Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 9;69(Pt 3):m142. doi: 10.1107/S1600536813003632

Tris(3,4,7,8-tetra­methyl-1,10-phenanthrolin-1-ium) hexa­cyanidocobaltate(III) penta­hydrate

Ai-Yun Hu a, Deng-Yong Yu a, Ai-Hua Yuan a,*
PMCID: PMC3588511  PMID: 23476490

Abstract

The structure of the title compound, (C16H17N2)3[Co(CN)6]·5H2O, consists of three 3,4,7,8-tetra­methyl-1,10-phenanthrolin-1-ium cations, a [Co(CN)6]3− anion and five water mol­ecules of crystallization, one of which is disordered over two sets of sites in a 0.587 (15):0.413 (15) ratio. The [Co(CN)6]3− anion exhibits an octa­hedral geometry. In the structure, cations and anions are linked alternatively through O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds, π–π inter­actions [centroid–centroid distances = 3.523 (2)–4.099 (2) Å] and van der Waals forces, forming a three-dimensional supra­molecular network.

Related literature  

For general background to hexacyanidometallate-based compounds, see: Andruh et al. (2009); Tokoro & Ohkoshi (2011). For related structures, see: Qian et al. (2011); Shatruk et al. (2007).graphic file with name e-69-0m142-scheme1.jpg

Experimental  

Crystal data  

  • (C16H17N2)3[Co(CN)6]·5H2O

  • M r = 1017.08

  • Triclinic, Inline graphic

  • a = 12.836 (2) Å

  • b = 14.458 (2) Å

  • c = 16.645 (3) Å

  • α = 97.216 (2)°

  • β = 110.934 (2)°

  • γ = 112.179 (2)°

  • V = 2547.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.16 × 0.15 × 0.13 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.939, T max = 0.950

  • 19411 measured reflections

  • 9402 independent reflections

  • 6096 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.155

  • S = 1.05

  • 9402 reflections

  • 671 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003632/rz5042sup1.cif

e-69-0m142-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003632/rz5042Isup2.hkl

e-69-0m142-Isup2.hkl (459.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5′ 0.82 1.84 2.616 (7) 157
O1—H1A⋯O5 0.82 2.02 2.823 (8) 165
O1—H1B⋯N5i 0.82 2.27 3.068 (4) 163
O2—H2A⋯N3ii 0.82 2.25 3.044 (4) 164
O2—H2B⋯N3 0.82 2.09 2.901 (4) 169
O3—H3A⋯N2 0.82 2.11 2.909 (4) 163
O3—H3B⋯O2ii 0.82 2.01 2.813 (3) 168
O4—H4A⋯O3 0.82 1.89 2.707 (3) 173
O4—H4B⋯O1 0.82 1.94 2.735 (4) 164
N8—H8N⋯O4iii 0.95 1.72 2.636 (4) 161
N9—H9N⋯N5iv 0.95 2.14 2.919 (4) 138
N11—H11N⋯N4i 0.95 2.11 2.799 (4) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

In the past few years, hexacyanometallates [M(CN)6]3- (M = Fe, Co, Cr) have been employed usually as building blocks to react with the second metal ions in the presence of organic ligands, forming several types of bimetallic assemblies with various dimensional structures and interesting properties (Andruh et al., 2009; Tokoro et al., 2011). However, the development of hexacyano- and lanthanide-based assemblies has been somewhat hampered by the tendency of the lanthanide ions to adopt higher coordination numbers, and their ability to easily adapt to a given environment. Recently, we used the [Co(CN)6]3- presursor to react with lanthanide ion Ce3+ and the chelated ligand 3,4,7,8-tetramethyl-1,10-phenanthrolin (tmphen), to construct organic-inorganic hybrid materials. Unexpectedly, a new ion-pair compound (Htmphen)3Co(CN)6.5H2O without Ce3+ ions was obtained instead.

The structure of the title compound, (C16H17N2)3Co(CN)6.5H2O, consists of three 3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium cations, a [Co(CN)6]3- anion and five water molecules of crystallization (Fig. 1). The six-coordinated [Co(CN)6]3- unit exhibits an octahedral geometry, in which the mean Co—C and C—N bond distances are 1.946 (4) Å and 1.151 (2) Å, respectively, while the Co-CN bonds are almost linear with the maximum deviation from linearity of 2.9°. The cations and anions are linked alternatively through hydrogen bonds (Table 1), π···π interactions (centroid-to-centroid distances = 3.523 (2)–4.099 (2) Å) and van der Waals forces to form a three-dimensional supramolecular network (Fig. 2). The structure of the title compound is different from those of hexacyanide-based family of pentanuclear clusters {[M(tmphen)2]3[M'(CN)6]2]} (M = Cr, Mn, Co, Ni, Zn; M' = Co, Cr, Fe) (Shatruk et al., 2007) and octacyanide-based helical chains [Ln(tmphen)2(DMF)n][M(CN)8].xsolvents (Ln = Sm, Pr; n = 2, 5; M = Mo, W) (Qian et al., 2011) reported previously.

Experimental

The title compound was prepared at room temperature by slow diffusion of an ethanol solution containing Ce(NO3)3.6H2O (0.10 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthrolin (0.20 mmol) into an aqueous solution of K3[Co(CN)6].H2O (0.10 mmol). After two weeks, colourless plate-like crystals were obtained.

Refinement

All non-hydrogen atoms were refined anisotropically. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin were calculated at idealized positions and included in the refinement in a riding mode. The (N)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin and (O)H atoms of water molecules were located from difference Fourier maps and refined as riding (N–H = 0.95 Å, U(H) = 1.2Ueq(N); O–H = 0.82 or 0.99 Å, U(H) = 1.5Ueq(O)). The O5 atom was disordered over two sites in a 0.587 (15):0.413 (15) ratio, sharing the hydrogen atoms. The temperature factors of the atoms C3, C5, N3 and N5 were restrained to be nearly isotropic.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title compound, showing the 30% probability thermal motion ellipsoid. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin have been omitted for clarity.

Fig. 2.

Fig. 2.

The three-dimensional supramolecular network.

Crystal data

(C16H17N2)3[Co(CN)6]·5H2O Z = 2
Mr = 1017.08 F(000) = 1072
Triclinic, P1 Dx = 1.326 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 12.836 (2) Å Cell parameters from 2791 reflections
b = 14.458 (2) Å θ = 2.4–25.6°
c = 16.645 (3) Å µ = 0.40 mm1
α = 97.216 (2)° T = 173 K
β = 110.934 (2)° Plate, colourless
γ = 112.179 (2)° 0.16 × 0.15 × 0.13 mm
V = 2547.6 (7) Å3

Data collection

Bruker SMART APEX CCD diffractometer 9402 independent reflections
Radiation source: fine-focus sealed tube 6096 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
phi and ω scans θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −15→15
Tmin = 0.939, Tmax = 0.950 k = −17→17
19411 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3
9402 reflections (Δ/σ)max < 0.001
671 parameters Δρmax = 0.49 e Å3
2 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.51825 (4) 0.24448 (3) 0.26906 (3) 0.02730 (15)
O1 0.5715 (2) 0.91825 (19) 0.24394 (19) 0.0541 (8)
H1A 0.5693 0.9276 0.1959 0.081*
H1B 0.5740 0.9659 0.2782 0.081*
O2 0.6322 (2) 0.50998 (19) 0.61099 (15) 0.0434 (7)
H2A 0.6087 0.5553 0.6057 0.065*
H2B 0.5936 0.4611 0.5642 0.065*
O3 0.4375 (2) 0.5764 (2) 0.26299 (17) 0.0476 (7)
H3A 0.4350 0.5284 0.2291 0.071*
H3B 0.4146 0.5583 0.3010 0.071*
O4 0.3853 (2) 0.7174 (2) 0.18589 (19) 0.0585 (8)
H4A 0.3958 0.6733 0.2097 0.088*
H4B 0.4426 0.7769 0.2134 0.088*
N1 0.7884 (3) 0.4121 (2) 0.3205 (2) 0.0377 (8)
N2 0.4217 (3) 0.3833 (2) 0.1708 (2) 0.0401 (8)
N3 0.5063 (3) 0.3588 (2) 0.4335 (2) 0.0353 (7)
N4 0.2517 (3) 0.0686 (2) 0.21248 (19) 0.0358 (7)
N5 0.6395 (3) 0.1225 (2) 0.37695 (19) 0.0339 (7)
N6 0.5074 (3) 0.1270 (2) 0.0956 (2) 0.0417 (8)
N7 1.1132 (2) 0.5540 (2) 0.16078 (18) 0.0277 (7)
N8 1.1715 (2) 0.7221 (2) 0.09908 (17) 0.0280 (7)
H8N 1.2393 0.7114 0.1362 0.034*
N9 1.0938 (2) 0.8048 (2) 0.51172 (17) 0.0261 (6)
H9N 1.1790 0.8521 0.5299 0.031*
N10 1.1690 (3) 0.9788 (2) 0.45850 (18) 0.0301 (7)
N11 0.1916 (3) 0.8911 (2) 0.27169 (19) 0.0337 (7)
H11N 0.1570 0.9236 0.2308 0.040*
N12 −0.0457 (3) 0.8539 (2) 0.16862 (18) 0.0309 (7)
C1 0.6879 (3) 0.3501 (3) 0.3019 (2) 0.0253 (7)
C2 0.4557 (3) 0.3297 (2) 0.2058 (2) 0.0258 (8)
C3 0.5136 (3) 0.3162 (2) 0.3737 (2) 0.0261 (8)
C4 0.3490 (3) 0.1353 (3) 0.2331 (2) 0.0262 (8)
C5 0.5921 (3) 0.1661 (2) 0.3369 (2) 0.0264 (8)
C6 0.5133 (3) 0.1713 (3) 0.1613 (2) 0.0294 (8)
C7 1.0826 (3) 0.4713 (3) 0.1899 (2) 0.0311 (8)
H7 1.1490 0.4615 0.2303 0.037*
C8 0.9595 (3) 0.3967 (3) 0.1658 (2) 0.0315 (8)
C9 0.8617 (3) 0.4075 (3) 0.1050 (2) 0.0313 (8)
C10 0.8899 (3) 0.4943 (3) 0.0708 (2) 0.0261 (8)
C11 0.7977 (3) 0.5151 (3) 0.0080 (2) 0.0305 (8)
H11 0.7116 0.4669 −0.0147 0.037*
C12 0.8288 (3) 0.6010 (3) −0.0200 (2) 0.0311 (8)
H12 0.7642 0.6120 −0.0611 0.037*
C13 0.9569 (3) 0.6759 (3) 0.0105 (2) 0.0260 (8)
C14 0.9947 (3) 0.7681 (3) −0.0155 (2) 0.0312 (8)
C15 1.1214 (3) 0.8357 (3) 0.0182 (2) 0.0325 (8)
C16 1.2062 (3) 0.8085 (3) 0.0748 (2) 0.0342 (9)
H16 1.2931 0.8537 0.0972 0.041*
C17 1.0486 (3) 0.6550 (2) 0.0698 (2) 0.0250 (8)
C18 1.0173 (3) 0.5644 (2) 0.1015 (2) 0.0244 (7)
C19 0.9394 (4) 0.3094 (3) 0.2078 (2) 0.0416 (10)
H19A 0.8925 0.3134 0.2423 0.062*
H19B 1.0207 0.3157 0.2482 0.062*
H19C 0.8918 0.2419 0.1603 0.062*
C20 0.7263 (3) 0.3302 (3) 0.0763 (3) 0.0435 (10)
H20A 0.7233 0.2684 0.0959 0.065*
H20B 0.6799 0.3088 0.0105 0.065*
H20C 0.6884 0.3633 0.1040 0.065*
C21 0.8980 (4) 0.7920 (3) −0.0795 (3) 0.0452 (10)
H21A 0.8377 0.7908 −0.0560 0.068*
H21B 0.8540 0.7392 −0.1387 0.068*
H21C 0.9394 0.8614 −0.0855 0.068*
C22 1.1710 (4) 0.9373 (3) −0.0036 (3) 0.0478 (11)
H22A 1.1416 0.9227 −0.0690 0.072*
H22B 1.2628 0.9715 0.0263 0.072*
H22C 1.1407 0.9836 0.0178 0.072*
C23 1.0645 (3) 0.7197 (3) 0.5392 (2) 0.0288 (8)
H23 1.1296 0.7065 0.5766 0.035*
C24 0.9409 (3) 0.6502 (3) 0.5141 (2) 0.0291 (8)
C25 0.8452 (3) 0.6699 (3) 0.4588 (2) 0.0290 (8)
C26 0.8779 (3) 0.7604 (3) 0.4303 (2) 0.0262 (8)
C27 0.7880 (3) 0.7885 (3) 0.3745 (2) 0.0306 (8)
H27 0.7014 0.7449 0.3553 0.037*
C28 0.8232 (3) 0.8757 (3) 0.3482 (2) 0.0303 (8)
H28 0.7605 0.8918 0.3113 0.036*
C29 0.9525 (3) 0.9445 (3) 0.3743 (2) 0.0281 (8)
C30 0.9927 (3) 1.0352 (3) 0.3466 (2) 0.0310 (8)
C31 1.1196 (3) 1.0955 (3) 0.3763 (2) 0.0324 (8)
C32 1.2021 (3) 1.0632 (3) 0.4316 (2) 0.0350 (9)
H32 1.2892 1.1056 0.4514 0.042*
C33 1.0445 (3) 0.9205 (3) 0.4294 (2) 0.0262 (8)
C34 1.0047 (3) 0.8277 (3) 0.4572 (2) 0.0256 (8)
C35 0.9124 (3) 0.5551 (3) 0.5469 (2) 0.0378 (9)
H35A 0.9911 0.5556 0.5854 0.057*
H35B 0.8626 0.4916 0.4951 0.057*
H35C 0.8651 0.5564 0.5817 0.057*
C36 0.7113 (3) 0.5964 (3) 0.4300 (2) 0.0379 (9)
H36A 0.7061 0.5473 0.4657 0.057*
H36B 0.6723 0.5574 0.3660 0.057*
H36C 0.6673 0.6362 0.4395 0.057*
C37 0.8988 (4) 1.0638 (3) 0.2853 (2) 0.0430 (10)
H37A 0.9414 1.1364 0.2860 0.065*
H37B 0.8346 1.0565 0.3062 0.065*
H37C 0.8591 1.0171 0.2237 0.065*
C38 1.1727 (4) 1.1939 (3) 0.3510 (3) 0.0439 (10)
H38A 1.1478 1.1756 0.2860 0.066*
H38B 1.2644 1.2284 0.3839 0.066*
H38C 1.1405 1.2415 0.3668 0.066*
C39 0.3131 (3) 0.9164 (3) 0.3214 (2) 0.0360 (9)
H39 0.3773 0.9788 0.3237 0.043*
C40 0.3438 (3) 0.8516 (3) 0.3688 (2) 0.0368 (9)
C41 0.2516 (3) 0.7609 (3) 0.3660 (2) 0.0317 (8)
C42 0.1219 (3) 0.7367 (3) 0.3140 (2) 0.0309 (8)
C43 0.0205 (3) 0.6466 (3) 0.3087 (2) 0.0318 (8)
H43 0.0366 0.5994 0.3404 0.038*
C44 −0.1032 (4) 0.6266 (3) 0.2572 (2) 0.0330 (9)
H44 −0.1703 0.5663 0.2548 0.040*
C45 −0.1296 (3) 0.6947 (3) 0.2088 (2) 0.0309 (8)
C46 −0.2560 (3) 0.6764 (3) 0.1541 (2) 0.0360 (9)
C47 −0.2714 (3) 0.7463 (3) 0.1094 (2) 0.0347 (9)
C48 −0.1634 (4) 0.8334 (3) 0.1188 (2) 0.0375 (9)
H48 −0.1763 0.8811 0.0868 0.045*
C49 −0.0317 (3) 0.7835 (3) 0.2123 (2) 0.0287 (8)
C50 0.0968 (3) 0.8043 (2) 0.2669 (2) 0.0255 (8)
C51 0.4817 (4) 0.8833 (3) 0.4242 (3) 0.0543 (12)
H51A 0.4982 0.8859 0.4868 0.081*
H51B 0.5327 0.9524 0.4221 0.081*
H51C 0.5032 0.8318 0.3992 0.081*
C52 0.2805 (4) 0.6868 (3) 0.4130 (3) 0.0490 (11)
H52A 0.3684 0.7030 0.4307 0.074*
H52B 0.2263 0.6150 0.3724 0.074*
H52C 0.2660 0.6935 0.4669 0.074*
C53 −0.3644 (4) 0.5837 (3) 0.1475 (3) 0.0545 (12)
H53A −0.3694 0.5928 0.2052 0.082*
H53B −0.3539 0.5209 0.1334 0.082*
H53C −0.4416 0.5762 0.0997 0.082*
C54 −0.3971 (4) 0.7352 (3) 0.0503 (3) 0.0563 (12)
H54A −0.4462 0.6666 0.0043 0.084*
H54B −0.3868 0.7905 0.0210 0.084*
H54C −0.4407 0.7411 0.0870 0.084*
O5 0.6090 (10) 0.9793 (6) 0.0979 (3) 0.068 (3) 0.587 (15)
O5' 0.4980 (14) 0.9293 (7) 0.0788 (5) 0.057 (4) 0.413 (15)
H5A 0.5472 1.0060 0.0968 0.086*
H5B 0.5442 0.9160 0.0461 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0261 (3) 0.0243 (3) 0.0291 (3) 0.0111 (2) 0.0102 (2) 0.0079 (2)
O1 0.0565 (19) 0.0345 (16) 0.0607 (19) 0.0151 (14) 0.0237 (15) 0.0061 (14)
O2 0.0562 (18) 0.0448 (16) 0.0354 (15) 0.0327 (14) 0.0168 (13) 0.0109 (12)
O3 0.0563 (18) 0.0501 (17) 0.0472 (17) 0.0315 (15) 0.0239 (14) 0.0215 (14)
O4 0.0308 (15) 0.0395 (16) 0.081 (2) 0.0111 (13) 0.0029 (15) 0.0265 (16)
N1 0.0292 (18) 0.0346 (18) 0.0413 (19) 0.0100 (16) 0.0124 (16) 0.0105 (15)
N2 0.0347 (18) 0.0395 (19) 0.049 (2) 0.0226 (16) 0.0125 (16) 0.0211 (16)
N3 0.0436 (19) 0.0335 (18) 0.0297 (17) 0.0197 (16) 0.0162 (15) 0.0055 (14)
N4 0.0308 (18) 0.0282 (18) 0.0392 (19) 0.0074 (15) 0.0132 (15) 0.0079 (15)
N5 0.0273 (16) 0.0311 (17) 0.0393 (18) 0.0139 (14) 0.0087 (14) 0.0146 (15)
N6 0.051 (2) 0.0357 (19) 0.0380 (19) 0.0159 (17) 0.0244 (17) 0.0066 (16)
N7 0.0252 (16) 0.0272 (16) 0.0298 (16) 0.0143 (14) 0.0093 (13) 0.0069 (13)
N8 0.0251 (16) 0.0278 (16) 0.0271 (16) 0.0114 (14) 0.0084 (13) 0.0073 (13)
N9 0.0208 (15) 0.0272 (16) 0.0240 (15) 0.0075 (13) 0.0077 (12) 0.0049 (13)
N10 0.0252 (16) 0.0287 (17) 0.0318 (17) 0.0102 (14) 0.0113 (14) 0.0051 (14)
N11 0.0371 (18) 0.0330 (17) 0.0316 (17) 0.0150 (15) 0.0155 (15) 0.0132 (14)
N12 0.0335 (17) 0.0268 (16) 0.0329 (17) 0.0134 (14) 0.0151 (14) 0.0102 (14)
C1 0.028 (2) 0.0218 (19) 0.0249 (18) 0.0144 (17) 0.0078 (16) 0.0068 (15)
C2 0.0192 (18) 0.0230 (18) 0.0268 (19) 0.0056 (15) 0.0071 (15) 0.0035 (16)
C3 0.0210 (18) 0.0200 (18) 0.031 (2) 0.0078 (15) 0.0056 (16) 0.0110 (16)
C4 0.028 (2) 0.0246 (19) 0.0243 (19) 0.0119 (17) 0.0090 (16) 0.0099 (15)
C5 0.0226 (18) 0.0226 (18) 0.0246 (18) 0.0050 (15) 0.0084 (15) 0.0013 (15)
C6 0.0255 (19) 0.0230 (19) 0.037 (2) 0.0084 (16) 0.0134 (17) 0.0116 (17)
C7 0.038 (2) 0.034 (2) 0.0273 (19) 0.0232 (18) 0.0132 (17) 0.0095 (17)
C8 0.046 (2) 0.029 (2) 0.028 (2) 0.0211 (19) 0.0204 (18) 0.0092 (16)
C9 0.038 (2) 0.0253 (19) 0.032 (2) 0.0120 (17) 0.0213 (18) 0.0062 (16)
C10 0.0301 (19) 0.0281 (19) 0.0214 (17) 0.0137 (16) 0.0134 (15) 0.0041 (15)
C11 0.0258 (19) 0.035 (2) 0.0267 (19) 0.0114 (17) 0.0119 (16) 0.0035 (16)
C12 0.030 (2) 0.042 (2) 0.0250 (19) 0.0196 (18) 0.0122 (16) 0.0104 (17)
C13 0.031 (2) 0.0270 (19) 0.0223 (18) 0.0144 (16) 0.0132 (16) 0.0052 (15)
C14 0.041 (2) 0.034 (2) 0.0258 (19) 0.0215 (19) 0.0170 (17) 0.0094 (16)
C15 0.045 (2) 0.026 (2) 0.027 (2) 0.0145 (18) 0.0172 (18) 0.0076 (16)
C16 0.030 (2) 0.027 (2) 0.034 (2) 0.0043 (17) 0.0133 (17) 0.0031 (17)
C17 0.029 (2) 0.0240 (19) 0.0202 (17) 0.0103 (16) 0.0115 (15) 0.0025 (15)
C18 0.0309 (19) 0.0248 (18) 0.0221 (18) 0.0151 (16) 0.0145 (16) 0.0044 (15)
C19 0.055 (3) 0.037 (2) 0.040 (2) 0.023 (2) 0.024 (2) 0.0150 (19)
C20 0.037 (2) 0.043 (2) 0.051 (3) 0.013 (2) 0.024 (2) 0.019 (2)
C21 0.054 (3) 0.046 (2) 0.048 (2) 0.030 (2) 0.023 (2) 0.027 (2)
C22 0.057 (3) 0.031 (2) 0.044 (2) 0.013 (2) 0.017 (2) 0.0133 (19)
C23 0.028 (2) 0.032 (2) 0.0253 (19) 0.0151 (17) 0.0095 (16) 0.0079 (16)
C24 0.030 (2) 0.031 (2) 0.0238 (19) 0.0128 (17) 0.0129 (16) 0.0045 (16)
C25 0.030 (2) 0.030 (2) 0.0238 (18) 0.0121 (17) 0.0117 (16) 0.0036 (15)
C26 0.0244 (19) 0.031 (2) 0.0226 (18) 0.0118 (16) 0.0114 (15) 0.0037 (15)
C27 0.0224 (19) 0.034 (2) 0.033 (2) 0.0103 (16) 0.0137 (16) 0.0047 (17)
C28 0.032 (2) 0.036 (2) 0.0268 (19) 0.0204 (18) 0.0120 (16) 0.0082 (16)
C29 0.031 (2) 0.033 (2) 0.0231 (18) 0.0172 (17) 0.0136 (16) 0.0024 (16)
C30 0.043 (2) 0.031 (2) 0.0263 (19) 0.0218 (19) 0.0191 (18) 0.0062 (16)
C31 0.040 (2) 0.029 (2) 0.032 (2) 0.0168 (18) 0.0201 (18) 0.0069 (16)
C32 0.030 (2) 0.031 (2) 0.038 (2) 0.0079 (17) 0.0165 (18) 0.0057 (18)
C33 0.0263 (19) 0.0286 (19) 0.0243 (18) 0.0120 (16) 0.0132 (15) 0.0052 (15)
C34 0.0256 (19) 0.029 (2) 0.0210 (18) 0.0140 (16) 0.0094 (15) 0.0026 (15)
C35 0.038 (2) 0.034 (2) 0.037 (2) 0.0132 (18) 0.0143 (18) 0.0162 (18)
C36 0.032 (2) 0.035 (2) 0.040 (2) 0.0110 (18) 0.0131 (18) 0.0139 (18)
C37 0.048 (3) 0.040 (2) 0.045 (2) 0.025 (2) 0.017 (2) 0.0172 (19)
C38 0.052 (3) 0.037 (2) 0.056 (3) 0.022 (2) 0.033 (2) 0.020 (2)
C39 0.032 (2) 0.039 (2) 0.031 (2) 0.0140 (18) 0.0110 (18) 0.0086 (18)
C40 0.038 (2) 0.045 (2) 0.030 (2) 0.022 (2) 0.0145 (18) 0.0094 (18)
C41 0.043 (2) 0.030 (2) 0.0228 (19) 0.0201 (19) 0.0131 (17) 0.0053 (16)
C42 0.048 (2) 0.028 (2) 0.0258 (19) 0.0223 (18) 0.0198 (18) 0.0102 (16)
C43 0.050 (2) 0.0225 (19) 0.031 (2) 0.0163 (18) 0.0248 (19) 0.0128 (16)
C44 0.048 (2) 0.0243 (19) 0.032 (2) 0.0157 (18) 0.0243 (19) 0.0091 (16)
C45 0.038 (2) 0.0246 (19) 0.033 (2) 0.0118 (17) 0.0221 (18) 0.0054 (16)
C46 0.037 (2) 0.037 (2) 0.034 (2) 0.0156 (19) 0.0181 (18) 0.0045 (18)
C47 0.030 (2) 0.037 (2) 0.029 (2) 0.0129 (18) 0.0106 (17) −0.0029 (17)
C48 0.047 (2) 0.041 (2) 0.032 (2) 0.028 (2) 0.0154 (19) 0.0151 (18)
C49 0.039 (2) 0.0254 (19) 0.0269 (19) 0.0171 (17) 0.0171 (17) 0.0077 (16)
C50 0.032 (2) 0.0208 (18) 0.0228 (18) 0.0085 (16) 0.0156 (16) 0.0026 (15)
C51 0.037 (2) 0.067 (3) 0.055 (3) 0.026 (2) 0.013 (2) 0.021 (2)
C52 0.052 (3) 0.044 (2) 0.048 (3) 0.027 (2) 0.012 (2) 0.016 (2)
C53 0.039 (2) 0.055 (3) 0.058 (3) 0.012 (2) 0.023 (2) 0.008 (2)
C54 0.054 (3) 0.066 (3) 0.053 (3) 0.035 (3) 0.020 (2) 0.019 (2)
O5 0.095 (8) 0.081 (5) 0.038 (3) 0.064 (6) 0.017 (3) 0.010 (3)
O5' 0.106 (11) 0.038 (5) 0.049 (5) 0.040 (6) 0.047 (6) 0.018 (4)

Geometric parameters (Å, º)

Co1—C6 1.932 (4) C23—H23 0.9500
Co1—C2 1.934 (3) C24—C25 1.400 (4)
Co1—C3 1.944 (4) C24—C35 1.507 (5)
Co1—C1 1.950 (4) C25—C26 1.413 (5)
Co1—C4 1.953 (4) C25—C36 1.489 (5)
Co1—C5 1.956 (3) C26—C34 1.403 (4)
O1—H1A 0.8198 C26—C27 1.429 (5)
O1—H1B 0.8201 C27—C28 1.354 (5)
O2—H2A 0.8200 C27—H27 0.9500
O2—H2B 0.8201 C28—C29 1.436 (5)
O3—H3A 0.8196 C28—H28 0.9500
O3—H3B 0.8198 C29—C33 1.403 (4)
O4—H4A 0.8198 C29—C30 1.419 (5)
O4—H4B 0.8200 C30—C31 1.379 (5)
N1—C1 1.155 (4) C30—C37 1.506 (5)
N2—C2 1.148 (4) C31—C32 1.405 (5)
N3—C3 1.156 (4) C31—C38 1.513 (5)
N4—C4 1.143 (4) C32—H32 0.9500
N5—C5 1.148 (4) C33—C34 1.444 (5)
N6—C6 1.158 (4) C35—H35A 0.9800
N7—C7 1.322 (4) C35—H35B 0.9800
N7—C18 1.349 (4) C35—H35C 0.9800
N8—C16 1.326 (4) C36—H36A 0.9800
N8—C17 1.358 (4) C36—H36B 0.9800
N8—H8N 0.9499 C36—H36C 0.9800
N9—C23 1.334 (4) C37—H37A 0.9800
N9—C34 1.364 (4) C37—H37B 0.9800
N9—H9N 0.9500 C37—H37C 0.9800
N10—C32 1.324 (4) C38—H38A 0.9800
N10—C33 1.351 (4) C38—H38B 0.9800
N11—C50 1.347 (4) C38—H38C 0.9800
N11—C39 1.349 (4) C39—C40 1.379 (5)
N11—H11N 0.9497 C39—H39 0.9500
N12—C48 1.328 (4) C40—C41 1.376 (5)
N12—C49 1.351 (4) C40—C51 1.520 (5)
C7—C8 1.404 (5) C41—C42 1.448 (5)
C7—H7 0.9500 C41—C52 1.483 (5)
C8—C9 1.380 (5) C42—C50 1.387 (4)
C8—C19 1.501 (5) C42—C43 1.417 (5)
C9—C10 1.420 (5) C43—C44 1.400 (5)
C9—C20 1.518 (5) C43—H43 0.9500
C10—C18 1.408 (4) C44—C45 1.411 (5)
C10—C11 1.432 (4) C44—H44 0.9500
C11—C12 1.350 (5) C45—C49 1.394 (5)
C11—H11 0.9500 C45—C46 1.445 (5)
C12—C13 1.434 (4) C46—C47 1.359 (5)
C12—H12 0.9500 C46—C53 1.481 (5)
C13—C17 1.402 (4) C47—C48 1.417 (5)
C13—C14 1.416 (5) C47—C54 1.492 (5)
C14—C15 1.388 (5) C48—H48 0.9500
C14—C21 1.505 (5) C49—C50 1.458 (5)
C15—C16 1.382 (5) C51—H51A 0.9800
C15—C22 1.512 (5) C51—H51B 0.9800
C16—H16 0.9500 C51—H51C 0.9800
C17—C18 1.443 (4) C52—H52A 0.9800
C19—H19A 0.9800 C52—H52B 0.9800
C19—H19B 0.9800 C52—H52C 0.9800
C19—H19C 0.9800 C53—H53A 0.9800
C20—H20A 0.9800 C53—H53B 0.9800
C20—H20B 0.9800 C53—H53C 0.9800
C20—H20C 0.9800 C54—H54A 0.9800
C21—H21A 0.9800 C54—H54B 0.9800
C21—H21B 0.9800 C54—H54C 0.9800
C21—H21C 0.9800 O5—H5A 1.0000
C22—H22A 0.9800 O5—H5B 0.9939
C22—H22B 0.9800 O5'—H5A 0.9855
C22—H22C 0.9800 O5'—H5B 0.9867
C23—C24 1.385 (5)
C6—Co1—C2 90.88 (13) C28—C27—H27 119.1
C6—Co1—C3 176.86 (14) C26—C27—H27 119.1
C2—Co1—C3 87.28 (13) C27—C28—C29 121.9 (3)
C6—Co1—C1 90.03 (14) C27—C28—H28 119.1
C2—Co1—C1 88.46 (13) C29—C28—H28 119.1
C3—Co1—C1 92.46 (13) C33—C29—C30 117.9 (3)
C6—Co1—C4 87.95 (13) C33—C29—C28 118.7 (3)
C2—Co1—C4 92.18 (13) C30—C29—C28 123.5 (3)
C3—Co1—C4 89.57 (13) C31—C30—C29 118.3 (3)
C1—Co1—C4 177.90 (14) C31—C30—C37 121.1 (3)
C6—Co1—C5 90.10 (13) C29—C30—C37 120.6 (3)
C2—Co1—C5 176.33 (14) C30—C31—C32 118.3 (3)
C3—Co1—C5 91.90 (13) C30—C31—C38 122.7 (3)
C1—Co1—C5 88.00 (13) C32—C31—C38 119.0 (3)
C4—Co1—C5 91.39 (13) N10—C32—C31 125.6 (3)
H1A—O1—H1B 115.0 N10—C32—H32 117.2
H2A—O2—H2B 111.5 C31—C32—H32 117.2
H3A—O3—H3B 112.9 N10—C33—C29 124.3 (3)
H4A—O4—H4B 113.3 N10—C33—C34 117.3 (3)
C7—N7—C18 116.3 (3) C29—C33—C34 118.4 (3)
C16—N8—C17 121.2 (3) N9—C34—C26 118.9 (3)
C16—N8—H8N 114.3 N9—C34—C33 118.6 (3)
C17—N8—H8N 124.5 C26—C34—C33 122.5 (3)
C23—N9—C34 122.2 (3) C24—C35—H35A 109.5
C23—N9—H9N 120.3 C24—C35—H35B 109.5
C34—N9—H9N 117.5 H35A—C35—H35B 109.5
C32—N10—C33 115.7 (3) C24—C35—H35C 109.5
C50—N11—C39 122.5 (3) H35A—C35—H35C 109.5
C50—N11—H11N 108.2 H35B—C35—H35C 109.5
C39—N11—H11N 129.0 C25—C36—H36A 109.5
C48—N12—C49 115.3 (3) C25—C36—H36B 109.5
N1—C1—Co1 179.3 (3) H36A—C36—H36B 109.5
N2—C2—Co1 177.6 (3) C25—C36—H36C 109.5
N3—C3—Co1 177.1 (3) H36A—C36—H36C 109.5
N4—C4—Co1 177.3 (3) H36B—C36—H36C 109.5
N5—C5—Co1 177.5 (3) C30—C37—H37A 109.5
N6—C6—Co1 178.4 (3) C30—C37—H37B 109.5
N7—C7—C8 125.0 (3) H37A—C37—H37B 109.5
N7—C7—H7 117.5 C30—C37—H37C 109.5
C8—C7—H7 117.5 H37A—C37—H37C 109.5
C9—C8—C7 118.4 (3) H37B—C37—H37C 109.5
C9—C8—C19 122.6 (3) C31—C38—H38A 109.5
C7—C8—C19 118.9 (3) C31—C38—H38B 109.5
C8—C9—C10 118.6 (3) H38A—C38—H38B 109.5
C8—C9—C20 121.3 (3) C31—C38—H38C 109.5
C10—C9—C20 120.1 (3) H38A—C38—H38C 109.5
C18—C10—C9 117.3 (3) H38B—C38—H38C 109.5
C18—C10—C11 118.4 (3) N11—C39—C40 119.9 (4)
C9—C10—C11 124.3 (3) N11—C39—H39 120.1
C12—C11—C10 122.2 (3) C40—C39—H39 120.1
C12—C11—H11 118.9 C41—C40—C39 120.6 (3)
C10—C11—H11 118.9 C41—C40—C51 121.2 (3)
C11—C12—C13 121.7 (3) C39—C40—C51 118.1 (4)
C11—C12—H12 119.2 C40—C41—C42 118.5 (3)
C13—C12—H12 119.2 C40—C41—C52 122.4 (3)
C17—C13—C14 119.1 (3) C42—C41—C52 119.1 (3)
C17—C13—C12 116.9 (3) C50—C42—C43 119.1 (3)
C14—C13—C12 124.0 (3) C50—C42—C41 118.2 (3)
C15—C14—C13 119.4 (3) C43—C42—C41 122.7 (3)
C15—C14—C21 120.4 (3) C44—C43—C42 120.4 (3)
C13—C14—C21 120.2 (3) C44—C43—H43 119.8
C16—C15—C14 118.0 (3) C42—C43—H43 119.8
C16—C15—C22 118.6 (3) C43—C44—C45 120.9 (3)
C14—C15—C22 123.4 (3) C43—C44—H44 119.5
N8—C16—C15 122.9 (3) C45—C44—H44 119.5
N8—C16—H16 118.5 C49—C45—C44 119.9 (3)
C15—C16—H16 118.5 C49—C45—C46 117.4 (3)
N8—C17—C13 119.3 (3) C44—C45—C46 122.7 (3)
N8—C17—C18 118.4 (3) C47—C46—C45 118.1 (3)
C13—C17—C18 122.3 (3) C47—C46—C53 121.7 (4)
N7—C18—C10 124.2 (3) C45—C46—C53 120.2 (3)
N7—C18—C17 117.2 (3) C46—C47—C48 118.7 (3)
C10—C18—C17 118.5 (3) C46—C47—C54 122.9 (4)
C8—C19—H19A 109.5 C48—C47—C54 118.4 (4)
C8—C19—H19B 109.5 N12—C48—C47 125.4 (3)
H19A—C19—H19B 109.5 N12—C48—H48 117.3
C8—C19—H19C 109.5 C47—C48—H48 117.3
H19A—C19—H19C 109.5 N12—C49—C45 125.1 (3)
H19B—C19—H19C 109.5 N12—C49—C50 116.1 (3)
C9—C20—H20A 109.5 C45—C49—C50 118.8 (3)
C9—C20—H20B 109.5 N11—C50—C42 120.2 (3)
H20A—C20—H20B 109.5 N11—C50—C49 118.9 (3)
C9—C20—H20C 109.5 C42—C50—C49 120.9 (3)
H20A—C20—H20C 109.5 C40—C51—H51A 109.5
H20B—C20—H20C 109.5 C40—C51—H51B 109.5
C14—C21—H21A 109.5 H51A—C51—H51B 109.5
C14—C21—H21B 109.5 C40—C51—H51C 109.5
H21A—C21—H21B 109.5 H51A—C51—H51C 109.5
C14—C21—H21C 109.5 H51B—C51—H51C 109.5
H21A—C21—H21C 109.5 C41—C52—H52A 109.5
H21B—C21—H21C 109.5 C41—C52—H52B 109.5
C15—C22—H22A 109.5 H52A—C52—H52B 109.5
C15—C22—H22B 109.5 C41—C52—H52C 109.5
H22A—C22—H22B 109.5 H52A—C52—H52C 109.5
C15—C22—H22C 109.5 H52B—C52—H52C 109.5
H22A—C22—H22C 109.5 C46—C53—H53A 109.5
H22B—C22—H22C 109.5 C46—C53—H53B 109.5
N9—C23—C24 121.3 (3) H53A—C53—H53B 109.5
N9—C23—H23 119.4 C46—C53—H53C 109.5
C24—C23—H23 119.4 H53A—C53—H53C 109.5
C23—C24—C25 119.1 (3) H53B—C53—H53C 109.5
C23—C24—C35 119.4 (3) C47—C54—H54A 109.5
C25—C24—C35 121.5 (3) C47—C54—H54B 109.5
C24—C25—C26 118.8 (3) H54A—C54—H54B 109.5
C24—C25—C36 120.6 (3) C47—C54—H54C 109.5
C26—C25—C36 120.6 (3) H54A—C54—H54C 109.5
C34—C26—C25 119.6 (3) H54B—C54—H54C 109.5
C34—C26—C27 116.9 (3) H5A—O5—H5B 92.3
C25—C26—C27 123.5 (3) H5A—O5'—H5B 93.6
C28—C27—C26 121.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O5′ 0.82 1.84 2.616 (7) 157
O1—H1A···O5 0.82 2.02 2.823 (8) 165
O1—H1B···N5i 0.82 2.27 3.068 (4) 163
O2—H2A···N3ii 0.82 2.25 3.044 (4) 164
O2—H2B···N3 0.82 2.09 2.901 (4) 169
O3—H3A···N2 0.82 2.11 2.909 (4) 163
O3—H3B···O2ii 0.82 2.01 2.813 (3) 168
O4—H4A···O3 0.82 1.89 2.707 (3) 173
O4—H4B···O1 0.82 1.94 2.735 (4) 164
N8—H8N···O4iii 0.95 1.72 2.636 (4) 161
N9—H9N···N5iv 0.95 2.14 2.919 (4) 138
N11—H11N···N4i 0.95 2.11 2.799 (4) 128

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5042).

References

  1. Andruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342–3359. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Qian, S. Y., Zhou, H., Yuan, A. H. & Song, Y. (2011). Cryst. Growth Des 11, 5676-5681.
  5. Shatruk, M., Chambers, K. E., Prosvirin, A. V. & Dunbar, K. R. (2007). Inorg. Chem. 46, 5155–5165. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tokoro, H. & Ohkoshi, S. (2011). Dalton Trans 40, 6825–6833. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003632/rz5042sup1.cif

e-69-0m142-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003632/rz5042Isup2.hkl

e-69-0m142-Isup2.hkl (459.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES