Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 20;69(Pt 3):m156. doi: 10.1107/S1600536813003747

Bis{2-bromo-4-chloro-6-[(E)-(2,6-di­methyl­phen­yl)imino­meth­yl]phenolato-κ2 N,O}cobalt(II)

Gang Zhu a,*, Bao-Juan Jiao a
PMCID: PMC3588491  PMID: 23476501

Abstract

In the title complex, [Co(C15H12BrClNO)2], the CoII ion is coordinated by two N,O-bidentate 2-bromo-4-chloro-6-[(E)-(2,6-dimethyl­phen­yl)imino­meth­yl]phenolate ligands, generating a squashed CoN2O2 tetra­hedral coordination geometry. The dihedral angles between the aromatic rings in the ligands are 82.60 (14) and 71.79 (14)°. The complex has approximate local noncrystallographic twofold symmetry. In the crystal, weak aromatic π–π stacking is observed [centroid–centroid separation = 3.6434 (18) Å].

Related literature  

For background to Schiff bases, see: Billson et al. (2000); Carlton et al. (1995); Feng et al. (2008); Liu et al. (2009).graphic file with name e-69-0m156-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C15H12BrClNO)2]

  • M r = 734.16

  • Monoclinic, Inline graphic

  • a = 11.608 (2) Å

  • b = 24.157 (4) Å

  • c = 11.354 (2) Å

  • β = 114.380 (2)°

  • V = 2899.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 153 K

  • 0.49 × 0.27 × 0.12 mm

Data collection  

  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.274, T max = 0.683

  • 32947 measured reflections

  • 7718 independent reflections

  • 6813 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.00

  • 7718 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003747/hb7032sup1.cif

e-69-0m156-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003747/hb7032Isup2.hkl

e-69-0m156-Isup2.hkl (377.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O2 1.9006 (18)
Co1—O1 1.9144 (18)
Co1—N2 1.983 (2)
Co1—N1 2.000 (2)

Acknowledgments

The authors are grateful for financial support from the Science & Technology Project Foundation of Xi’an (grant No. CX12189WL19), the Special Foundation of the Education Department of Shaanxi Province (grant No. 11 J K0577) and the Key Disciplinary Areas of Analytical Chemistry of Shaanxi Province, People’s Republic of China.

supplementary crystallographic information

Comment

Schiff bases possess strong coordination function and may act as bi-, tri-, and poly-dentate ligands to yield plenty of mono-, bi-, tri-, and poly-nuclear Schiff-base complexes, so the design of metal-organic coordination polymers is of current interest in the fields of supramolecular chemistry and crystal engineering because of their potential applications as functional materials (Feng, et al., 2008; Liu, et al., 2009). Meanwhile, Schiff bases and their metal complexes exhibit biological activity as antibiotics, antiviral and antitumour agents because of their specific structures (Billson, et al., 2000; Carlton, et al., 1995). Thus, it is quite important to have a good understanding of the structure of such metal complexes.

In this paper, we report synthesis and crystal structure of a new cobalt(II) complex, bis[2-((E)-(2,6-dimethylphenylimino) methyl)-6-bromo-4-chlorophenol]cobalt(II). The structure of the complex had been established accurately from the X-ray single-crystal diffraction study. The Co(II) ion in the monomeric unit seems to reside in a distorted tetrahedral environment and bonds to two oxygen atoms and two nitrogen atoms from two Schiff bases.

A thermal ellipsoid drawing and crystal packing structure of the title complex are shown in Figure 1 and Figuer 2. The Co(C15H12BrClNO)2 motif is asymmetrical with Co—N and Co—O bonds, the corresponding distances are d(Co—N1) = 2.000 (2), d(Co—O1) = 1.9144 (18), d(Co—N2) = 1.983 (2), d(Co—O2) = 1.9006 (2)Å. The cobalt atom is in a distorted tetrahedral environmente, where the values of trans bond angles also indicate the coordination environment with O(2)—Co(1)—N(1), O(2)—Co(1)—N(2) and O(2)—Co(1)—O(1) angles of 116.97 (9), 94.94 (8) and 113.77 (8) °, respectively.

In the crystal structure of the complex the atoms of the phenyl ring plane A (C(1) C(2) C(3) C(4) C(5) C(6)) and the chelate ring formed by the same ligand plane B ((O(1)/Co(1)/N(1)/C(7)/C(1)/C(6)) are nearly coplanar with a dihedral angle of 8.09 (10) °. Because of the conjugation effects through the imino double bond N(1)═C(7), the phenyl ring A and the phenyl ring C (C(8) C(9) C(10) C(11) C(12) C(13)) joined by the N(1)═C(7) bond, are non-coplanar (with the dihedral angle 74.55 (7) °, decreasing the steric effects between the two rings. If the two chelate planes, planes B and D((N(2)/Co(1)/O(2)/C(17)/C(16)/C(22)), are compared the dihedral angle is 87.19 (6) °, naerly perpendicular.

Experimental

3-Bromo-5-chlorosalicylaldehyde (0.2 mmol, 47.2 mg) and 2,6-Dimethylaniline (0.2 mmol, 24.2 mg) were dissolved in EtOH (15 mL). The mixture was stirred for 30 min at room temperature to give an orange solution. To the resulting orange solution was added Co(CH3COO)2 (0.1 mmol, 17.7 mg). Then a clear brown solution was obtained. The title complex were obtained from the solution after 4 d in the form of red chunks. The product was filtered, washed with EtOH, and dried over anhydrous CaCl2in vacuo overnight. Yield: 70%. Anal. Calcd. (%) for C30H24CoN2O2Cl2Br2: C, 49.08; H, 3.29; N, 3.82. Found (%): C, 49.13; H, 3.43; N, 3.70.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex in 30% probability ellipsoids. H atoms are deleted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title complex, viewed along the a axis.

Crystal data

[Co(C15H12BrClNO)2] F(000) = 1460
Mr = 734.16 Dx = 1.682 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.608 (2) Å Cell parameters from 10097 reflections
b = 24.157 (4) Å θ = 2.1–29.1°
c = 11.354 (2) Å µ = 3.56 mm1
β = 114.380 (2)° T = 153 K
V = 2899.8 (9) Å3 Chunk, red
Z = 4 0.49 × 0.27 × 0.12 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 7718 independent reflections
Radiation source: Rotating Anode 6813 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 28.5714 pixels mm-1 θmax = 29.1°, θmin = 2.3°
phi and ω scans h = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −33→32
Tmin = 0.274, Tmax = 0.683 l = −15→15
32947 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.516P] where P = (Fo2 + 2Fc2)/3
7718 reflections (Δ/σ)max = 0.002
356 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.26654 (3) 0.662257 (15) 0.69368 (3) 0.02274 (10)
Br1 0.57530 (3) 0.644847 (13) 1.13829 (3) 0.03965 (10)
Br2 −0.09274 (3) 0.764024 (13) 0.69082 (3) 0.04195 (10)
Cl1 0.36329 (7) 0.44165 (3) 1.15246 (7) 0.03762 (18)
Cl2 −0.01848 (7) 0.91557 (3) 0.36421 (7) 0.03602 (17)
O1 0.37754 (18) 0.64192 (7) 0.86650 (17) 0.0264 (4)
O2 0.14215 (17) 0.71526 (7) 0.68464 (18) 0.0272 (4)
N1 0.2067 (2) 0.58493 (9) 0.6390 (2) 0.0234 (5)
N2 0.34280 (19) 0.70873 (9) 0.60062 (19) 0.0208 (4)
C1 0.2975 (2) 0.54925 (11) 0.8618 (2) 0.0231 (5)
C2 0.2949 (2) 0.50225 (11) 0.9335 (3) 0.0270 (6)
H2 0.2416 0.4720 0.8913 0.032*
C3 0.3687 (2) 0.49968 (11) 1.0639 (3) 0.0277 (6)
C4 0.4516 (3) 0.54284 (12) 1.1261 (3) 0.0287 (6)
H4 0.5049 0.5406 1.2158 0.034*
C5 0.4548 (3) 0.58833 (11) 1.0562 (2) 0.0259 (6)
C6 0.3753 (2) 0.59526 (10) 0.9230 (2) 0.0225 (5)
C7 0.2230 (2) 0.54617 (11) 0.7227 (3) 0.0254 (5)
H7 0.1819 0.5119 0.6900 0.030*
C8 0.1440 (2) 0.57063 (11) 0.5034 (2) 0.0239 (5)
C9 0.2103 (3) 0.53997 (11) 0.4467 (3) 0.0291 (6)
C10 0.1533 (3) 0.53156 (12) 0.3131 (3) 0.0326 (6)
H10 0.1964 0.5108 0.2726 0.039*
C11 0.0347 (3) 0.55301 (12) 0.2391 (3) 0.0320 (6)
H11 −0.0025 0.5475 0.1481 0.038*
C12 −0.0294 (3) 0.58239 (11) 0.2975 (3) 0.0297 (6)
H12 −0.1105 0.5971 0.2456 0.036*
C13 0.0222 (3) 0.59107 (12) 0.4314 (3) 0.0280 (6)
C14 0.3415 (3) 0.51866 (15) 0.5239 (3) 0.0443 (8)
H14A 0.3946 0.5487 0.5766 0.053*
H14B 0.3773 0.5047 0.4651 0.053*
H14C 0.3382 0.4886 0.5804 0.053*
C15 −0.0532 (3) 0.62008 (16) 0.4928 (3) 0.0455 (8)
H15A −0.0562 0.5971 0.5626 0.055*
H15B −0.1394 0.6265 0.4277 0.055*
H15C −0.0134 0.6556 0.5282 0.055*
C16 0.1773 (2) 0.77951 (10) 0.5396 (2) 0.0210 (5)
C17 0.1093 (2) 0.75899 (10) 0.6102 (2) 0.0208 (5)
C18 0.0010 (2) 0.78977 (11) 0.5987 (3) 0.0247 (5)
C19 −0.0383 (2) 0.83669 (11) 0.5250 (3) 0.0244 (5)
H19 −0.1116 0.8560 0.5198 0.029*
C20 0.0307 (2) 0.85564 (11) 0.4578 (3) 0.0250 (5)
C21 0.1359 (2) 0.82777 (10) 0.4642 (2) 0.0231 (5)
H21 0.1815 0.8412 0.4173 0.028*
C22 0.2909 (2) 0.75423 (11) 0.5415 (2) 0.0221 (5)
H22 0.3315 0.7727 0.4952 0.027*
C23 0.4569 (2) 0.68953 (11) 0.5936 (2) 0.0234 (5)
C24 0.5715 (2) 0.69448 (11) 0.7039 (3) 0.0269 (6)
C25 0.6783 (3) 0.67082 (13) 0.6988 (3) 0.0376 (7)
H25 0.7568 0.6735 0.7721 0.045*
C26 0.6736 (3) 0.64344 (14) 0.5902 (4) 0.0452 (9)
H26 0.7476 0.6267 0.5900 0.054*
C27 0.5609 (3) 0.64060 (13) 0.4820 (3) 0.0405 (8)
H27 0.5586 0.6225 0.4067 0.049*
C28 0.4499 (3) 0.66366 (12) 0.4805 (3) 0.0288 (6)
C29 0.5791 (3) 0.72459 (13) 0.8230 (3) 0.0357 (7)
H29A 0.5418 0.7016 0.8693 0.043*
H29B 0.5325 0.7596 0.7977 0.043*
H29C 0.6678 0.7322 0.8794 0.043*
C30 0.3284 (3) 0.66150 (13) 0.3601 (3) 0.0387 (7)
H30A 0.2577 0.6540 0.3838 0.046*
H30B 0.3336 0.6320 0.3032 0.046*
H30C 0.3148 0.6971 0.3148 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02424 (18) 0.02062 (18) 0.02371 (19) 0.00174 (13) 0.01026 (15) 0.00289 (14)
Br1 0.04535 (19) 0.03466 (18) 0.02708 (17) −0.00775 (13) 0.00302 (14) −0.00110 (12)
Br2 0.03983 (18) 0.03857 (19) 0.0633 (2) 0.01156 (13) 0.03721 (17) 0.01945 (15)
Cl1 0.0409 (4) 0.0365 (4) 0.0354 (4) 0.0004 (3) 0.0157 (3) 0.0140 (3)
Cl2 0.0365 (4) 0.0288 (4) 0.0433 (4) 0.0091 (3) 0.0170 (3) 0.0161 (3)
O1 0.0289 (10) 0.0226 (10) 0.0251 (10) 0.0012 (7) 0.0084 (8) 0.0037 (8)
O2 0.0294 (10) 0.0232 (10) 0.0340 (10) 0.0063 (7) 0.0182 (8) 0.0091 (8)
N1 0.0228 (11) 0.0236 (11) 0.0233 (11) −0.0004 (8) 0.0090 (9) 0.0003 (9)
N2 0.0201 (10) 0.0213 (11) 0.0214 (10) 0.0011 (8) 0.0091 (8) 0.0013 (8)
C1 0.0225 (12) 0.0230 (13) 0.0239 (13) 0.0043 (9) 0.0098 (10) 0.0019 (10)
C2 0.0248 (13) 0.0244 (14) 0.0317 (14) 0.0003 (10) 0.0115 (11) 0.0022 (11)
C3 0.0270 (13) 0.0263 (14) 0.0327 (15) 0.0033 (11) 0.0154 (12) 0.0093 (12)
C4 0.0299 (14) 0.0336 (15) 0.0229 (13) 0.0062 (11) 0.0113 (11) 0.0032 (11)
C5 0.0278 (13) 0.0241 (13) 0.0241 (13) 0.0021 (10) 0.0089 (11) −0.0011 (11)
C6 0.0227 (12) 0.0237 (13) 0.0232 (13) 0.0044 (9) 0.0115 (10) 0.0038 (10)
C7 0.0213 (12) 0.0255 (13) 0.0287 (14) 0.0000 (10) 0.0096 (11) 0.0010 (11)
C8 0.0238 (12) 0.0243 (13) 0.0229 (13) −0.0013 (10) 0.0091 (11) 0.0014 (10)
C9 0.0307 (14) 0.0244 (14) 0.0301 (15) 0.0008 (11) 0.0105 (12) −0.0026 (11)
C10 0.0367 (16) 0.0277 (15) 0.0345 (16) −0.0033 (12) 0.0160 (13) −0.0094 (12)
C11 0.0378 (16) 0.0294 (15) 0.0218 (13) −0.0041 (12) 0.0052 (12) −0.0018 (11)
C12 0.0280 (14) 0.0270 (14) 0.0255 (14) −0.0005 (11) 0.0022 (11) −0.0002 (11)
C13 0.0259 (13) 0.0290 (15) 0.0270 (14) −0.0015 (10) 0.0088 (11) −0.0016 (11)
C14 0.0354 (17) 0.050 (2) 0.0422 (18) 0.0135 (14) 0.0113 (15) −0.0085 (16)
C15 0.0268 (15) 0.065 (2) 0.0403 (18) 0.0040 (15) 0.0095 (14) −0.0139 (17)
C16 0.0206 (12) 0.0188 (12) 0.0225 (12) −0.0001 (9) 0.0078 (10) −0.0020 (10)
C17 0.0200 (11) 0.0193 (12) 0.0210 (12) 0.0011 (9) 0.0063 (10) 0.0008 (10)
C18 0.0221 (12) 0.0251 (13) 0.0300 (14) −0.0015 (10) 0.0139 (11) 0.0014 (11)
C19 0.0199 (12) 0.0235 (13) 0.0275 (14) 0.0032 (9) 0.0076 (10) 0.0008 (11)
C20 0.0257 (13) 0.0215 (13) 0.0248 (13) 0.0018 (10) 0.0075 (11) 0.0038 (10)
C21 0.0225 (12) 0.0228 (13) 0.0227 (13) −0.0001 (10) 0.0080 (10) 0.0019 (10)
C22 0.0226 (12) 0.0227 (13) 0.0210 (12) −0.0004 (9) 0.0090 (10) 0.0013 (10)
C23 0.0222 (12) 0.0239 (13) 0.0271 (13) 0.0026 (10) 0.0133 (11) 0.0075 (11)
C24 0.0239 (13) 0.0269 (14) 0.0310 (14) −0.0002 (10) 0.0123 (11) 0.0118 (11)
C25 0.0246 (14) 0.0439 (18) 0.0441 (18) 0.0050 (12) 0.0140 (13) 0.0217 (15)
C26 0.0390 (18) 0.048 (2) 0.061 (2) 0.0186 (14) 0.0329 (17) 0.0210 (17)
C27 0.057 (2) 0.0370 (18) 0.0435 (18) 0.0131 (15) 0.0372 (17) 0.0081 (14)
C28 0.0340 (15) 0.0265 (14) 0.0303 (15) 0.0056 (11) 0.0178 (12) 0.0062 (11)
C29 0.0310 (15) 0.0383 (17) 0.0314 (16) −0.0085 (12) 0.0066 (13) 0.0018 (13)
C30 0.0503 (19) 0.0364 (17) 0.0291 (16) 0.0005 (14) 0.0162 (14) −0.0037 (13)

Geometric parameters (Å, º)

Co1—O2 1.9006 (18) C13—C15 1.499 (4)
Co1—O1 1.9144 (18) C14—H14A 0.9800
Co1—N2 1.983 (2) C14—H14B 0.9800
Co1—N1 2.000 (2) C14—H14C 0.9800
Br1—C5 1.901 (3) C15—H15A 0.9800
Br2—C18 1.898 (3) C15—H15B 0.9800
Cl1—C3 1.742 (3) C15—H15C 0.9800
Cl2—C20 1.746 (3) C16—C21 1.408 (3)
O1—C6 1.302 (3) C16—C17 1.426 (4)
O2—C17 1.308 (3) C16—C22 1.445 (3)
N1—C7 1.291 (3) C17—C18 1.420 (3)
N1—C8 1.447 (3) C18—C19 1.370 (4)
N2—C22 1.299 (3) C19—C20 1.392 (4)
N2—C23 1.437 (3) C19—H19 0.9500
C1—C2 1.405 (4) C20—C21 1.370 (4)
C1—C6 1.420 (4) C21—H21 0.9500
C1—C7 1.456 (4) C22—H22 0.9500
C2—C3 1.372 (4) C23—C28 1.400 (4)
C2—H2 0.9500 C23—C24 1.406 (4)
C3—C4 1.397 (4) C24—C25 1.387 (4)
C4—C5 1.365 (4) C24—C29 1.506 (4)
C4—H4 0.9500 C25—C26 1.381 (5)
C5—C6 1.420 (4) C25—H25 0.9500
C7—H7 0.9500 C26—C27 1.378 (5)
C8—C13 1.399 (4) C26—H26 0.9500
C8—C9 1.402 (4) C27—C28 1.397 (4)
C9—C10 1.397 (4) C27—H27 0.9500
C9—C14 1.500 (4) C28—C30 1.506 (4)
C10—C11 1.383 (4) C29—H29A 0.9800
C10—H10 0.9500 C29—H29B 0.9800
C11—C12 1.381 (4) C29—H29C 0.9800
C11—H11 0.9500 C30—H30A 0.9800
C12—C13 1.400 (4) C30—H30B 0.9800
C12—H12 0.9500 C30—H30C 0.9800
O2—Co1—O1 113.77 (8) H14B—C14—H14C 109.5
O2—Co1—N2 94.94 (8) C13—C15—H15A 109.5
O1—Co1—N2 115.58 (8) C13—C15—H15B 109.5
O2—Co1—N1 116.97 (9) H15A—C15—H15B 109.5
O1—Co1—N1 94.53 (8) C13—C15—H15C 109.5
N2—Co1—N1 122.51 (9) H15A—C15—H15C 109.5
C6—O1—Co1 125.79 (17) H15B—C15—H15C 109.5
C17—O2—Co1 126.25 (17) C21—C16—C17 120.0 (2)
C7—N1—C8 117.8 (2) C21—C16—C22 116.1 (2)
C7—N1—Co1 121.47 (18) C17—C16—C22 123.9 (2)
C8—N1—Co1 120.72 (17) O2—C17—C18 119.5 (2)
C22—N2—C23 119.1 (2) O2—C17—C16 124.3 (2)
C22—N2—Co1 122.70 (18) C18—C17—C16 116.2 (2)
C23—N2—Co1 118.14 (16) C19—C18—C17 123.2 (2)
C2—C1—C6 120.7 (2) C19—C18—Br2 119.1 (2)
C2—C1—C7 116.2 (2) C17—C18—Br2 117.72 (19)
C6—C1—C7 122.9 (2) C18—C19—C20 119.0 (2)
C3—C2—C1 120.6 (3) C18—C19—H19 120.5
C3—C2—H2 119.7 C20—C19—H19 120.5
C1—C2—H2 119.7 C21—C20—C19 120.7 (2)
C2—C3—C4 120.3 (2) C21—C20—Cl2 120.0 (2)
C2—C3—Cl1 120.3 (2) C19—C20—Cl2 119.2 (2)
C4—C3—Cl1 119.4 (2) C20—C21—C16 120.8 (2)
C5—C4—C3 119.0 (2) C20—C21—H21 119.6
C5—C4—H4 120.5 C16—C21—H21 119.6
C3—C4—H4 120.5 N2—C22—C16 126.2 (2)
C4—C5—C6 123.5 (3) N2—C22—H22 116.9
C4—C5—Br1 119.0 (2) C16—C22—H22 116.9
C6—C5—Br1 117.4 (2) C28—C23—C24 122.0 (3)
O1—C6—C5 119.4 (2) C28—C23—N2 119.3 (2)
O1—C6—C1 125.1 (2) C24—C23—N2 118.5 (2)
C5—C6—C1 115.6 (2) C25—C24—C23 117.4 (3)
N1—C7—C1 127.0 (2) C25—C24—C29 121.0 (3)
N1—C7—H7 116.5 C23—C24—C29 121.6 (3)
C1—C7—H7 116.5 C26—C25—C24 121.9 (3)
C13—C8—C9 122.2 (2) C26—C25—H25 119.1
C13—C8—N1 118.7 (2) C24—C25—H25 119.1
C9—C8—N1 119.0 (2) C27—C26—C25 119.5 (3)
C10—C9—C8 118.1 (2) C27—C26—H26 120.2
C10—C9—C14 119.8 (3) C25—C26—H26 120.2
C8—C9—C14 122.0 (2) C26—C27—C28 121.5 (3)
C11—C10—C9 120.8 (3) C26—C27—H27 119.2
C11—C10—H10 119.6 C28—C27—H27 119.2
C9—C10—H10 119.6 C27—C28—C23 117.6 (3)
C12—C11—C10 119.9 (3) C27—C28—C30 120.7 (3)
C12—C11—H11 120.0 C23—C28—C30 121.7 (3)
C10—C11—H11 120.0 C24—C29—H29A 109.5
C11—C12—C13 121.7 (3) C24—C29—H29B 109.5
C11—C12—H12 119.2 H29A—C29—H29B 109.5
C13—C12—H12 119.2 C24—C29—H29C 109.5
C8—C13—C12 117.2 (3) H29A—C29—H29C 109.5
C8—C13—C15 122.5 (2) H29B—C29—H29C 109.5
C12—C13—C15 120.3 (2) C28—C30—H30A 109.5
C9—C14—H14A 109.5 C28—C30—H30B 109.5
C9—C14—H14B 109.5 H30A—C30—H30B 109.5
H14A—C14—H14B 109.5 C28—C30—H30C 109.5
C9—C14—H14C 109.5 H30A—C30—H30C 109.5
H14A—C14—H14C 109.5 H30B—C30—H30C 109.5
O2—Co1—O1—C6 106.0 (2) C14—C9—C10—C11 −177.0 (3)
N2—Co1—O1—C6 −145.6 (2) C9—C10—C11—C12 −1.0 (5)
N1—Co1—O1—C6 −16.2 (2) C10—C11—C12—C13 −0.3 (4)
O1—Co1—O2—C17 135.3 (2) C9—C8—C13—C12 −3.5 (4)
N2—Co1—O2—C17 14.5 (2) N1—C8—C13—C12 172.1 (2)
N1—Co1—O2—C17 −115.9 (2) C9—C8—C13—C15 175.2 (3)
O2—Co1—N1—C7 −102.8 (2) N1—C8—C13—C15 −9.2 (4)
O1—Co1—N1—C7 16.8 (2) C11—C12—C13—C8 2.5 (4)
N2—Co1—N1—C7 141.1 (2) C11—C12—C13—C15 −176.1 (3)
O2—Co1—N1—C8 77.5 (2) Co1—O2—C17—C18 169.79 (18)
O1—Co1—N1—C8 −162.86 (19) Co1—O2—C17—C16 −11.6 (4)
N2—Co1—N1—C8 −38.5 (2) C21—C16—C17—O2 −178.5 (2)
O2—Co1—N2—C22 −10.4 (2) C22—C16—C17—O2 0.2 (4)
O1—Co1—N2—C22 −129.8 (2) C21—C16—C17—C18 0.1 (4)
N1—Co1—N2—C22 116.1 (2) C22—C16—C17—C18 178.8 (2)
O2—Co1—N2—C23 172.64 (18) O2—C17—C18—C19 178.6 (2)
O1—Co1—N2—C23 53.3 (2) C16—C17—C18—C19 −0.1 (4)
N1—Co1—N2—C23 −60.8 (2) O2—C17—C18—Br2 −1.4 (3)
C6—C1—C2—C3 −0.8 (4) C16—C17—C18—Br2 179.94 (18)
C7—C1—C2—C3 175.6 (2) C17—C18—C19—C20 −0.2 (4)
C1—C2—C3—C4 −2.7 (4) Br2—C18—C19—C20 179.80 (19)
C1—C2—C3—Cl1 179.1 (2) C18—C19—C20—C21 0.4 (4)
C2—C3—C4—C5 2.2 (4) C18—C19—C20—Cl2 −179.7 (2)
Cl1—C3—C4—C5 −179.6 (2) C19—C20—C21—C16 −0.4 (4)
C3—C4—C5—C6 1.9 (4) Cl2—C20—C21—C16 179.75 (19)
C3—C4—C5—Br1 −175.9 (2) C17—C16—C21—C20 0.1 (4)
Co1—O1—C6—C5 −173.34 (18) C22—C16—C21—C20 −178.7 (2)
Co1—O1—C6—C1 6.3 (4) C23—N2—C22—C16 −179.5 (2)
C4—C5—C6—O1 174.4 (3) Co1—N2—C22—C16 3.6 (4)
Br1—C5—C6—O1 −7.7 (3) C21—C16—C22—N2 −177.4 (2)
C4—C5—C6—C1 −5.2 (4) C17—C16—C22—N2 3.8 (4)
Br1—C5—C6—C1 172.68 (19) C22—N2—C23—C28 −76.9 (3)
C2—C1—C6—O1 −175.1 (3) Co1—N2—C23—C28 100.1 (2)
C7—C1—C6—O1 8.8 (4) C22—N2—C23—C24 106.8 (3)
C2—C1—C6—C5 4.5 (4) Co1—N2—C23—C24 −76.1 (3)
C7—C1—C6—C5 −171.6 (2) C28—C23—C24—C25 −2.3 (4)
C8—N1—C7—C1 171.2 (2) N2—C23—C24—C25 173.9 (2)
Co1—N1—C7—C1 −8.4 (4) C28—C23—C24—C29 177.2 (3)
C2—C1—C7—N1 176.6 (3) N2—C23—C24—C29 −6.6 (4)
C6—C1—C7—N1 −7.2 (4) C23—C24—C25—C26 0.1 (4)
C7—N1—C8—C13 110.2 (3) C29—C24—C25—C26 −179.4 (3)
Co1—N1—C8—C13 −70.2 (3) C24—C25—C26—C27 1.8 (5)
C7—N1—C8—C9 −74.1 (3) C25—C26—C27—C28 −1.6 (5)
Co1—N1—C8—C9 105.6 (3) C26—C27—C28—C23 −0.5 (5)
C13—C8—C9—C10 2.2 (4) C26—C27—C28—C30 178.3 (3)
N1—C8—C9—C10 −173.4 (2) C24—C23—C28—C27 2.5 (4)
C13—C8—C9—C14 179.3 (3) N2—C23—C28—C27 −173.7 (2)
N1—C8—C9—C14 3.7 (4) C24—C23—C28—C30 −176.3 (3)
C8—C9—C10—C11 0.1 (4) N2—C23—C28—C30 7.6 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7032).

References

  1. Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.
  2. Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347. [DOI] [PubMed]
  3. Feng, Y., Liu, G., Tian, X. M., Wang, J. D. & Wang, W. (2008). Chin. J. Struct. Chem. 27, 455–460.
  4. Liu, H., Huang, J. L. & Feng, Y. L. (2009). Chin. J. Struct. Chem. 28, 718–722.
  5. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003747/hb7032sup1.cif

e-69-0m156-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003747/hb7032Isup2.hkl

e-69-0m156-Isup2.hkl (377.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES