Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 6;69(Pt 3):o353–o354. doi: 10.1107/S160053681300322X

Bis­(3,5-diamino-4H-1,2,4-triazol-1-ium) 3,4-dioxocyclo­butane-1,2-diolate

Hoong-Kun Fun a,b,*,, Wan-Sin Loh a,§, Atim Johnson c,d, Sammer Yousuf c, Ededet Eno d
PMCID: PMC3588514  PMID: 23476545

Abstract

The asymmetric unit of the title compound, 2C2H6N5 +·C4O4 2−, contains two 3,5-diamino-4H-1,2,4-triazolium cations and one squarate dianion. The squaric acid mol­ecule donated one H atom to each of the two 3,5-diamino-1,2,4-triazole mol­ecules at their N atoms. The squaric acid dianion has four C—O bonds which are shorter than a normal single C—O bond (1.426 Å) and are slightly longer than a normal C=O bond (1.23 Å), which indicates the degree of electron delocalization in the dianion. In the crystal, the cations and dianions are linked by N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature  

For background to the acid–base chemistry of squarate acid, see: Mathew et al. (2002); Frankenbach et al. (1992); Yeşilel et al. (2008); Bertolasi et al. (2001); Correa et al. (2007). For a related structure, see: Uçar et al. (2004). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-69-0o353-scheme1.jpg

Experimental  

Crystal data  

  • 2C2H6N5 +·C4O4 2−

  • M r = 312.28

  • Monoclinic, Inline graphic

  • a = 15.7186 (2) Å

  • b = 11.6533 (2) Å

  • c = 6.8618 (1) Å

  • β = 91.734 (1)°

  • V = 1256.32 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.44 × 0.20 × 0.14 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.943, T max = 0.982

  • 19113 measured reflections

  • 4965 independent reflections

  • 3911 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.108

  • S = 1.03

  • 4965 reflections

  • 247 parameters

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300322X/rz5040sup1.cif

e-69-0o353-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300322X/rz5040Isup2.hkl

e-69-0o353-Isup2.hkl (243.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300322X/rz5040Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N1⋯O4i 0.913 (16) 1.761 (16) 2.6677 (9) 171.3 (15)
N3A—H1N3⋯O4ii 0.937 (15) 1.746 (15) 2.6734 (10) 170.2 (14)
N4A—H1N4⋯O3i 0.887 (15) 2.003 (15) 2.8877 (10) 175.2 (13)
N4A—H2N4⋯N4B iii 0.904 (15) 2.565 (15) 3.3917 (12) 152.3 (12)
N5A—H1N5⋯N2A iv 0.933 (15) 2.105 (15) 3.0167 (11) 165.3 (13)
N5A—H2N5⋯O1ii 0.922 (15) 1.940 (15) 2.8621 (11) 177.7 (14)
N1B—H2N1⋯O2v 0.874 (15) 1.781 (15) 2.6485 (9) 171.8 (15)
N3B—H2N3⋯O2 0.965 (15) 1.706 (15) 2.6637 (10) 171.2 (14)
N4B—H3N4⋯O1v 0.920 (14) 2.065 (14) 2.9564 (10) 162.8 (12)
N4B—H4N4⋯O1vi 0.867 (13) 2.150 (13) 2.9954 (10) 164.9 (12)
N5B—H3N5⋯N2B v 0.923 (15) 2.159 (15) 3.0579 (11) 164.3 (12)
N5B—H4N5⋯O3 1.001 (16) 1.832 (15) 2.8293 (10) 174.2 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

HKF and WSL thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant (1001/CIPPM813040). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities.

supplementary crystallographic information

Comment

Supramolecularly organized systems with a variety of novel features are widely generated through hydrogen-bonding. Hydrogen-bonded systems generated from organic cations and anions are of special interest since they are likely to show stronger hydrogen bonds than neutral molecules thus enabling the simple acid-base chemistry to tune the donor and acceptor properties of the counter ions (Mathew et al., 2002). Squaric acid (H2C4O4, 3,4-dihydroxy-3-cyclobutene-1,2-dione) has been of much interests because of its cyclic structure and possible aromaticity (Frankenbach et al., 1992; Yeşilel et al., 2008). The molecule possesses a certain degree of electron delocalization, but it is most pronounced in the dianion (Mathew et al. 2002). This property is important in crystal packing (Bertolasi et al., 2001). The squarate dianion does not act like a chelating ligand but rather like a bridge between two or more metal atoms as a mono- or polydentate ligand. The 1,3-bis (monodentate) bridging coordination mode is very useful in generating one dimensional polymeric structures and the dimensionality can be expanded to two-dimensional or three-dimensional arrays using multidentate spacer ligands (Correa et al., 2007). We have been interested in the preparation of metal complexes by organic amines and carboxylic acids. In line with our interests, it was our design to synthesize a squarato-bridged zinc(II) complex. However, our proposed structure was not obtained; instead a new polymeric supramolecular triazolium squarate structure was formed. Herein we present the crystal structure of the new compound.

The asymmetric unit of the title compound, Fig. 1, contains two 3,5-diamino-4H-1,2,4-triazolium cations (C5/C6/N1–N5) and one squarate dianion (C1–C4/O1–O4). The squaric acid molecule donates one proton to each of the 3,5-diamino-1,2,4-triazole at N3A and N3B atoms which result in the formation of the 3,5-diamino-4H-1,2,4-triazolium squarate salt. The squaric acid dianion has four C–O bonds [C1—O1 = 1.2599 (10) Å, C2—O2 = 1.2608 (10) Å, C3—O3 = 1.2490 (10) Å, C4—O4 = 1.2622 (10) Å] which are shorter than normal single C—O bond (1.426 Å). These bonds, however, are slightly longer than normal C═O bond (1.23 Å). These bond lengths are indicative of the degree of electron delocalization in the dianion (Mathew et al. 2002; Bertolasi et al., 2001; Uçar et al., 2004).

In the crystal packing (Fig. 2), the structure of the compound is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) into a three dimensional network.

Experimental

Zinc chloride (1 mmol, 0.136 g) and 3,5-diamino-1,2,4-triazole (1 mmol, 0.099 g) were dissolved in 10 ml of distilled water. The solution was heated gently for 5 minutes, followed by drop-wise addition of an aqueous solution of squaric acid (0.057 g, 0.5 mmol) dissolved in 5 ml of hot water. The mixture was heated on a steam bath for 15 minutes and filtered while hot. The filtrate was allowed to crystallize at ambient temperature. The compound crystallized out after two weeks. CHN-analysis: found, C, 30.79; H, 3.82; N, 44.89; calcd. for C8H12N10O4: C, 30.76; H, 3.85; N, 44.93.

Refinement

All the H atoms were located in a difference Fourier map and were refined freely [N–H = 0.867 (13) to 1.001 (15) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, approximately viewed along the b axis, showing the three dimensional network.

Crystal data

2C2H6N5+·C4O42 F(000) = 648
Mr = 312.28 Dx = 1.651 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7050 reflections
a = 15.7186 (2) Å θ = 2.2–33.7°
b = 11.6533 (2) Å µ = 0.14 mm1
c = 6.8618 (1) Å T = 100 K
β = 91.734 (1)° Block, colourless
V = 1256.32 (3) Å3 0.44 × 0.20 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4965 independent reflections
Radiation source: fine-focus sealed tube 3911 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 33.7°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→23
Tmin = 0.943, Tmax = 0.982 k = −18→12
19113 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3
4965 reflections (Δ/σ)max = 0.001
247 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21331 (4) 1.07699 (5) 0.54430 (10) 0.01452 (13)
O2 0.37416 (4) 0.94620 (5) 0.36357 (10) 0.01592 (14)
O3 0.29531 (4) 0.70043 (5) 0.48973 (11) 0.01665 (14)
O4 0.13065 (4) 0.82957 (5) 0.65486 (10) 0.01628 (14)
C1 0.23528 (5) 0.97349 (7) 0.52898 (13) 0.01176 (15)
C2 0.30810 (5) 0.91452 (7) 0.44836 (13) 0.01202 (15)
C3 0.27269 (5) 0.80280 (7) 0.50302 (13) 0.01267 (16)
C4 0.19890 (5) 0.86217 (7) 0.57988 (13) 0.01233 (16)
N1A −0.07849 (5) 0.38750 (6) 0.31736 (11) 0.01324 (15)
N2A −0.06499 (5) 0.57809 (6) 0.31893 (11) 0.01364 (15)
N3A 0.00592 (5) 0.52443 (6) 0.23974 (12) 0.01388 (15)
N4A −0.19073 (5) 0.49920 (7) 0.44806 (13) 0.01773 (17)
N5A 0.05462 (5) 0.33657 (7) 0.17618 (13) 0.01821 (17)
C5A −0.11444 (5) 0.49176 (7) 0.36330 (13) 0.01248 (16)
C6A −0.00190 (5) 0.41097 (7) 0.24079 (13) 0.01293 (16)
N1B 0.58254 (5) 0.65997 (6) 0.21916 (11) 0.01269 (14)
N2B 0.57382 (5) 0.84985 (6) 0.24748 (12) 0.01463 (15)
N3B 0.49823 (5) 0.79658 (6) 0.29850 (12) 0.01433 (15)
N4B 0.70576 (5) 0.77532 (7) 0.14462 (12) 0.01499 (15)
N5B 0.44176 (5) 0.60870 (7) 0.31739 (13) 0.01730 (16)
C5B 0.62343 (5) 0.76414 (7) 0.20276 (13) 0.01231 (16)
C6B 0.50327 (5) 0.68311 (7) 0.27941 (13) 0.01274 (16)
H1N1 −0.1018 (10) 0.3160 (14) 0.327 (2) 0.040 (4)*
H1N3 0.0528 (9) 0.5685 (13) 0.204 (2) 0.032 (4)*
H1N4 −0.2223 (9) 0.4367 (13) 0.460 (2) 0.037 (4)*
H2N4 −0.2172 (9) 0.5679 (13) 0.456 (2) 0.033 (4)*
H1N5 0.0480 (9) 0.2572 (13) 0.186 (2) 0.037 (4)*
H2N5 0.1053 (10) 0.3664 (13) 0.134 (2) 0.039 (4)*
H2N1 0.6019 (10) 0.5916 (13) 0.193 (2) 0.037 (4)*
H2N3 0.4496 (9) 0.8444 (13) 0.323 (2) 0.037 (4)*
H3N4 0.7334 (8) 0.7088 (12) 0.112 (2) 0.028 (3)*
H4N4 0.7362 (8) 0.8208 (11) 0.2184 (19) 0.028 (3)*
H3N5 0.4482 (9) 0.5311 (13) 0.295 (2) 0.039 (4)*
H4N5 0.3877 (10) 0.6390 (14) 0.371 (2) 0.044 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0142 (3) 0.0081 (2) 0.0215 (3) 0.0007 (2) 0.0043 (2) −0.0010 (2)
O2 0.0124 (3) 0.0102 (3) 0.0256 (4) −0.0002 (2) 0.0086 (2) 0.0010 (2)
O3 0.0149 (3) 0.0082 (3) 0.0272 (4) 0.0016 (2) 0.0067 (2) 0.0004 (2)
O4 0.0124 (3) 0.0103 (3) 0.0267 (4) −0.0010 (2) 0.0088 (2) −0.0001 (2)
C1 0.0109 (3) 0.0092 (3) 0.0154 (4) −0.0008 (3) 0.0023 (3) −0.0004 (3)
C2 0.0105 (3) 0.0092 (3) 0.0165 (4) −0.0001 (3) 0.0030 (3) 0.0002 (3)
C3 0.0115 (3) 0.0098 (3) 0.0168 (4) −0.0001 (3) 0.0032 (3) 0.0005 (3)
C4 0.0115 (3) 0.0091 (3) 0.0166 (4) −0.0002 (3) 0.0035 (3) −0.0002 (3)
N1A 0.0128 (3) 0.0090 (3) 0.0182 (4) −0.0020 (2) 0.0044 (3) 0.0001 (3)
N2A 0.0124 (3) 0.0107 (3) 0.0180 (4) −0.0002 (2) 0.0043 (3) −0.0002 (3)
N3A 0.0130 (3) 0.0091 (3) 0.0198 (4) −0.0011 (2) 0.0053 (3) 0.0010 (3)
N4A 0.0149 (4) 0.0120 (3) 0.0268 (5) −0.0015 (3) 0.0091 (3) −0.0011 (3)
N5A 0.0152 (4) 0.0103 (3) 0.0297 (5) −0.0001 (3) 0.0101 (3) 0.0001 (3)
C5A 0.0131 (4) 0.0102 (3) 0.0143 (4) −0.0008 (3) 0.0021 (3) 0.0000 (3)
C6A 0.0132 (4) 0.0102 (3) 0.0156 (4) −0.0014 (3) 0.0034 (3) 0.0009 (3)
N1B 0.0120 (3) 0.0091 (3) 0.0172 (4) 0.0013 (2) 0.0036 (3) −0.0021 (3)
N2B 0.0129 (3) 0.0115 (3) 0.0198 (4) 0.0000 (3) 0.0055 (3) −0.0004 (3)
N3B 0.0118 (3) 0.0097 (3) 0.0217 (4) 0.0009 (2) 0.0050 (3) −0.0017 (3)
N4B 0.0132 (3) 0.0134 (3) 0.0186 (4) 0.0002 (3) 0.0043 (3) −0.0025 (3)
N5B 0.0131 (3) 0.0121 (3) 0.0271 (4) −0.0007 (3) 0.0062 (3) −0.0037 (3)
C5B 0.0139 (4) 0.0105 (3) 0.0127 (4) 0.0004 (3) 0.0027 (3) −0.0006 (3)
C6B 0.0127 (4) 0.0106 (3) 0.0150 (4) 0.0010 (3) 0.0020 (3) −0.0012 (3)

Geometric parameters (Å, º)

O1—C1 1.2599 (10) N4A—H2N4 0.904 (15)
O2—C2 1.2608 (10) N5A—C6A 1.3272 (12)
O3—C3 1.2490 (10) N5A—H1N5 0.934 (15)
O4—C4 1.2622 (10) N5A—H2N5 0.922 (15)
C1—C2 1.4582 (12) N1B—C6B 1.3517 (11)
C1—C4 1.4642 (11) N1B—C5B 1.3798 (11)
C2—C3 1.4690 (12) N1B—H2N1 0.873 (15)
C3—C4 1.4627 (12) N2B—C5B 1.3092 (11)
N1A—C6A 1.3559 (11) N2B—N3B 1.3947 (10)
N1A—C5A 1.3805 (11) N3B—C6B 1.3313 (11)
N1A—H1N1 0.913 (16) N3B—H2N3 0.965 (15)
N2A—C5A 1.3127 (11) N4B—C5B 1.3719 (12)
N2A—N3A 1.4020 (11) N4B—H3N4 0.919 (14)
N3A—C6A 1.3280 (11) N4B—H4N4 0.867 (13)
N3A—H1N3 0.937 (15) N5B—C6B 1.3305 (11)
N4A—C5A 1.3513 (12) N5B—H3N5 0.922 (15)
N4A—H1N4 0.887 (16) N5B—H4N5 1.001 (15)
O1—C1—C2 134.67 (8) N2A—C5A—N4A 126.16 (8)
O1—C1—C4 135.90 (8) N2A—C5A—N1A 111.86 (8)
C2—C1—C4 89.41 (6) N4A—C5A—N1A 121.97 (8)
O2—C2—C1 134.74 (8) N5A—C6A—N3A 125.85 (8)
O2—C2—C3 134.50 (8) N5A—C6A—N1A 127.51 (8)
C1—C2—C3 90.75 (7) N3A—C6A—N1A 106.64 (8)
O3—C3—C4 135.13 (8) C6B—N1B—C5B 106.58 (7)
O3—C3—C2 135.81 (8) C6B—N1B—H2N1 125.0 (10)
C4—C3—C2 89.06 (6) C5B—N1B—H2N1 128.4 (10)
O4—C4—C3 134.24 (8) C5B—N2B—N3B 103.72 (7)
O4—C4—C1 134.98 (8) C6B—N3B—N2B 111.33 (7)
C3—C4—C1 90.76 (7) C6B—N3B—H2N3 129.8 (9)
C6A—N1A—C5A 106.58 (7) N2B—N3B—H2N3 118.2 (9)
C6A—N1A—H1N1 125.0 (10) C5B—N4B—H3N4 116.6 (8)
C5A—N1A—H1N1 128.3 (10) C5B—N4B—H4N4 113.4 (8)
C5A—N2A—N3A 103.37 (7) H3N4—N4B—H4N4 113.5 (11)
C6A—N3A—N2A 111.54 (7) C6B—N5B—H3N5 121.5 (9)
C6A—N3A—H1N3 128.4 (9) C6B—N5B—H4N5 118.2 (9)
N2A—N3A—H1N3 119.8 (9) H3N5—N5B—H4N5 120.3 (13)
C5A—N4A—H1N4 119.5 (10) N2B—C5B—N4B 124.71 (8)
C5A—N4A—H2N4 119.9 (9) N2B—C5B—N1B 111.71 (8)
H1N4—N4A—H2N4 117.5 (13) N4B—C5B—N1B 123.58 (8)
C6A—N5A—H1N5 123.2 (9) N5B—C6B—N3B 125.61 (8)
C6A—N5A—H2N5 116.8 (10) N5B—C6B—N1B 127.73 (8)
H1N5—N5A—H2N5 119.6 (13) N3B—C6B—N1B 106.64 (7)
O1—C1—C2—O2 −1.04 (18) N3A—N2A—C5A—N4A 178.72 (9)
C4—C1—C2—O2 177.98 (11) N3A—N2A—C5A—N1A 0.26 (9)
O1—C1—C2—C3 179.83 (10) C6A—N1A—C5A—N2A 0.32 (10)
C4—C1—C2—C3 −1.15 (7) C6A—N1A—C5A—N4A −178.20 (8)
O2—C2—C3—O3 1.85 (19) N2A—N3A—C6A—N5A −179.82 (9)
C1—C2—C3—O3 −179.02 (11) N2A—N3A—C6A—N1A 1.01 (10)
O2—C2—C3—C4 −177.99 (11) C5A—N1A—C6A—N5A −179.95 (9)
C1—C2—C3—C4 1.15 (7) C5A—N1A—C6A—N3A −0.80 (10)
O3—C3—C4—O4 −2.60 (18) C5B—N2B—N3B—C6B −1.43 (10)
C2—C3—C4—O4 177.24 (10) N3B—N2B—C5B—N4B −179.41 (8)
O3—C3—C4—C1 179.02 (11) N3B—N2B—C5B—N1B 1.21 (10)
C2—C3—C4—C1 −1.14 (7) C6B—N1B—C5B—N2B −0.61 (10)
O1—C1—C4—O4 1.79 (19) C6B—N1B—C5B—N4B 180.00 (8)
C2—C1—C4—O4 −177.21 (11) N2B—N3B—C6B—N5B 179.79 (9)
O1—C1—C4—C3 −179.85 (11) N2B—N3B—C6B—N1B 1.09 (10)
C2—C1—C4—C3 1.15 (7) C5B—N1B—C6B—N5B −178.98 (9)
C5A—N2A—N3A—C6A −0.80 (9) C5B—N1B—C6B—N3B −0.32 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1N1···O4i 0.913 (16) 1.761 (16) 2.6677 (9) 171.3 (15)
N3A—H1N3···O4ii 0.937 (15) 1.746 (15) 2.6734 (10) 170.2 (14)
N4A—H1N4···O3i 0.887 (15) 2.003 (15) 2.8877 (10) 175.2 (13)
N4A—H2N4···N4Biii 0.904 (15) 2.565 (15) 3.3917 (12) 152.3 (12)
N5A—H1N5···N2Aiv 0.933 (15) 2.105 (15) 3.0167 (11) 165.3 (13)
N5A—H2N5···O1ii 0.922 (15) 1.940 (15) 2.8621 (11) 177.7 (14)
N1B—H2N1···O2v 0.874 (15) 1.781 (15) 2.6485 (9) 171.8 (15)
N3B—H2N3···O2 0.965 (15) 1.706 (15) 2.6637 (10) 171.2 (14)
N4B—H3N4···O1v 0.920 (14) 2.065 (14) 2.9564 (10) 162.8 (12)
N4B—H4N4···O1vi 0.867 (13) 2.150 (13) 2.9954 (10) 164.9 (12)
N5B—H3N5···N2Bv 0.923 (15) 2.159 (15) 3.0579 (11) 164.3 (12)
N5B—H4N5···O3 1.001 (16) 1.832 (15) 2.8293 (10) 174.2 (12)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x−1, −y+3/2, z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5040).

References

  1. Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598. [DOI] [PubMed]
  2. Bruker (2009). APEX22, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Correa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C. & de Oliveira, L. F. C. (2007). Polyhedron, 26, 989–995.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Frankenbach, G. M., Beno, M. A., Kini, A. M., Williams, J. M., Welp, U., Thompson, J. E. & Whangbo, M. H. (1992). Inorg. Chim. Acta, 192, 195–200.
  6. Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Uçar, I., Bulut, A., Yeşilel, O. Z. & Büyükgüngör, O. (2004). Acta Cryst. C60, o585–o588. [DOI] [PubMed]
  10. Yeşilel, O. Z., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151–158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300322X/rz5040sup1.cif

e-69-0o353-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300322X/rz5040Isup2.hkl

e-69-0o353-Isup2.hkl (243.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300322X/rz5040Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES