 0.1343 0.4669 1.2601 0.089*
H15B 0.0400 0.4652 1.1401 0.089*
C16 0.0999 (5) 0.5766 (3) 1.1742 (6) 0.097 (2)
H16A 0.0550 0.5913 1.2435 0.146*
H16B 0.0736 0.5968 1.0814 0.146*
H16C 0.1667 0.5984 1.2020 0.146*
C17 0.2379 (3) 0.5190 (2) 0.7770 (4) 0.0426 (9)
C18 0.1791 (3) 0.4979 (2) 0.6511 (5) 0.0516 (10)
H18 0.1789 0.4454 0.6199 0.062*
C19 0.1203 (3) 0.5538 (3) 0.5709 (5) 0.0582 (12)
H19 0.0813 0.5392 0.4858 0.070*
C20 0.1202 (3) 0.6312 (3) 0.6184 (5) 0.0568 (12)
C21 0.1771 (4) 0.6536 (3) 0.7419 (5) 0.0659 (13)
H21 0.1764 0.7061 0.7731 0.079*
C22 0.2362 (3) 0.5972 (3) 0.8208 (5) 0.0588 (12)
H22 0.2756 0.6124 0.9052 0.071*
C23 0.6286 (3) 0.5869 (3) 0.6996 (5) 0.0624 (12)
H23A 0.6879 0.6138 0.6725 0.094*
H23B 0.6302 0.5878 0.8023 0.094*
H23C 0.5680 0.6133 0.6566 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0945 (4) 0.0850 (5) 0.0981 (5) 0.0486 (3) 0.0437 (3) 0.0394 (3)
O1 0.0453 (14) 0.0431 (16) 0.0537 (18) −0.0112 (12) 0.0179 (12) −0.0067 (13)
O2 0.0601 (17) 0.0524 (19) 0.0521 (18) −0.0043 (14) 0.0187 (13) 0.0031 (14)
O3 0.0770 (19) 0.0445 (17) 0.0495 (18) 0.0043 (14) 0.0229 (14) −0.0045 (14)
O4 0.0519 (17) 0.058 (2) 0.083 (2) −0.0210 (15) 0.0179 (14) −0.0057 (17)
N1 0.058 (2) 0.046 (2) 0.062 (3) −0.0103 (19) 0.0252 (19) −0.0082 (19)
C1 0.0367 (19) 0.042 (2) 0.041 (2) −0.0061 (17) 0.0063 (16) 0.0040 (18)
C2 0.0375 (19) 0.042 (2) 0.040 (2) 0.0000 (17) 0.0032 (15) 0.0032 (18)
C3 0.043 (2) 0.043 (2) 0.047 (2) −0.0030 (19) 0.0062 (17) −0.0026 (19)
C4 0.059 (3) 0.050 (3) 0.052 (3) 0.004 (2) 0.012 (2) −0.006 (2)
C5 0.049 (3) 0.069 (3) 0.068 (3) 0.001 (2) 0.019 (2) −0.008 (3)
C6 0.046 (2) 0.063 (3) 0.068 (3) −0.007 (2) 0.018 (2) −0.002 (2)
C7 0.036 (2) 0.047 (2) 0.048 (2) −0.0049 (18) 0.0054 (16) 0.0043 (19)
C8 0.041 (2) 0.047 (2) 0.051 (3) −0.0103 (18) 0.0025 (17) 0.001 (2)
C9 0.045 (2) 0.040 (2) 0.054 (3) −0.0053 (18) 0.0043 (18) −0.0024 (19)
C10 0.039 (2) 0.041 (2) 0.041 (2) −0.0011 (17) 0.0025 (16) 0.0002 (18)
C11 0.049 (2) 0.041 (2) 0.039 (2) −0.0021 (18) 0.0034 (16) −0.0040 (18)
C12 0.043 (2) 0.036 (2) 0.039 (2) 0.0007 (17) 0.0069 (16) 0.0008 (17)
C13 0.0392 (19) 0.037 (2) 0.043 (2) −0.0039 (17) 0.0095 (16) 0.0037 (18)
C14 0.044 (2) 0.044 (2) 0.040 (2) 0.0026 (19) 0.0023 (17) 0.0041 (19)
C15 0.102 (4) 0.071 (4) 0.055 (3) 0.018 (3) 0.029 (3) −0.008 (3)
C16 0.151 (6) 0.073 (4) 0.073 (4) 0.044 (4) 0.037 (4) −0.005 (3)
C17 0.046 (2) 0.035 (2) 0.048 (2) −0.0047 (17) 0.0116 (17) −0.0024 (18)
C18 0.060 (2) 0.038 (2) 0.056 (3) 0.001 (2) 0.007 (2) 0.001 (2)
C19 0.056 (3) 0.064 (3) 0.054 (3) 0.002 (2) 0.007 (2) 0.010 (2)
C20 0.056 (3) 0.050 (3) 0.070 (3) 0.018 (2) 0.031 (2) 0.016 (2)
C21 0.093 (3) 0.038 (3) 0.072 (3) 0.014 (2) 0.032 (3) 0.000 (2)
C22 0.077 (3) 0.042 (3) 0.058 (3) 0.000 (2) 0.012 (2) −0.008 (2)
C23 0.061 (3) 0.050 (3) 0.074 (3) −0.016 (2) −0.001 (2) 0.008 (2)

Geometric parameters (Å, º)

Br1—C20 1.903 (4) C9—H9 0.9300
O1—C13 1.362 (4) C10—C11 1.508 (5)
O1—C1 1.400 (4) C11—C12 1.517 (5)
O2—C14 1.218 (4) C11—C17 1.524 (5)
O3—C14 1.346 (5) C11—H11 0.9800
O3—C15 1.450 (5) C12—C13 1.364 (5)
O4—C8 1.369 (4) C12—C14 1.442 (5)
O4—C23 1.419 (5) C15—C16 1.489 (7)
N1—C13 1.338 (5) C15—H15A 0.9700
N1—H2 0.876 (10) C15—H15B 0.9700
N1—H1 0.878 (10) C16—H16A 0.9600
C1—C10 1.359 (5) C16—H16B 0.9600
C1—C2 1.417 (5) C16—H16C 0.9600
C2—C3 1.413 (5) C17—C22 1.378 (5)
C2—C7 1.420 (5) C17—C18 1.380 (5)
C3—C4 1.366 (5) C18—C19 1.382 (6)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.397 (6) C19—C20 1.375 (6)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.355 (6) C20—C21 1.356 (6)
C5—H5 0.9300 C21—C22 1.384 (6)
C6—C7 1.418 (6) C21—H21 0.9300
C6—H6 0.9300 C22—H22 0.9300
C7—C8 1.430 (6) C23—H23A 0.9600
C8—C9 1.354 (6) C23—H23B 0.9600
C9—C10 1.421 (5) C23—H23C 0.9600
C13—O1—C1 117.9 (3) C14—C12—C11 119.7 (3)
C14—O3—C15 117.4 (3) N1—C13—O1 109.9 (3)
C8—O4—C23 117.3 (3) N1—C13—C12 127.2 (4)
C13—N1—H2 114 (4) O1—C13—C12 122.9 (3)
C13—N1—H1 115 (3) O2—C14—O3 121.9 (4)
H2—N1—H1 125 (5) O2—C14—C12 126.8 (4)
C10—C1—O1 122.1 (3) O3—C14—C12 111.2 (4)
C10—C1—C2 123.0 (3) O3—C15—C16 106.5 (4)
O1—C1—C2 114.9 (3) O3—C15—H15A 110.4
C1—C2—C3 122.9 (3) C16—C15—H15A 110.4
C1—C2—C7 117.8 (3) O3—C15—H15B 110.4
C3—C2—C7 119.4 (3) C16—C15—H15B 110.4
C4—C3—C2 120.2 (4) H15A—C15—H15B 108.6
C4—C3—H3 119.9 C15—C16—H16A 109.5
C2—C3—H3 119.9 C15—C16—H16B 109.5
C3—C4—C5 120.6 (4) H16A—C16—H16B 109.5
C3—C4—H4 119.7 C15—C16—H16C 109.5
C5—C4—H4 119.7 H16A—C16—H16C 109.5
C6—C5—C4 120.5 (4) H16B—C16—H16C 109.5
C6—C5—H5 119.7 C22—C17—C18 118.3 (4)
C4—C5—H5 119.7 C22—C17—C11 121.3 (4)
C5—C6—C7 121.1 (4) C18—C17—C11 120.4 (3)
C5—C6—H6 119.4 C19—C18—C17 120.8 (4)
C7—C6—H6 119.4 C19—C18—H18 119.6
C6—C7—C2 118.1 (4) C17—C18—H18 119.6
C6—C7—C8 123.1 (4) C18—C19—C20 119.3 (4)
C2—C7—C8 118.8 (3) C18—C19—H19 120.4
C9—C8—O4 125.0 (4) C20—C19—H19 120.4
C9—C8—C7 120.8 (4) C21—C20—C19 121.2 (4)
O4—C8—C7 114.3 (3) C21—C20—Br1 119.8 (4)
C8—C9—C10 121.1 (4) C19—C20—Br1 119.0 (4)
C8—C9—H9 119.5 C20—C21—C22 119.0 (4)
C10—C9—H9 119.5 C20—C21—H21 120.5
C1—C10—C9 118.5 (4) C22—C21—H21 120.5
C1—C10—C11 121.0 (3) C17—C22—C21 121.4 (4)
C9—C10—C11 120.4 (3) C17—C22—H22 119.3
C10—C11—C12 110.1 (3) C21—C22—H22 119.3
C10—C11—C17 110.4 (3) O4—C23—H23A 109.5
C12—C11—C17 112.1 (3) O4—C23—H23B 109.5
C10—C11—H11 108.0 H23A—C23—H23B 109.5
C12—C11—H11 108.0 O4—C23—H23C 109.5
C17—C11—H11 108.0 H23A—C23—H23C 109.5
C13—C12—C14 119.5 (4) H23B—C23—H23C 109.5
C13—C12—C11 120.6 (3)
C13—O1—C1—C10 −17.1 (5) C1—C10—C11—C17 −105.9 (4)
C13—O1—C1—C2 162.4 (3) C9—C10—C11—C17 72.4 (4)
C10—C1—C2—C3 178.4 (3) C10—C11—C12—C13 −21.7 (5)
O1—C1—C2—C3 −1.0 (5) C17—C11—C12—C13 101.7 (4)
C10—C1—C2—C7 −1.7 (5) C10—C11—C12—C14 164.5 (3)
O1—C1—C2—C7 178.8 (3) C17—C11—C12—C14 −72.1 (4)
C1—C2—C3—C4 −179.5 (4) C1—O1—C13—N1 −167.7 (3)
C7—C2—C3—C4 0.7 (5) C1—O1—C13—C12 13.7 (5)
C2—C3—C4—C5 −1.0 (6) C14—C12—C13—N1 2.2 (6)
C3—C4—C5—C6 0.2 (7) C11—C12—C13—N1 −171.6 (4)
C4—C5—C6—C7 0.8 (7) C14—C12—C13—O1 −179.5 (3)
C5—C6—C7—C2 −1.0 (6) C11—C12—C13—O1 6.8 (5)
C5—C6—C7—C8 179.8 (4) C15—O3—C14—O2 −3.3 (6)
C1—C2—C7—C6 −179.5 (4) C15—O3—C14—C12 177.5 (3)
C3—C2—C7—C6 0.3 (5) C13—C12—C14—O2 10.4 (6)
C1—C2—C7—C8 −0.4 (5) C11—C12—C14—O2 −175.7 (3)
C3—C2—C7—C8 179.5 (3) C13—C12—C14—O3 −170.4 (3)
C23—O4—C8—C9 −4.4 (6) C11—C12—C14—O3 3.4 (5)
C23—O4—C8—C7 174.5 (3) C14—O3—C15—C16 −166.9 (4)
C6—C7—C8—C9 −178.7 (4) C10—C11—C17—C22 −111.9 (4)
C2—C7—C8—C9 2.1 (6) C12—C11—C17—C22 125.0 (4)
C6—C7—C8—O4 2.2 (6) C10—C11—C17—C18 66.0 (5)
C2—C7—C8—O4 −176.9 (3) C12—C11—C17—C18 −57.2 (5)
O4—C8—C9—C10 177.0 (3) C22—C17—C18—C19 0.2 (6)
C7—C8—C9—C10 −1.9 (6) C11—C17—C18—C19 −177.7 (4)
O1—C1—C10—C9 −178.5 (3) C17—C18—C19—C20 −0.5 (6)
C2—C1—C10—C9 2.1 (5) C18—C19—C20—C21 0.4 (7)
O1—C1—C10—C11 −0.2 (5) C18—C19—C20—Br1 178.9 (3)
C2—C1—C10—C11 −179.6 (3) C19—C20—C21—C22 0.1 (7)
C8—C9—C10—C1 −0.2 (6) Br1—C20—C21—C22 −178.4 (3)
C8—C9—C10—C11 −178.5 (4) C18—C17—C22—C21 0.2 (7)
C1—C10—C11—C12 18.4 (5) C11—C17—C22—C21 178.1 (4)
C9—C10—C11—C12 −163.3 (3) C20—C21—C22—C17 −0.4 (7)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C1,C2,C7–C10, C17–C22 and C2–C7 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H2···O2 0.88 (1) 2.09 (5) 2.744 (5) 131 (5)
N1—H1···O2i 0.88 (1) 2.22 (2) 3.075 (5) 163 (3)
N1—H2···Br1ii 0.88 (4) 2.76 (4) 3.547 (4) 149 (5)
C4—H4···Cg1i 0.93 2.90 3.673 (5) 142
C6—H6···Cg2iii 0.93 2.98 3.743 (5) 140
C23—H23C···Cg3iii 0.96 2.70 3.593 (5) 154

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5295).

References

  1. Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.
  2. Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.
  3. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  4. Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505. [DOI] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. El-Agrody, A. M., Al-Omar, M. A., Amr, A.-G. E., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1803–o1804. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Kemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Zhao, J., Crogan-Grundy, C., Xu, L., Lamothe, S., Gourdeau, H., Denis, R., Tseng, B., Kasibhatla, S. & Cai, S. X. (2007). J. Med. Chem. 50, 2858–2864. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300490X/hg5295sup1.cif

e-69-0o435-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300490X/hg5295Isup2.hkl

e-69-0o435-Isup2.hkl (232.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300490X/hg5295Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES