Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 20;69(Pt 3):o419–o420. doi: 10.1107/S1600536813004546

(S)-N-[(4-{(S)-1-[2-(4-Meth­oxy­benz­amido)-2-methyl­propano­yl]pyrrolidine-2-carboxamido}-3,4,5,6-tetra­hydro-2H-pyran-4-yl)carbon­yl]proline dimethyl sulfoxide monosolvate (4-MeBz-Aib-Pro-Thp-Pro-OH)

Svetlana A Stoykova a, Anthony Linden a,*, Heinz Heimgartner a
PMCID: PMC3588532  PMID: 23476594

Abstract

The asymmetric unit of the title compound, C28H38N4O8·C2H6OS, contains one tetra­peptide and one disordered dimethyl sulfoxide (DMSO) mol­ecule. The central five-membered ring (Pro2) of the peptide mol­ecule has a disordered envelope conformation [occupancy ratio 0.879 (2):0.121 (2)] with the envelope flap atom, the central C atom of the three ring methylene groups, lying on alternate sides of the mean ring plane. The terminal five-membered ring (Pro4) also adopts an envelope conformation with the C atom of the methylene group closest to the carboxylic acid function as the envelope flap, and the six-membered tetra­hydro­pyrane ring shows a chair conformation. The tetra­peptide exists in a helical conformation, stabilized by an intra­molecular hydrogen bond between the amide N—H group of the heterocyclic α-amino acid Thp and the amide O atom of the 4-meth­oxy­benzoyl group. This inter­action has a graph set motif of S(10) and serves to maintain a fairly rigid β-turn structure. In the crystal, the terminal hy­droxy group forms a hydrogen bond with the amide O atom of Thp of a neighbouring mol­ecule, and the amide N—H group at the opposite end of the mol­ecule forms a hydrogen bond with the amide O atom of Thp of another neighbouring mol­ecule. The combination of both inter­molecular inter­actions links the mol­ecules into an extended three-dimensional framework.

Related literature  

For the azirine/oxazolone method, see: Heimgartner (1991); Altherr et al. (2007); Stamm & Heimgartner (2004). For the synthesis of Thp-containing peptides via the azirine/oxazolone method and their crystal structures, see: Suter et al. (2000). For the synthesis of Aib-Pro containing peptides via azirine coupling, see: Luykx et al. (2003); Stamm & Heimgartner (2006); Pradeille et al. (2012); Stoykova et al. (2012). For the insertion of Xaa-Pro units (Xaa = heterocyclic α-amino carb­oxy­lic acid) into peptides, see: Suter et al. (2000); Stamm et al. (2003). For the conformation of peptides containing α,α-disubstituted α-amino acids, see: Prasad & Balaram (1984); Toniolo & Benedetti (1991); Schweitzer-Stenner et al. (2007); Aravinda et al. (2008); Demizu et al. (2012). For crystal structures of peptaibols, see: Whitmore & Wallace (2004), authors of The Peptaibol Database http://www.cryst.bbk.ac.uk/peptaibol. For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-69-0o419-scheme1.jpg

Experimental  

Crystal data  

  • C28H38N4O8·C2H6OS

  • M r = 636.76

  • Orthorhombic, Inline graphic

  • a = 10.8594 (1) Å

  • b = 13.7414 (2) Å

  • c = 21.1929 (3) Å

  • V = 3162.48 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 160 K

  • 0.28 × 0.20 × 0.18 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • 53400 measured reflections

  • 9238 independent reflections

  • 7711 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.103

  • S = 1.02

  • 9231 reflections

  • 433 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack & Bernardinelli (1999, 2000), 4115 Friedel pairs

  • Flack parameter: −0.02 (8)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004546/nc2305sup1.cif

e-69-0o419-sup1.cif (45.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004546/nc2305Isup2.hkl

e-69-0o419-Isup2.hkl (451.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004546/nc2305Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813004546/nc2305Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7i 0.87 (2) 1.81 (3) 2.6669 (17) 168 (2)
N6—H6⋯O13 0.87 (2) 2.19 (2) 3.0468 (17) 169.5 (18)
N12—H12⋯O4ii 0.80 (2) 2.37 (2) 3.1247 (18) 156 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Peptaibols are naturally occurring peptides containing high proportions of α-aminoisobutyric acid (Aib) and occasionally other 2,2-disubstituted glycines (Whitmore & Wallace, 2004). As a result of the presence of α,α-disubstituted α-amino acids, these peptides adopt fairly rigid helical structures, the preferred conformation being the 310-helix as a sequence of β-turns (Prasad & Balaram, 1984; Toniolo & Benedetti, 1991; Schweitzer-Stenner et al., 2007; Aravinda et al., 2008; Demizu et al., 2012). In the past we have elaborated the 'azirine/oxazolone method' as a convenient protocol for the introduction of α,α-disubstituted α-amino acids into peptide chains in solution (Heimgartner, 1991; Altherr et al., 2007) as well as on solid phase (Stamm & Heimgartner, 2004). In addition, it has been shown that the dipeptide unit Aib-Pro, which frequently appears in natural peptaibols (Whitmore & Wallace, 2004), can be inserted conveniently into a peptide chain via 'azirine coupling' with methyl N-(2,2-dimethyl-2H-azirin-3-yl)prolinate (Luykx et al., 2003; Pradeille et al., 2012; Stoykova et al., 2012). In a similar manner, dipeptide segments consisting of a heterocyclic α-amino carboxylic acid and proline have been inserted into peptides via 'azirine coupling' (Suter et al., 2000; Stamm et al., 2003). In all cases, the heterocyclic α-amino carboxylic acid behaves in a similar way to other α,α-disubstituted α-amino acids, that is they induce helical conformations of the peptide. The synthesis of the title tetrapeptide was carried out with the aim of further testing the scope of the 'azirine coupling' with a combination of two different Xaa-Pro synthons.

The crystals of the title compound are enantiomerically pure and the expected absolute configuration, S at C2 and C8 of the two proline residues, has been confirmed by the diffraction experiment. The asymmetric unit contains one molecule of the peptide plus one molecule of DMSO. The S atom of the DMSO molecule is disordered over two sites (details in the Experimental section). The peptide molecule exists in a β-turn conformation stabilized by an intramolecular hydrogen bond between N6—H of the heterocyclic amino acid Thp and the O atom of the amide C=O group of the 4-methoxybenzoyl group (Fig. 1; Table 1). This interaction has a graph set motif (Bernstein et al., 1995) of S(10). The central five-membered ring of Pro2 is disordered in that the ring has an envelope conformation in which atom C23 as the envelope flap is located on alternate sides of the mean ring plane with the major conformation found in 72.0 (10)% of the molecules. The other 5-membered ring (Pro4) also has an envelope conformation with atom C14 as the envelope flap. The six-membered tetrahydropyrane ring (Thp) exists in a chair conformation. All four amide groups are quite planar.

Classical intermolecular hydrogen bonds of the O—H···O and N—H···O type link the molecules into a three-dimensional framework (Fig. 2). This network is built from two substructures. In the first substructure, the carboxylic acid group, O2—H, forms an intermolecular hydrogen bond with one of the central amide O atoms, O7, of a neighbouring molecule, thereby linking the peptide molecules into extended chains which run parallel to the [100] direction and have a graph set motif of C(10). In the second substructure, the amide N—H group, N12—H, at the opposite end of the molecule forms an intermolecular hydrogen bond with the first amide O atom, O4, in the backbone of a different neighbouring molecule. This interaction links the peptide molecules into extended chains which run parallel to the [001] direction and have a graph set motif of C(11).

Experimental

The title compound was prepared in analogy to earlier described procedures (Suter et al., 2000; Stoykova et al., 2012) by treatment of (S)-N-[N-(4-methoxyphenyl)-2-methylalanyl]proline (4-MeOBz-Aib-Pro-OH; Stoykova et al., 2012) with two mol-equivalents of methyl (S)-N-(1-aza-6-oxaspiro[2.5]oct-1-en-2-yl)prolinate (Suter et al., 2000) in dry THF at room temperature for 48 h. After removing the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, CH2Cl2/MeOH; gradient 110:1 to 20:1). Saponification of the resulting tetrapeptide ester was achieved by treatment with 4 mol-equivalents of LiOH.H2O in THF/MeOH/H2O 3:1:1 at room temperature for 25 h. After completion of the reaction, 1M HCl was added until pH 1 was reached, and the organic solvent was evaporated. The residue was extracted with CH2Cl2, the combined organic phase was dried over MgSO4, and the solvent evaporated to give the title compound in 74% yield (over two steps). Colourless crystals suitable for an X-ray crystal structure analysis were grown from DMSO at ca 278 K.

Refinement

The structure contains one molecule of DMSO per peptide molecule. The S atom of the DMSO molecule is disordered over two sites with the major orientation having a site occupation factor of 0.879 (2). One C atom of the central five-membered ring of the peptide molecule is also disordered over two sites with the major conformation having a site occupation factor of 0.720 (10). Similarity restraints with a tolerance of 0.01 Å were applied to the chemically equivalent bond lengths involving all disordered atoms, while neighbouring disordered atoms were restrained to have similar atomic displacement parameters. Seven low angle reflections were omitted on account of obscuration by the beam stop.

The amide and carboxylic acid H atoms were placed in the positions found in a difference Fourier map and were then refined isotropically. All other H atoms were placed in geometrically optimized positions and constrained to ride on their parent atoms with C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) or 1.00 (methine) Å and with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) otherwise.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and the intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size and the alternate conformations of the disordered proline ring (atom C23) and DMSO molecule are shown by full and open bonds.

Fig. 2.

Fig. 2.

The crystal packing in the title compound viewed down the a axis and showing the N—H···O and O—H···O hydrogen bonds as thin brown lines.

Crystal data

C28H38N4O8·C2H6OS F(000) = 1360
Mr = 636.76 Dx = 1.337 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5144 reflections
a = 10.8594 (1) Å θ = 1.0–30.0°
b = 13.7414 (2) Å µ = 0.16 mm1
c = 21.1929 (3) Å T = 160 K
V = 3162.48 (7) Å3 Prism, colourless
Z = 4 0.28 × 0.20 × 0.18 mm

Data collection

Nonius KappaCCD area-detector diffractometer 7711 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generator Rint = 0.044
Horizontally mounted graphite crystal monochromator θmax = 30.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1 h = −15→15
φ and ω scans with κ offsets k = −19→19
53400 measured reflections l = −29→29
9238 independent reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4741P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max = 0.003
S = 1.02 Δρmax = 0.28 e Å3
9231 reflections Δρmin = −0.33 e Å3
433 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraints Extinction coefficient: 0.0096 (11)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack & Bernardinelli (1999, 2000), 4115 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.02 (8)

Special details

Experimental. Solvent used: DMSO Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.519 (1) Frames collected: 329 Seconds exposure per frame: 42 Degrees rotation per frame: 1.4 Crystal-Detector distance (mm): 30.0
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The structure contains one molecule of DMSO per peptide molecule. The S atom of the DMSO molecule is disordered over two sites with the major orientation having a site occupation factor of 0.879 (2). One C atom of the central five-membered ring of the peptide molecule is also disordered over two sites with the major conformation having a site occupation factor of 0.720 (10). Similarity restraints with a tolerance of 0.01 Å were applied to the chemically equivalent bond lengths involving all disordered atoms, while neighbouring disordered atoms were restrained to have similar atomic displacement parameters. Seven low angle reflections were omitted on account of obscuration by the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.49592 (11) 0.79228 (10) 0.02238 (7) 0.0429 (3)
O2 0.38389 (11) 0.88646 (9) −0.04216 (5) 0.0320 (3)
H2 0.456 (2) 0.9100 (18) −0.0512 (11) 0.050 (6)*
O4 0.30778 (11) 0.60218 (9) −0.01081 (5) 0.0320 (3)
O7 0.08885 (11) 0.52449 (9) 0.08052 (5) 0.0329 (3)
O10 0.17612 (11) 0.31930 (8) 0.20810 (5) 0.0316 (3)
O13 0.39163 (11) 0.45955 (9) 0.26319 (5) 0.0324 (3)
O19 0.57060 (13) 0.44020 (11) 0.04583 (8) 0.0516 (4)
O30 0.71136 (12) 0.69569 (9) 0.46113 (5) 0.0366 (3)
N3 0.28614 (13) 0.70479 (10) 0.07067 (6) 0.0276 (3)
N6 0.25499 (12) 0.52124 (9) 0.14416 (6) 0.0249 (3)
H6 0.2849 (19) 0.5049 (15) 0.1807 (10) 0.039 (5)*
N9 0.11523 (12) 0.46304 (9) 0.24731 (6) 0.0258 (3)
N12 0.28842 (13) 0.41680 (10) 0.35078 (7) 0.0293 (3)
H12 0.286 (2) 0.4175 (16) 0.3887 (11) 0.043 (6)*
C1 0.39833 (15) 0.81984 (11) 0.00303 (7) 0.0276 (3)
C2 0.27251 (15) 0.78716 (11) 0.02743 (7) 0.0275 (3)
H1 0.2165 0.7701 −0.0084 0.033*
C4 0.30659 (14) 0.61553 (11) 0.04668 (7) 0.0260 (3)
C5 0.34313 (14) 0.53169 (12) 0.09183 (7) 0.0260 (3)
C7 0.13440 (14) 0.51093 (11) 0.13341 (7) 0.0246 (3)
C8 0.05129 (14) 0.48351 (13) 0.18813 (7) 0.0289 (3)
H8 0.0017 0.4251 0.1760 0.035*
C10 0.17081 (14) 0.37502 (11) 0.25323 (7) 0.0254 (3)
C11 0.21698 (15) 0.34116 (11) 0.31820 (7) 0.0277 (3)
C13 0.37882 (14) 0.46585 (12) 0.32135 (7) 0.0271 (3)
C14 0.21553 (17) 0.86652 (13) 0.06872 (8) 0.0364 (4)
H141 0.2390 0.9322 0.0537 0.044*
H142 0.1246 0.8613 0.0695 0.044*
C15 0.2703 (2) 0.84566 (13) 0.13333 (9) 0.0399 (4)
H151 0.2200 0.8752 0.1673 0.048*
H152 0.3557 0.8704 0.1364 0.048*
C16 0.26708 (18) 0.73510 (12) 0.13691 (7) 0.0339 (4)
H161 0.3335 0.7101 0.1645 0.041*
H162 0.1868 0.7118 0.1530 0.041*
C17 0.47177 (16) 0.55084 (14) 0.11973 (8) 0.0335 (4)
H171 0.4754 0.6182 0.1362 0.040*
H172 0.4863 0.5058 0.1554 0.040*
C18 0.57147 (17) 0.53701 (16) 0.07076 (10) 0.0443 (5)
H181 0.5590 0.5841 0.0360 0.053*
H182 0.6527 0.5504 0.0901 0.053*
C20 0.45803 (19) 0.42227 (16) 0.01315 (10) 0.0456 (5)
H201 0.4592 0.3554 −0.0042 0.055*
H202 0.4507 0.4682 −0.0226 0.055*
C21 0.34751 (16) 0.43379 (12) 0.05612 (8) 0.0329 (4)
H211 0.3479 0.3802 0.0873 0.039*
H212 0.2717 0.4273 0.0305 0.039*
C22 −0.0366 (2) 0.56707 (17) 0.20421 (10) 0.0494 (5)
H221 −0.0074 0.6287 0.1851 0.059* 0.720 (10)
H222 −0.1204 0.5531 0.1882 0.059* 0.720 (10)
H223 −0.0384 0.6157 0.1698 0.059* 0.280 (10)
H224 −0.1212 0.5424 0.2111 0.059* 0.280 (10)
C23 −0.0374 (3) 0.5746 (3) 0.27560 (17) 0.0433 (9) 0.720 (10)
H231 −0.0500 0.6428 0.2893 0.052* 0.720 (10)
H232 −0.1031 0.5335 0.2940 0.052* 0.720 (10)
C23A 0.0100 (10) 0.6075 (6) 0.2588 (4) 0.040 (2) 0.280 (10)
H233 −0.0592 0.6288 0.2860 0.048* 0.280 (10)
H234 0.0591 0.6658 0.2479 0.048* 0.280 (10)
C24 0.08878 (18) 0.53834 (13) 0.29483 (9) 0.0380 (4)
H241 0.1505 0.5913 0.2932 0.046* 0.720 (10)
H242 0.0873 0.5104 0.3379 0.046* 0.720 (10)
H243 0.1653 0.5701 0.3097 0.046* 0.280 (10)
H244 0.0441 0.5109 0.3315 0.046* 0.280 (10)
C25 0.29830 (18) 0.25073 (13) 0.31024 (9) 0.0385 (4)
H251 0.3699 0.2671 0.2842 0.058*
H252 0.2508 0.1990 0.2897 0.058*
H253 0.3261 0.2283 0.3518 0.058*
C26 0.10223 (17) 0.31609 (13) 0.35741 (8) 0.0345 (4)
H261 0.1270 0.2801 0.3953 0.052*
H262 0.0463 0.2759 0.3322 0.052*
H263 0.0602 0.3762 0.3698 0.052*
C27 0.46259 (14) 0.52808 (12) 0.35961 (7) 0.0264 (3)
C28 0.45392 (15) 0.53814 (13) 0.42525 (8) 0.0298 (3)
H28 0.3900 0.5061 0.4477 0.036*
C29 0.53853 (16) 0.59476 (13) 0.45724 (8) 0.0321 (4)
H29 0.5324 0.6014 0.5017 0.039*
C30 0.63240 (15) 0.64214 (12) 0.42502 (8) 0.0294 (3)
C31 0.64158 (15) 0.63358 (13) 0.35972 (8) 0.0315 (4)
H31 0.7049 0.6664 0.3373 0.038*
C32 0.55693 (15) 0.57640 (13) 0.32804 (8) 0.0305 (3)
H32 0.5633 0.5699 0.2835 0.037*
C33 0.82609 (16) 0.72279 (15) 0.43330 (9) 0.0380 (4)
H331 0.8678 0.6646 0.4173 0.057*
H332 0.8780 0.7544 0.4651 0.057*
H333 0.8112 0.7681 0.3984 0.057*
S1A 0.73887 (6) 0.66072 (5) 0.67871 (3) 0.0570 (2) 0.879 (2)
S1B 0.7574 (3) 0.7383 (4) 0.69153 (18) 0.0500 (16) 0.121 (2)
O3 0.66114 (17) 0.7045 (2) 0.72672 (8) 0.0883 (7)
C34 0.7137 (4) 0.7294 (3) 0.60964 (12) 0.1115 (14)
H341 0.6289 0.7197 0.5951 0.167* 0.879 (2)
H342 0.7711 0.7082 0.5767 0.167* 0.879 (2)
H343 0.7271 0.7985 0.6187 0.167* 0.879 (2)
H344 0.6299 0.7546 0.6042 0.167* 0.121 (2)
H345 0.7166 0.6612 0.5963 0.167* 0.121 (2)
H346 0.7709 0.7677 0.5839 0.167* 0.121 (2)
C35 0.8931 (2) 0.6951 (2) 0.69070 (15) 0.0747 (8)
H351 0.9250 0.6630 0.7286 0.112* 0.879 (2)
H352 0.8979 0.7658 0.6960 0.112* 0.879 (2)
H353 0.9425 0.6756 0.6541 0.112* 0.879 (2)
H354 0.9269 0.6957 0.7336 0.112* 0.121 (2)
H355 0.9452 0.7349 0.6631 0.112* 0.121 (2)
H356 0.8911 0.6281 0.6749 0.112* 0.121 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0304 (6) 0.0456 (8) 0.0528 (8) 0.0006 (6) 0.0038 (6) 0.0157 (6)
O2 0.0334 (6) 0.0334 (6) 0.0292 (6) −0.0044 (5) 0.0053 (5) 0.0061 (5)
O4 0.0417 (7) 0.0340 (6) 0.0204 (5) −0.0006 (5) 0.0028 (5) −0.0003 (4)
O7 0.0323 (6) 0.0417 (7) 0.0249 (6) 0.0017 (5) −0.0070 (5) 0.0045 (5)
O10 0.0406 (7) 0.0295 (6) 0.0247 (5) 0.0027 (5) 0.0021 (5) −0.0036 (5)
O13 0.0326 (6) 0.0434 (7) 0.0213 (5) −0.0044 (5) 0.0012 (5) 0.0016 (5)
O19 0.0385 (7) 0.0555 (9) 0.0608 (9) 0.0109 (6) 0.0117 (6) −0.0010 (7)
O30 0.0419 (7) 0.0399 (7) 0.0281 (6) −0.0096 (6) −0.0046 (5) 0.0007 (5)
N3 0.0356 (7) 0.0259 (7) 0.0214 (6) −0.0028 (5) 0.0028 (5) 0.0005 (5)
N6 0.0276 (6) 0.0275 (6) 0.0195 (6) −0.0026 (5) −0.0014 (5) 0.0036 (5)
N9 0.0310 (6) 0.0250 (6) 0.0214 (6) 0.0023 (5) 0.0025 (5) 0.0016 (5)
N12 0.0345 (7) 0.0341 (7) 0.0194 (6) −0.0048 (6) −0.0010 (6) 0.0029 (6)
C1 0.0322 (8) 0.0264 (8) 0.0242 (7) −0.0015 (6) 0.0056 (6) −0.0010 (6)
C2 0.0307 (8) 0.0253 (7) 0.0266 (8) −0.0024 (6) 0.0031 (6) 0.0031 (6)
C4 0.0279 (8) 0.0279 (8) 0.0221 (7) −0.0032 (6) 0.0024 (6) 0.0000 (6)
C5 0.0281 (8) 0.0280 (8) 0.0218 (7) −0.0029 (6) 0.0021 (6) 0.0005 (6)
C7 0.0276 (8) 0.0231 (7) 0.0232 (7) 0.0001 (6) −0.0037 (6) 0.0015 (6)
C8 0.0248 (7) 0.0344 (9) 0.0274 (8) 0.0021 (6) −0.0012 (6) 0.0050 (7)
C10 0.0276 (7) 0.0266 (8) 0.0221 (7) −0.0026 (6) 0.0041 (6) 0.0021 (6)
C11 0.0344 (8) 0.0260 (7) 0.0229 (7) −0.0037 (6) −0.0001 (6) 0.0037 (6)
C13 0.0281 (7) 0.0302 (8) 0.0231 (7) 0.0015 (6) 0.0001 (6) 0.0033 (6)
C14 0.0397 (9) 0.0306 (9) 0.0389 (9) 0.0019 (7) 0.0131 (8) 0.0026 (7)
C15 0.0564 (12) 0.0291 (8) 0.0341 (9) −0.0044 (8) 0.0100 (8) −0.0038 (7)
C16 0.0487 (10) 0.0314 (8) 0.0215 (7) −0.0036 (7) 0.0060 (7) −0.0034 (6)
C17 0.0288 (8) 0.0390 (9) 0.0328 (9) −0.0037 (7) −0.0002 (7) 0.0025 (7)
C18 0.0309 (9) 0.0523 (12) 0.0498 (11) −0.0022 (8) 0.0063 (8) 0.0066 (9)
C20 0.0495 (11) 0.0428 (11) 0.0444 (11) 0.0071 (9) 0.0105 (9) −0.0059 (9)
C21 0.0377 (9) 0.0275 (8) 0.0334 (9) 0.0018 (7) −0.0003 (7) −0.0023 (7)
C22 0.0458 (11) 0.0591 (13) 0.0433 (11) 0.0242 (10) 0.0071 (9) 0.0088 (10)
C23 0.0353 (17) 0.0476 (19) 0.0471 (18) 0.0101 (14) 0.0154 (13) 0.0004 (14)
C23A 0.034 (4) 0.043 (4) 0.042 (4) 0.018 (3) 0.011 (3) −0.007 (3)
C24 0.0481 (10) 0.0303 (9) 0.0355 (9) 0.0071 (8) 0.0044 (8) −0.0065 (7)
C25 0.0419 (9) 0.0324 (9) 0.0412 (10) 0.0041 (7) −0.0051 (8) 0.0058 (8)
C26 0.0391 (9) 0.0387 (9) 0.0255 (8) −0.0110 (7) 0.0016 (7) 0.0050 (7)
C27 0.0286 (7) 0.0283 (8) 0.0224 (7) 0.0036 (6) −0.0003 (6) 0.0031 (6)
C28 0.0317 (8) 0.0329 (8) 0.0249 (7) −0.0012 (7) 0.0028 (6) 0.0025 (7)
C29 0.0390 (9) 0.0351 (9) 0.0221 (8) −0.0036 (7) 0.0025 (7) −0.0005 (7)
C30 0.0333 (8) 0.0287 (8) 0.0262 (8) −0.0011 (6) −0.0048 (6) 0.0011 (6)
C31 0.0318 (8) 0.0359 (9) 0.0269 (8) −0.0043 (7) 0.0000 (6) 0.0058 (7)
C32 0.0331 (8) 0.0363 (9) 0.0222 (7) −0.0020 (7) −0.0006 (6) 0.0028 (7)
C33 0.0332 (9) 0.0434 (10) 0.0372 (10) −0.0028 (7) −0.0073 (7) 0.0011 (8)
S1A 0.0586 (4) 0.0605 (5) 0.0519 (4) −0.0202 (3) −0.0122 (3) 0.0035 (3)
S1B 0.043 (2) 0.068 (3) 0.039 (2) −0.002 (2) −0.0026 (17) −0.017 (2)
O3 0.0570 (10) 0.161 (2) 0.0465 (10) −0.0138 (13) 0.0028 (8) 0.0158 (12)
C34 0.151 (4) 0.152 (3) 0.0315 (12) 0.050 (3) −0.0083 (17) 0.0009 (17)
C35 0.0509 (13) 0.0781 (18) 0.095 (2) −0.0069 (13) 0.0034 (14) −0.0142 (16)

Geometric parameters (Å, º)

O1—C1 1.198 (2) C22—C23A 1.381 (8)
O2—C1 1.334 (2) C22—C23 1.517 (4)
O2—H2 0.87 (2) C22—H221 0.9900
O4—C4 1.2320 (19) C22—H222 0.9900
O7—C7 1.2393 (18) C22—H223 0.9900
O10—C10 1.2265 (19) C22—H224 0.9900
O13—C13 1.2434 (19) C23—C24 1.514 (3)
O19—C20 1.426 (3) C23—H231 0.9900
O19—C18 1.431 (3) C23—H232 0.9900
O30—C30 1.365 (2) C23A—C24 1.489 (6)
O30—C33 1.428 (2) C23A—H233 0.9900
N3—C4 1.346 (2) C23A—H234 0.9900
N3—C2 1.464 (2) C24—H241 0.9900
N3—C16 1.479 (2) C24—H242 0.9900
N6—C7 1.337 (2) C24—H243 0.9900
N6—C5 1.4721 (19) C24—H244 0.9900
N6—H6 0.87 (2) C25—H251 0.9800
N9—C10 1.357 (2) C25—H252 0.9800
N9—C8 1.461 (2) C25—H253 0.9800
N9—C24 1.472 (2) C26—H261 0.9800
N12—C13 1.344 (2) C26—H262 0.9800
N12—C11 1.469 (2) C26—H263 0.9800
N12—H12 0.80 (2) C27—C32 1.392 (2)
C1—C2 1.528 (2) C27—C28 1.401 (2)
C2—C14 1.529 (2) C28—C29 1.382 (2)
C2—H1 1.0000 C28—H28 0.9500
C4—C5 1.549 (2) C29—C30 1.389 (2)
C5—C17 1.540 (2) C29—H29 0.9500
C5—C21 1.544 (2) C30—C31 1.393 (2)
C7—C8 1.517 (2) C31—C32 1.383 (2)
C8—C22 1.531 (3) C31—H31 0.9500
C8—H8 1.0000 C32—H32 0.9500
C10—C11 1.537 (2) C33—H331 0.9800
C11—C25 1.534 (2) C33—H332 0.9800
C11—C26 1.537 (2) C33—H333 0.9800
C13—C27 1.489 (2) S1A—O3 1.452 (2)
C14—C15 1.520 (3) S1A—C35 1.759 (3)
C14—H141 0.9900 S1A—C34 1.763 (3)
C14—H142 0.9900 S1B—O3 1.366 (4)
C15—C16 1.522 (2) S1B—C35 1.589 (4)
C15—H151 0.9900 S1B—C34 1.803 (4)
C15—H152 0.9900 C34—H341 0.9800
C16—H161 0.9900 C34—H342 0.9800
C16—H162 0.9900 C34—H343 0.9800
C17—C18 1.512 (3) C34—H344 0.9800
C17—H171 0.9900 C34—H345 0.9800
C17—H172 0.9900 C34—H346 0.9800
C18—H181 0.9900 C35—H351 0.9800
C18—H182 0.9900 C35—H352 0.9800
C20—C21 1.515 (3) C35—H353 0.9800
C20—H201 0.9900 C35—H354 0.9800
C20—H202 0.9900 C35—H355 0.9800
C21—H211 0.9900 C35—H356 0.9800
C21—H212 0.9900
C1—O2—H2 108.0 (16) C8—C22—H221 110.5
C20—O19—C18 110.20 (15) C23—C22—H222 110.5
C30—O30—C33 117.22 (13) C8—C22—H222 110.5
C4—N3—C2 118.99 (12) H221—C22—H222 108.7
C4—N3—C16 129.66 (13) C23A—C22—H223 110.7
C2—N3—C16 111.25 (13) C8—C22—H223 110.7
C7—N6—C5 121.26 (13) C23A—C22—H224 110.7
C7—N6—H6 119.4 (13) C8—C22—H224 110.7
C5—N6—H6 117.0 (13) H223—C22—H224 108.8
C10—N9—C8 117.53 (13) C24—C23—C22 103.9 (2)
C10—N9—C24 130.52 (13) C24—C23—H231 111.0
C8—N9—C24 111.05 (13) C22—C23—H231 111.0
C13—N12—C11 121.47 (14) C24—C23—H232 111.0
C13—N12—H12 119.0 (16) C22—C23—H232 111.0
C11—N12—H12 117.3 (16) H231—C23—H232 109.0
O1—C1—O2 124.53 (15) C22—C23A—C24 112.5 (5)
O1—C1—C2 125.60 (14) C22—C23A—H233 109.1
O2—C1—C2 109.84 (14) C24—C23A—H233 109.1
N3—C2—C1 110.40 (13) C22—C23A—H234 109.1
N3—C2—C14 103.54 (12) C24—C23A—H234 109.1
C1—C2—C14 110.24 (13) H233—C23A—H234 107.8
N3—C2—H1 110.8 N9—C24—C23A 102.1 (3)
C1—C2—H1 110.8 N9—C24—C23 102.94 (17)
C14—C2—H1 110.8 N9—C24—H241 111.2
O4—C4—N3 120.73 (14) C23—C24—H241 111.2
O4—C4—C5 119.81 (14) N9—C24—H242 111.2
N3—C4—C5 119.11 (13) C23—C24—H242 111.2
N6—C5—C17 108.49 (12) H241—C24—H242 109.1
N6—C5—C21 107.72 (13) N9—C24—H243 111.3
C17—C5—C21 108.02 (13) C23A—C24—H243 111.3
N6—C5—C4 111.80 (13) N9—C24—H244 111.3
C17—C5—C4 110.03 (13) C23A—C24—H244 111.3
C21—C5—C4 110.67 (13) H243—C24—H244 109.2
O7—C7—N6 121.95 (15) C11—C25—H251 109.5
O7—C7—C8 119.43 (14) C11—C25—H252 109.5
N6—C7—C8 118.61 (13) H251—C25—H252 109.5
N9—C8—C7 114.92 (12) C11—C25—H253 109.5
N9—C8—C22 104.45 (14) H251—C25—H253 109.5
C7—C8—C22 110.77 (14) H252—C25—H253 109.5
N9—C8—H8 108.8 C11—C26—H261 109.5
C7—C8—H8 108.8 C11—C26—H262 109.5
C22—C8—H8 108.8 H261—C26—H262 109.5
O10—C10—N9 120.34 (14) C11—C26—H263 109.5
O10—C10—C11 119.60 (14) H261—C26—H263 109.5
N9—C10—C11 119.83 (13) H262—C26—H263 109.5
N12—C11—C25 108.71 (14) C32—C27—C28 118.65 (15)
N12—C11—C26 109.42 (13) C32—C27—C13 117.50 (13)
C25—C11—C26 110.16 (14) C28—C27—C13 123.82 (14)
N12—C11—C10 112.28 (12) C29—C28—C27 119.87 (15)
C25—C11—C10 109.54 (13) C29—C28—H28 120.1
C26—C11—C10 106.72 (13) C27—C28—H28 120.1
O13—C13—N12 120.45 (15) C28—C29—C30 120.72 (15)
O13—C13—C27 120.77 (14) C28—C29—H29 119.6
N12—C13—C27 118.77 (14) C30—C29—H29 119.6
C15—C14—C2 102.88 (14) O30—C30—C29 116.00 (14)
C15—C14—H141 111.2 O30—C30—C31 123.90 (15)
C2—C14—H141 111.2 C29—C30—C31 120.10 (15)
C15—C14—H142 111.2 C32—C31—C30 118.86 (15)
C2—C14—H142 111.2 C32—C31—H31 120.6
H141—C14—H142 109.1 C30—C31—H31 120.6
C14—C15—C16 102.97 (15) C31—C32—C27 121.79 (15)
C14—C15—H151 111.2 C31—C32—H32 119.1
C16—C15—H151 111.2 C27—C32—H32 119.1
C14—C15—H152 111.2 O30—C33—H331 109.5
C16—C15—H152 111.2 O30—C33—H332 109.5
H151—C15—H152 109.1 H331—C33—H332 109.5
N3—C16—C15 103.33 (13) O30—C33—H333 109.5
N3—C16—H161 111.1 H331—C33—H333 109.5
C15—C16—H161 111.1 H332—C33—H333 109.5
N3—C16—H162 111.1 O3—S1A—C35 109.95 (13)
C15—C16—H162 111.1 O3—S1A—C34 105.67 (16)
H161—C16—H162 109.1 C35—S1A—C34 97.1 (2)
C18—C17—C5 111.38 (14) O3—S1B—C35 126.1 (4)
C18—C17—H171 109.4 O3—S1B—C34 107.5 (3)
C5—C17—H171 109.4 C35—S1B—C34 102.0 (3)
C18—C17—H172 109.4 S1A—C34—H341 109.5
C5—C17—H172 109.4 S1A—C34—H342 109.5
H171—C17—H172 108.0 H341—C34—H342 109.5
O19—C18—C17 111.44 (16) S1A—C34—H343 109.5
O19—C18—H181 109.3 H341—C34—H343 109.5
C17—C18—H181 109.3 H342—C34—H343 109.5
O19—C18—H182 109.3 S1B—C34—H344 109.5
C17—C18—H182 109.3 S1B—C34—H345 109.5
H181—C18—H182 108.0 H344—C34—H345 109.5
O19—C20—C21 111.66 (15) S1B—C34—H346 109.5
O19—C20—H201 109.3 H344—C34—H346 109.5
C21—C20—H201 109.3 H345—C34—H346 109.5
O19—C20—H202 109.3 S1A—C35—H351 109.5
C21—C20—H202 109.3 S1A—C35—H352 109.5
H201—C20—H202 107.9 H351—C35—H352 109.5
C20—C21—C5 114.20 (15) S1A—C35—H353 109.5
C20—C21—H211 108.7 H351—C35—H353 109.5
C5—C21—H211 108.7 H352—C35—H353 109.5
C20—C21—H212 108.7 S1B—C35—H354 109.5
C5—C21—H212 108.7 S1B—C35—H355 109.5
H211—C21—H212 107.6 H354—C35—H355 109.5
C23A—C22—C8 105.1 (3) S1B—C35—H356 109.5
C23—C22—C8 106.09 (17) H354—C35—H356 109.5
C23—C22—H221 110.5 H355—C35—H356 109.5
C4—N3—C2—C1 −77.56 (18) C21—C5—C17—C18 49.02 (19)
C16—N3—C2—C1 105.76 (15) C4—C5—C17—C18 −71.89 (18)
C4—N3—C2—C14 164.46 (14) C20—O19—C18—C17 63.9 (2)
C16—N3—C2—C14 −12.22 (18) C5—C17—C18—O19 −59.5 (2)
O1—C1—C2—N3 −9.7 (2) C18—O19—C20—C21 −59.6 (2)
O2—C1—C2—N3 172.24 (12) O19—C20—C21—C5 52.7 (2)
O1—C1—C2—C14 104.13 (19) N6—C5—C21—C20 −163.52 (15)
O2—C1—C2—C14 −73.97 (17) C17—C5—C21—C20 −46.52 (19)
C2—N3—C4—O4 −3.6 (2) C4—C5—C21—C20 73.99 (18)
C16—N3—C4—O4 172.40 (16) N9—C8—C22—C23A 19.5 (6)
C2—N3—C4—C5 169.63 (13) C7—C8—C22—C23A −104.8 (6)
C16—N3—C4—C5 −14.4 (2) N9—C8—C22—C23 −12.2 (3)
C7—N6—C5—C17 175.20 (14) C7—C8—C22—C23 −136.4 (2)
C7—N6—C5—C21 −68.11 (18) C23A—C22—C23—C24 −63.7 (4)
C7—N6—C5—C4 53.69 (19) C8—C22—C23—C24 28.7 (3)
O4—C4—C5—N6 −133.33 (15) C23—C22—C23A—C24 73.4 (7)
N3—C4—C5—N6 53.40 (19) C8—C22—C23A—C24 −22.8 (9)
O4—C4—C5—C17 106.06 (17) C10—N9—C24—C23A −171.4 (5)
N3—C4—C5—C17 −67.22 (18) C8—N9—C24—C23A −2.8 (5)
O4—C4—C5—C21 −13.2 (2) C10—N9—C24—C23 −140.9 (2)
N3—C4—C5—C21 173.48 (14) C8—N9—C24—C23 27.7 (3)
C5—N6—C7—O7 −11.3 (2) C22—C23A—C24—N9 16.5 (9)
C5—N6—C7—C8 169.78 (14) C22—C23A—C24—C23 −78.4 (10)
C10—N9—C8—C7 −78.00 (18) C22—C23—C24—N9 −33.8 (3)
C24—N9—C8—C7 111.71 (16) C22—C23—C24—C23A 58.0 (6)
C10—N9—C8—C22 160.44 (15) O13—C13—C27—C32 −1.6 (2)
C24—N9—C8—C22 −9.85 (19) N12—C13—C27—C32 178.69 (15)
O7—C7—C8—N9 176.18 (14) O13—C13—C27—C28 −179.64 (16)
N6—C7—C8—N9 −4.9 (2) N12—C13—C27—C28 0.7 (2)
O7—C7—C8—C22 −65.8 (2) C32—C27—C28—C29 −0.3 (2)
N6—C7—C8—C22 113.20 (17) C13—C27—C28—C29 177.63 (16)
C8—N9—C10—O10 6.6 (2) C27—C28—C29—C30 0.1 (3)
C24—N9—C10—O10 174.63 (16) C33—O30—C30—C29 163.21 (15)
C8—N9—C10—C11 −167.91 (13) C33—O30—C30—C31 −16.9 (2)
C24—N9—C10—C11 0.1 (2) C28—C29—C30—O30 −179.63 (16)
C13—N12—C11—C25 73.25 (18) C28—C29—C30—C31 0.5 (3)
C13—N12—C11—C26 −166.40 (15) O30—C30—C31—C32 179.34 (16)
C13—N12—C11—C10 −48.1 (2) C29—C30—C31—C32 −0.8 (3)
O10—C10—C11—N12 137.80 (15) C30—C31—C32—C27 0.5 (3)
N9—C10—C11—N12 −47.67 (19) C28—C27—C32—C31 0.0 (2)
O10—C10—C11—C25 16.9 (2) C13—C27—C32—C31 −178.07 (15)
N9—C10—C11—C25 −168.55 (14) C35—S1B—O3—S1A −59.6 (3)
O10—C10—C11—C26 −102.32 (17) C34—S1B—O3—S1A 60.4 (2)
N9—C10—C11—C26 72.21 (17) C35—S1A—O3—S1B 42.1 (3)
C11—N12—C13—O13 11.4 (2) C34—S1A—O3—S1B −61.7 (3)
C11—N12—C13—C27 −168.90 (14) O3—S1A—C34—S1B 54.6 (2)
N3—C2—C14—C15 32.26 (17) C35—S1A—C34—S1B −58.5 (2)
C1—C2—C14—C15 −85.84 (16) O3—S1B—C34—S1A −61.0 (3)
C2—C14—C15—C16 −40.31 (18) C35—S1B—C34—S1A 73.3 (3)
C4—N3—C16—C15 171.04 (17) O3—S1B—C35—S1A 56.1 (3)
C2—N3—C16—C15 −12.74 (19) C34—S1B—C35—S1A −66.3 (2)
C14—C15—C16—N3 32.57 (19) O3—S1A—C35—S1B −42.1 (3)
N6—C5—C17—C18 165.52 (15) C34—S1A—C35—S1B 67.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O7i 0.87 (2) 1.81 (3) 2.6669 (17) 168 (2)
N6—H6···O13 0.87 (2) 2.19 (2) 3.0468 (17) 169.5 (18)
N12—H12···O4ii 0.80 (2) 2.37 (2) 3.1247 (18) 156 (2)

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2305).

References

  1. Altherr, W., Linden, A. & Heimgartner, H. (2007). Chem. Biodivers. 6, 1144–1169. [DOI] [PubMed]
  2. Aravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238–1262. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Demizu, Y., Yabuki, Y., Doi, M., Sato, Y., Tanaka, M. & Kurikara, M. (2012). J. Pept. Sci. 18, 466–475. [DOI] [PubMed]
  5. Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. [DOI] [PubMed]
  6. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  7. Heimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238–265.
  8. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  9. Luykx, R. T. N., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 4093–4111.
  10. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Pradeille, N., Tzouros, M., Möhle, K., Linden, A. & Heimgartner, H. (2012). Chem. Biodivers. 9, 2528–2558. [DOI] [PubMed]
  13. Prasad, B. V. & Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307–348. [DOI] [PubMed]
  14. Schweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A. & Marshall, G. R. (2007). J. Am. Chem. Soc. 129, 13095–13109. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Stamm, S. & Heimgartner, H. (2004). Eur. J. Org. Chem. pp. 3820–3827.
  18. Stamm, S. & Heimgartner, H. (2006). Tetrahedron, 62, 9671–9680.
  19. Stamm, S., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 1371–1396.
  20. Stoykova, S. A., Linden, A. & Heimgartner, H. (2012). Helv. Chim. Acta, 95, 1325–1351.
  21. Suter, G., Stoykova, S. A., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 2961–2974.
  22. Toniolo, C. & Benedetti, E. (1991). Macromolecules, 24, 4004–4009.
  23. Whitmore, L. & Wallace, B. A. (2004). Nucleic Acids Res. 32, D593–D594. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004546/nc2305sup1.cif

e-69-0o419-sup1.cif (45.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004546/nc2305Isup2.hkl

e-69-0o419-Isup2.hkl (451.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004546/nc2305Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536813004546/nc2305Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES