Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 2;69(Pt 3):o326–o327. doi: 10.1107/S1600536813001347

2-{(E)-4-[4-(Trifluoro­meth­yl)phen­oxy]but-2-en­yloxy}phenyl N-methyl­carbamate

Hong-Ju Ma a, Meng-Han Xu a, Jian-Hua Zhang a, Jian-Hong Li a, Jun Ning b,*
PMCID: PMC3588498  PMID: 23476524

Abstract

In the title compound, C19H18F3NO4, which was designed and synthesized as a dual-site inhibitor of insect AChE (acetyl­cholinesterase), the dihedral angle between the methyl­carbamate group and the benzene ring is 72.47 (6)°. In the crystal, inversion dimers are linked by pairs of N—H⋯O hydrogen bonds.

Related literature  

For background to multivalent ligand-receptor inter­actions and their pharmaceutical applications, see: Carlier et al. (1999); Hu et al. (2002); Kitov et al. (2000); Kopytek et al. (2000); Kryger et al. (1999); Lee & Lee (1995); Luedtke et al. (2003); Mammen et al. (1998); Pang et al. (1996). For agrochemical applications of the cluster effect, see: Ma et al. (2010); Zhao et al. (2008, 2009). For the structure of AChE from Torpedo californica (TcAChe), see: Sussman et al. (1991); Harel et al. (1993).graphic file with name e-69-0o326-scheme1.jpg

Experimental  

Crystal data  

  • C19H18F3NO4

  • M r = 381.34

  • Monoclinic, Inline graphic

  • a = 12.413 (3) Å

  • b = 9.3936 (19) Å

  • c = 16.202 (3) Å

  • β = 111.65 (3)°

  • V = 1755.9 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.05 mm−1

  • T = 173 K

  • 0.47 × 0.30 × 0.25 mm

Data collection  

  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.639, T max = 0.780

  • 11613 measured reflections

  • 3163 independent reflections

  • 2615 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.107

  • S = 1.07

  • 3163 reflections

  • 274 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: RAPID-AUTO (Rigaku 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001347/mw2102sup1.cif

e-69-0o326-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001347/mw2102Isup2.hkl

e-69-0o326-Isup2.hkl (155.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001347/mw2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.22 3.072 (2) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (program No. 31201554), the China Postdoctoral Science Foundation (program No. 20110491174) and the Fundamental Research Funds for the Central Universities (program No. 2011QC086).

supplementary crystallographic information

Comment

Multivalent ligand-receptor interactions, known as the cluster effect, are defined as specific simultaneous associations of multiple ligands present on a molecular construct that bind to multiple receptors presented on a biological entity (Mammen et al., 1998; Lee et al., 1995). In biological systems, multivalent ligands often possess increased functional affinity for their targets compared with that of monovalent ligands (Kitov et al., 2000; Kopytek et al., 2000; Luedtke et al., 2003). Acetylcholinesterase (AChE; EC 3.1.1.7) is a key enzyme in the nervous system, terminating nerve impulses by catalyzing the hydrolysis of the neurotransmitter acetylcholine. X-ray crystallographic structural analysis of the AChE from Torpedo californica (TcAChe) has demonstrated that the active site lies near the bottom of a deep, narrow gorge that reaches half way into the protein and that 14 aromatic residues line a substantial portion of the surface of the gorge (Sussman et al., 1991). This cavity was named the 'active site gorge' with peripheral sites existing at the gorge mouth and Trp279 being the main site (Harel et al., 1993). On the basis of the structure of AChE, many potential dual-site binding inhibitors of AChE have been synthesized (Pang et al., 1996; Carlier et al., 1999; Hu et al., 2002) and demonstrated in drugs in order to treat or alleviate Alzheimer's disease (Kryger et al., 1999). In the area of pesticide, dual- or multiple-site inhibitors of insect AChE were designed and synthesized in our research group (Zhao et al.., 2008; Zhao et al., 2009). Recently, we synthesized novel carbamate derivatives as potential dual-binding site acetylcholinesterase inhibitors (Ma et al., 2010). The crystal structure of the title compound (I) is shown in Fig. 1.

Experimental

2-((E)-4-(4-(trifluoromethyl)phenoxy)but-2-enyloxy)phenyl methylcarbamate (0.2 g) was dissolved in 95% ethanol (50 ml) at room temperature. Colorless crystals of compound (I) were obtained through slow evaporation after two weeks.

Refinement

The trifluoromethyl group showed orientational disorder with two resolved alternative sites which were refined independently leading to a 71:29 occupancy ratio. All non-hydrogen atoms were refined with anisotropic displacement parameters. The carbon-bound H atoms were placed at calculated positions, with C—H = 0.93 - 0.98 Å, and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 - 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H18F3NO4 F(000) = 792
Mr = 381.34 Dx = 1.443 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 468 reflections
a = 12.413 (3) Å θ = 2.2–68.3°
b = 9.3936 (19) Å µ = 1.05 mm1
c = 16.202 (3) Å T = 173 K
β = 111.65 (3)° Block, colorless
V = 1755.9 (6) Å3 0.47 × 0.30 × 0.25 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer 3163 independent reflections
Radiation source: rotating anode 2615 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω scans at fixed χ = 45° θmax = 68.2°, θmin = 3.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −14→14
Tmin = 0.639, Tmax = 0.780 k = −11→10
11613 measured reflections l = −18→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.8611P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3163 reflections Δρmax = 0.29 e Å3
274 parameters Δρmin = −0.22 e Å3
60 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0033 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.4769 (4) −0.2372 (3) 0.2853 (4) 0.0698 (14) 0.710 (12)
F2 0.4529 (5) −0.0522 (5) 0.2121 (3) 0.0731 (13) 0.710 (12)
F3 0.5816 (4) −0.0554 (8) 0.3412 (5) 0.090 (2) 0.710 (12)
F1' 0.5251 (13) −0.2132 (15) 0.3448 (14) 0.109 (5) 0.290 (12)
F2' 0.4491 (9) −0.111 (2) 0.2122 (6) 0.111 (5) 0.290 (12)
F3' 0.5655 (11) −0.0074 (18) 0.3219 (13) 0.092 (5) 0.290 (12)
O1 0.13692 (11) 0.11336 (15) 0.41856 (9) 0.0376 (4)
O2 −0.17712 (11) 0.32576 (15) 0.48990 (9) 0.0348 (3)
O3 0.02201 (12) 0.28785 (14) 0.67050 (9) 0.0367 (4)
O4 −0.03869 (11) 0.50607 (14) 0.60863 (9) 0.0313 (3)
N1 0.12414 (13) 0.41620 (18) 0.60530 (11) 0.0336 (4)
H1 0.1242 0.4945 0.5755 0.040*
C1 0.47480 (19) −0.0960 (2) 0.29620 (17) 0.0477 (6)
C2 0.38579 (17) −0.0443 (2) 0.32947 (14) 0.0360 (5)
C3 0.27526 (17) −0.1023 (2) 0.29649 (13) 0.0360 (5)
H3 0.2584 −0.1773 0.2543 0.043*
C4 0.18957 (17) −0.0526 (2) 0.32412 (13) 0.0332 (5)
H4 0.1141 −0.0930 0.3009 0.040*
C5 0.21432 (16) 0.0570 (2) 0.38617 (13) 0.0318 (4)
C6 0.32588 (18) 0.1133 (2) 0.42067 (15) 0.0422 (5)
H6 0.3437 0.1868 0.4640 0.051*
C7 0.41034 (18) 0.0630 (2) 0.39219 (15) 0.0439 (5)
H7 0.4862 0.1022 0.4158 0.053*
C8 0.01688 (16) 0.0769 (2) 0.37353 (13) 0.0354 (5)
H8A 0.0055 −0.0264 0.3792 0.043*
H8B −0.0081 0.1005 0.3096 0.043*
C9 −0.05238 (17) 0.1595 (2) 0.41472 (13) 0.0329 (5)
H9 −0.0182 0.2416 0.4485 0.039*
C10 −0.15720 (18) 0.1256 (2) 0.40707 (14) 0.0381 (5)
H10 −0.1877 0.0412 0.3745 0.046*
C11 −0.23549 (17) 0.2024 (2) 0.44281 (13) 0.0337 (5)
H11A −0.3074 0.2308 0.3935 0.040*
H11B −0.2569 0.1392 0.4832 0.040*
C12 −0.22437 (16) 0.3914 (2) 0.54436 (12) 0.0300 (4)
C13 −0.33741 (17) 0.3764 (2) 0.53971 (13) 0.0354 (5)
H13 −0.3893 0.3149 0.4967 0.042*
C14 −0.37483 (18) 0.4512 (2) 0.59798 (14) 0.0394 (5)
H14 −0.4523 0.4402 0.5948 0.047*
C15 −0.30069 (18) 0.5415 (2) 0.66040 (14) 0.0392 (5)
H15 −0.3271 0.5922 0.7001 0.047*
C16 −0.18725 (17) 0.5581 (2) 0.66513 (13) 0.0347 (5)
H16 −0.1360 0.6209 0.7076 0.042*
C17 −0.14992 (16) 0.4832 (2) 0.60820 (12) 0.0296 (4)
C18 0.03597 (16) 0.3915 (2) 0.63119 (12) 0.0290 (4)
C19 0.22029 (18) 0.3175 (2) 0.62487 (16) 0.0446 (6)
H19A 0.2818 0.3611 0.6091 0.067*
H19B 0.1936 0.2300 0.5904 0.067*
H19C 0.2504 0.2947 0.6884 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.082 (2) 0.0421 (13) 0.117 (3) 0.0125 (13) 0.073 (2) 0.0034 (16)
F2 0.084 (3) 0.083 (2) 0.077 (2) 0.0261 (19) 0.059 (2) 0.019 (2)
F3 0.0276 (13) 0.136 (5) 0.100 (3) −0.001 (2) 0.0170 (15) −0.051 (3)
F1' 0.099 (7) 0.091 (7) 0.172 (12) 0.058 (6) 0.092 (8) 0.046 (7)
F2' 0.038 (4) 0.192 (13) 0.093 (7) −0.003 (6) 0.011 (4) −0.102 (8)
F3' 0.065 (7) 0.090 (7) 0.159 (11) −0.039 (6) 0.087 (8) −0.045 (7)
O1 0.0312 (7) 0.0435 (8) 0.0390 (8) −0.0012 (6) 0.0141 (6) −0.0093 (7)
O2 0.0333 (7) 0.0358 (8) 0.0412 (8) −0.0074 (6) 0.0207 (6) −0.0109 (6)
O3 0.0369 (8) 0.0314 (8) 0.0423 (8) 0.0002 (6) 0.0151 (6) 0.0082 (6)
O4 0.0279 (7) 0.0274 (7) 0.0399 (7) 0.0004 (6) 0.0139 (6) 0.0013 (6)
N1 0.0307 (8) 0.0351 (9) 0.0369 (9) 0.0017 (7) 0.0148 (7) 0.0039 (8)
C1 0.0362 (12) 0.0442 (13) 0.0672 (16) 0.0019 (11) 0.0243 (11) 0.0044 (13)
C2 0.0302 (10) 0.0354 (11) 0.0437 (11) 0.0024 (9) 0.0151 (9) 0.0051 (9)
C3 0.0347 (10) 0.0354 (11) 0.0385 (11) −0.0001 (9) 0.0141 (9) −0.0032 (9)
C4 0.0300 (10) 0.0346 (11) 0.0344 (10) −0.0010 (8) 0.0111 (8) −0.0010 (9)
C5 0.0302 (10) 0.0330 (10) 0.0327 (10) 0.0027 (8) 0.0121 (8) 0.0035 (8)
C6 0.0342 (11) 0.0405 (12) 0.0489 (12) −0.0047 (10) 0.0118 (9) −0.0112 (10)
C7 0.0285 (10) 0.0434 (12) 0.0573 (14) −0.0043 (9) 0.0130 (10) −0.0055 (11)
C8 0.0313 (10) 0.0384 (11) 0.0380 (11) −0.0031 (9) 0.0145 (9) −0.0050 (9)
C9 0.0347 (10) 0.0314 (10) 0.0335 (10) −0.0015 (9) 0.0137 (8) −0.0049 (8)
C10 0.0408 (11) 0.0331 (11) 0.0439 (12) −0.0048 (9) 0.0200 (9) −0.0095 (9)
C11 0.0334 (10) 0.0322 (10) 0.0367 (11) −0.0048 (8) 0.0142 (8) −0.0041 (8)
C12 0.0303 (10) 0.0313 (10) 0.0315 (10) 0.0019 (8) 0.0147 (8) 0.0007 (8)
C13 0.0297 (10) 0.0400 (12) 0.0382 (11) −0.0026 (9) 0.0145 (9) −0.0030 (9)
C14 0.0315 (10) 0.0457 (13) 0.0463 (12) 0.0046 (9) 0.0205 (9) 0.0035 (10)
C15 0.0408 (12) 0.0441 (12) 0.0378 (11) 0.0078 (10) 0.0206 (10) 0.0003 (10)
C16 0.0379 (11) 0.0333 (11) 0.0325 (10) 0.0025 (9) 0.0125 (9) −0.0001 (9)
C17 0.0279 (9) 0.0291 (10) 0.0331 (10) 0.0013 (8) 0.0129 (8) 0.0029 (8)
C18 0.0271 (9) 0.0294 (10) 0.0284 (9) −0.0008 (8) 0.0077 (8) −0.0031 (8)
C19 0.0319 (11) 0.0475 (13) 0.0549 (13) 0.0068 (10) 0.0168 (10) 0.0000 (11)

Geometric parameters (Å, º)

F1—C1 1.339 (3) C6—H6 0.9500
F2—C1 1.351 (4) C7—H7 0.9500
F3—C1 1.312 (5) C8—C9 1.487 (3)
F1'—C1 1.363 (7) C8—H8A 0.9900
F2'—C1 1.287 (8) C8—H8B 0.9900
F3'—C1 1.337 (9) C9—C10 1.300 (3)
O1—C5 1.361 (2) C9—H9 0.9500
O1—C8 1.438 (2) C10—C11 1.488 (3)
O2—C12 1.373 (2) C10—H10 0.9500
O2—C11 1.429 (2) C11—H11A 0.9900
O3—C18 1.210 (2) C11—H11B 0.9900
O4—C18 1.379 (2) C12—C13 1.384 (3)
O4—C17 1.395 (2) C12—C17 1.401 (3)
N1—C18 1.329 (2) C13—C14 1.387 (3)
N1—C19 1.451 (3) C13—H13 0.9500
N1—H1 0.8800 C14—C15 1.379 (3)
C1—C2 1.479 (3) C14—H14 0.9500
C2—C7 1.383 (3) C15—C16 1.390 (3)
C2—C3 1.387 (3) C15—H15 0.9500
C3—C4 1.379 (3) C16—C17 1.369 (3)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.392 (3) C19—H19A 0.9800
C4—H4 0.9500 C19—H19B 0.9800
C5—C6 1.393 (3) C19—H19C 0.9800
C6—C7 1.376 (3)
C5—O1—C8 117.30 (15) H8A—C8—H8B 108.4
C12—O2—C11 117.06 (15) C10—C9—C8 123.63 (19)
C18—O4—C17 116.65 (14) C10—C9—H9 118.2
C18—N1—C19 121.73 (18) C8—C9—H9 118.2
C18—N1—H1 119.1 C9—C10—C11 128.22 (19)
C19—N1—H1 119.1 C9—C10—H10 115.9
F2'—C1—F3' 104.5 (10) C11—C10—H10 115.9
F3—C1—F1 107.3 (4) O2—C11—C10 108.98 (16)
F3—C1—F2 104.9 (4) O2—C11—H11A 109.9
F1—C1—F2 100.1 (3) C10—C11—H11A 109.9
F2'—C1—F1' 113.7 (8) O2—C11—H11B 109.9
F3'—C1—F1' 99.7 (8) C10—C11—H11B 109.9
F2'—C1—C2 119.7 (6) H11A—C11—H11B 108.3
F3—C1—C2 116.1 (4) O2—C12—C13 125.72 (17)
F3'—C1—C2 109.8 (7) O2—C12—C17 115.42 (16)
F1—C1—C2 115.2 (2) C13—C12—C17 118.84 (18)
F2—C1—C2 111.6 (3) C12—C13—C14 119.89 (19)
F1'—C1—C2 107.4 (5) C12—C13—H13 120.1
C7—C2—C3 119.2 (2) C14—C13—H13 120.1
C7—C2—C1 121.03 (19) C15—C14—C13 120.68 (19)
C3—C2—C1 119.8 (2) C15—C14—H14 119.7
C4—C3—C2 120.9 (2) C13—C14—H14 119.7
C4—C3—H3 119.5 C14—C15—C16 119.8 (2)
C2—C3—H3 119.5 C14—C15—H15 120.1
C3—C4—C5 119.58 (19) C16—C15—H15 120.1
C3—C4—H4 120.2 C17—C16—C15 119.53 (19)
C5—C4—H4 120.2 C17—C16—H16 120.2
O1—C5—C4 124.58 (18) C15—C16—H16 120.2
O1—C5—C6 115.86 (18) C16—C17—O4 119.88 (17)
C4—C5—C6 119.54 (19) C16—C17—C12 121.22 (18)
C7—C6—C5 120.2 (2) O4—C17—C12 118.71 (17)
C7—C6—H6 119.9 O3—C18—N1 126.96 (18)
C5—C6—H6 119.9 O3—C18—O4 123.69 (17)
C6—C7—C2 120.6 (2) N1—C18—O4 109.33 (16)
C6—C7—H7 119.7 N1—C19—H19A 109.5
C2—C7—H7 119.7 N1—C19—H19B 109.5
O1—C8—C9 108.10 (16) H19A—C19—H19B 109.5
O1—C8—H8A 110.1 N1—C19—H19C 109.5
C9—C8—H8A 110.1 H19A—C19—H19C 109.5
O1—C8—H8B 110.1 H19B—C19—H19C 109.5
C9—C8—H8B 110.1
F2'—C1—C2—C7 −132.8 (10) C5—O1—C8—C9 −175.09 (16)
F3—C1—C2—C7 12.8 (5) O1—C8—C9—C10 −160.9 (2)
F3'—C1—C2—C7 −11.9 (10) C8—C9—C10—C11 −177.9 (2)
F1—C1—C2—C7 139.4 (4) C12—O2—C11—C10 −165.39 (16)
F2—C1—C2—C7 −107.3 (3) C9—C10—C11—O2 −0.2 (3)
F1'—C1—C2—C7 95.6 (11) C11—O2—C12—C13 −19.5 (3)
F2'—C1—C2—C3 46.2 (10) C11—O2—C12—C17 161.91 (17)
F3—C1—C2—C3 −168.2 (4) O2—C12—C13—C14 −178.79 (18)
F3'—C1—C2—C3 167.0 (10) C17—C12—C13—C14 −0.2 (3)
F1—C1—C2—C3 −41.6 (4) C12—C13—C14—C15 0.4 (3)
F2—C1—C2—C3 71.7 (3) C13—C14—C15—C16 0.1 (3)
F1'—C1—C2—C3 −85.4 (11) C14—C15—C16—C17 −0.7 (3)
C7—C2—C3—C4 1.2 (3) C15—C16—C17—O4 175.88 (17)
C1—C2—C3—C4 −177.75 (19) C15—C16—C17—C12 0.8 (3)
C2—C3—C4—C5 −0.2 (3) C18—O4—C17—C16 117.69 (19)
C8—O1—C5—C4 −12.6 (3) C18—O4—C17—C12 −67.1 (2)
C8—O1—C5—C6 169.01 (18) O2—C12—C17—C16 178.33 (17)
C3—C4—C5—O1 −179.48 (18) C13—C12—C17—C16 −0.4 (3)
C3—C4—C5—C6 −1.1 (3) O2—C12—C17—O4 3.2 (3)
O1—C5—C6—C7 179.85 (19) C13—C12—C17—O4 −175.48 (17)
C4—C5—C6—C7 1.3 (3) C19—N1—C18—O3 −1.9 (3)
C5—C6—C7—C2 −0.3 (3) C19—N1—C18—O4 176.30 (17)
C3—C2—C7—C6 −1.0 (3) C17—O4—C18—O3 −18.9 (3)
C1—C2—C7—C6 178.0 (2) C17—O4—C18—N1 162.82 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.88 2.22 3.072 (2) 163

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2102).

References

  1. Carlier, P. R., Chow, E. S. H., Han, Y., Liu, J., Yazal, J. E. & Pang, Y. R. (1999). J. Med. Chem. 42, 4225–4231. [DOI] [PubMed]
  2. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I. & Sussman, J. L. (1993). Proc. Natl. Acad. Sci. USA, 90, 9031–9035. [DOI] [PMC free article] [PubMed]
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Hu, M. K., Wu, L. J., Hsiao, G. & Yen, M. H. (2002). J. Med. Chem. 45, 2277–2282. [DOI] [PubMed]
  5. Kitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., Read, R. J. & Bundle, D. R. (2000). Nature, 403, 669–672. [DOI] [PubMed]
  6. Kopytek, S. J., Standaert, R. F., Dyer, J. C. D. & Hu, J. C. (2000). Chem Biol 7, 313–321. [DOI] [PubMed]
  7. Kryger, G., Silman, I. & Sussman, J. (1999). Structure, 7, 297–306. [DOI] [PubMed]
  8. Lee, Y. C. & Lee, R. T. (1995). Acc. Chem Res 28, 321–327.
  9. Luedtke, N. W., Lui, Q. & Tor, Y. (2003). Biochemistry, 42, 11391–11403. [DOI] [PubMed]
  10. Ma, H. J., Xie, R. L., Zhao, Q. F., Mei, X. D. & Ning, J. (2010). J. Agric. Food Chem. 58, 12817–12821. [DOI] [PubMed]
  11. Mammen, M., Choi, S. K. & Whitesides, G. M. (1998). Angew. Chem. Int. Ed. 37, 2754–2794. [DOI] [PubMed]
  12. Pang, Y. P., Quiram, P., Jelacic, T., Hong, F. & Brimijoin, S. (1996). J. Biol. Chem. 271, 23646–23649. [DOI] [PubMed]
  13. Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872–879. [DOI] [PubMed]
  16. Zhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2008). J Pestic Sci 33, 371–375.
  17. Zhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2009). Pestic Biochem Physiol 95, 131–134.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001347/mw2102sup1.cif

e-69-0o326-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001347/mw2102Isup2.hkl

e-69-0o326-Isup2.hkl (155.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001347/mw2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES