Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 16;69(Pt 3):m150–m151. doi: 10.1107/S1600536813003413

catena-Poly[[[aqua­copper(II)]-bis­[μ-N,N′-bis­(pyridin-4-yl)isophthalamide]-[aqua­copper(II)]-di-μ-sulfato] dimethyl­formamide disolvate]

Er-Peng Zhang a,*, Li-Ping Wang b, Yu-Fei Wang b
PMCID: PMC3588534  PMID: 23476497

Abstract

In the title coordination polymer, {[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO}n, the CuII ion is coordinated by two N atoms of two briding N,N′-bis­(pyridin-4-yl)isophthalamide ligands, two O atoms of two bridging SO4 2− anions and a water mol­ecule, giving a distorted CuN2O3 square-pyramidal geometry. The whole repeating mol­ecular unit is generated by inversion symmetry. This leads to the formation of a looped-chain one-dimensional coordination polymer propagating along [110]. The dimethyl­formamide (DMF) mol­ecules are linked to the chains via O—H⋯O hydrogen bonds. The chains are linked via N—H⋯O hydrogen bonds, forming two-dimensional networks parallel to (001). There are also a number of C—H⋯O inter­actions present and a parallel slipped π–π inter­action. The latter involves inversion-related pyridine rings with a centroid–centroid distance of 3.594 (2) Å [normal distance = 3.3338 (13) and slippage = 1.341 Å]. These inter­actions lead to the formation of a three-dimensional structure.

Related literature  

For background to metal complexes with a N,N′-bis-(4-pyrid­yl)isophthalamide ligand, see: Adarsh et al. (2009); Gong et al. (2010, 2011); Kim et al. (2011).graphic file with name e-69-0m150-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO

  • M r = 569.06

  • Triclinic, Inline graphic

  • a = 10.389 (2) Å

  • b = 11.092 (1) Å

  • c = 12.105 (2) Å

  • α = 63.47 (3)°

  • β = 79.75 (2)°

  • γ = 71.08 (3)°

  • V = 1179.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection  

  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.753, T max = 0.814

  • 14785 measured reflections

  • 5581 independent reflections

  • 4622 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.124

  • S = 1.07

  • 5581 reflections

  • 339 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003413/su2555sup1.cif

e-69-0m150-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003413/su2555Isup2.hkl

e-69-0m150-Isup2.hkl (273.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.86 (3) 2.03 (3) 2.867 (3) 164 (3)
N4—H4A⋯O3i 0.87 (3) 2.25 (3) 3.103 (4) 168 (3)
O5—H5A⋯O8ii 0.82 (3) 1.81 (3) 2.626 (4) 179 (4)
O5—H5B⋯O2 0.81 (3) 1.90 (3) 2.684 (3) 164 (4)
C4—H4⋯O8 0.93 2.45 3.325 (4) 157
C18—H18⋯O6iii 0.93 2.55 3.277 (4) 136
C19—H19⋯O4iv 0.93 2.47 3.286 (4) 146
C20—H20C⋯O3v 0.96 2.58 3.226 (6) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are grateful to the Henan Center for Disease Control and Prevention for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

supplementary crystallographic information

Comment

The bis-pyridyl-bis-amide ligands have been used to construct various metal-organic frameworks (MOFs), not only due to their conformational flexibility but also due to the multiple hydrogen bonding sites in the ligand backbone (Adarsh et al., 2009; Gong et al., 2010, 2011; Kim et al., 2011). In this work, the bis-pyridyl-bis-amide ligand, N,N'-bis-(4-pyridyl)isophthalamide (bppa), has been used to generate the title coordination polymer whose crystal structure is reported on herein.

The coordination enviroment of the CuII center in the title complex is shown in Fig. 1. In the distorted square pyramidal geometry of the CuII ion the basal positions are occupied by two pyridyl N atoms of briding bppa ligands (N1 and N2i), an O atom (O1) of a briding SO42- anion and the O atom (O5) of a coordinated water molecule, while the axial position is occupied by the O atom (O4ii) of a second briding SO42- anion. The CuII ions are connected by a pair of bridging SO42- anions, yielding a centrosymmetric Cu2(SO4)2 binuclear unit with a Cu···Cu distance of 4.772( ) Å. The binuclear units are further linked by two bppa ligands to give a looped-chain coordination polymer extending along [1 1 0], as shown in Fig. 2. The distance between two CuII ions bridged by the bppa ligands is ca. 13.87 Å.

In the crystal, the chains are linked via N-H···O to form two-dimensional networks extending in the a and b directions. The dimethyl formamide (DMF) molecules are linked to the chains via O-H···O hydrogen bonds (Table 1). There are also a number of C-H···O interactions present and a parallel slipped π-π interaction. The latter involves inversion related N2/C14-C18 pyridine rings with a centroid-to-centroid distance 3.594 (2) Å [normal distance 3.3338 (13) Å, slippage 1.341 Å]. These interactions lead to the formatin of a three-diemnsional structure.

Experimental

The ligand N,N'-bis-(4-pyridyl)isophthalamide (0.03 mmol, 10 mg) in DMF (5 ml) was added dropwise to a methanol solution (5 ml) of CuSO4.5H2O; (0.03 mmol, 7.5 mg) in methanol. The resulting solution was allowed to stand at room temperature. After one week good quality blue crystals were obtained.

Refinement

The NH and water OH H-atoms were located from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N) and = 1.5Ueq(O). The C-bound H-atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(C-aromatic) and = 1.5Ueq(C methyl).

Figures

Fig. 1.

Fig. 1.

A fragment of the title complex showing the atom labelling. The displacement ellipsoids are drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity [symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+3, -z].

Fig. 2.

Fig. 2.

View of the extended one-dimensional looped-chain structure of the title complex.

Crystal data

[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO Z = 2
Mr = 569.06 F(000) = 586
Triclinic, P1 Dx = 1.602 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.389 (2) Å Cell parameters from 2540 reflections
b = 11.092 (1) Å θ = 1.3–25.5°
c = 12.105 (2) Å µ = 1.07 mm1
α = 63.47 (3)° T = 293 K
β = 79.75 (2)° Prism, blue
γ = 71.08 (3)° 0.28 × 0.24 × 0.20 mm
V = 1179.8 (4) Å3

Data collection

Rigaku Saturn 724 diffractometer 5581 independent reflections
Radiation source: fine-focus sealed tube 4622 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 28.5714 pixels mm-1 θmax = 27.9°, θmin = 2.5°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.753, Tmax = 0.814 l = −15→15
14785 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3078P] where P = (Fo2 + 2Fc2)/3
5581 reflections (Δ/σ)max = 0.001
339 parameters Δρmax = 0.44 e Å3
4 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.38105 (3) 1.33009 (3) 0.12726 (3) 0.02904 (12)
N1 0.3870 (2) 1.1263 (2) 0.2105 (2) 0.0306 (5)
N2 −0.2404 (2) 0.6278 (2) −0.0103 (2) 0.0318 (5)
N3 0.3422 (3) 0.7212 (3) 0.3637 (2) 0.0346 (6)
H3A 0.353 (3) 0.686 (3) 0.311 (2) 0.041*
N4 0.0555 (3) 0.5102 (3) 0.2416 (2) 0.0390 (6)
H4A 0.111 (3) 0.562 (3) 0.214 (3) 0.047*
N5 0.0872 (3) 0.9732 (3) 0.7526 (3) 0.0567 (8)
O1 0.3441 (3) 1.5323 (2) 0.0619 (2) 0.0509 (6)
O2 0.4349 (2) 1.5789 (2) 0.20428 (18) 0.0343 (5)
O3 0.2229 (2) 1.7265 (2) 0.1090 (2) 0.0485 (6)
O4 0.4322 (2) 1.7294 (2) −0.01280 (18) 0.0394 (5)
O5 0.4686 (2) 1.3056 (2) 0.2695 (2) 0.0360 (5)
H5A 0.5446 (18) 1.251 (3) 0.284 (3) 0.054*
H5B 0.474 (4) 1.3836 (18) 0.251 (3) 0.054*
O6 0.3448 (3) 0.6518 (2) 0.57191 (19) 0.0510 (6)
O7 0.0307 (3) 0.2996 (3) 0.3841 (3) 0.0766 (10)
O8 0.2884 (3) 0.8735 (3) 0.6849 (3) 0.0816 (10)
C1 0.4035 (3) 1.0521 (3) 0.1435 (3) 0.0350 (7)
H1 0.4239 1.0942 0.0593 0.042*
C2 0.3919 (3) 0.9193 (3) 0.1921 (3) 0.0350 (7)
H2 0.4033 0.8731 0.1416 0.042*
C3 0.3626 (3) 0.8524 (3) 0.3190 (3) 0.0301 (6)
C4 0.3509 (3) 0.9258 (3) 0.3902 (3) 0.0343 (6)
H4 0.3347 0.8849 0.4753 0.041*
C5 0.3638 (3) 1.0592 (3) 0.3320 (3) 0.0342 (6)
H5 0.3559 1.1069 0.3805 0.041*
C6 0.3258 (3) 0.6324 (3) 0.4860 (3) 0.0332 (6)
C7 0.2840 (3) 0.5079 (3) 0.5039 (3) 0.0308 (6)
C8 0.3220 (3) 0.3856 (3) 0.6112 (3) 0.0357 (7)
H8 0.3719 0.3824 0.6696 0.043*
C9 0.2842 (4) 0.2693 (3) 0.6295 (3) 0.0475 (8)
H9 0.3099 0.1869 0.7003 0.057*
C10 0.2090 (3) 0.2740 (3) 0.5440 (3) 0.0440 (8)
H10 0.1854 0.1944 0.5572 0.053*
C11 0.1680 (3) 0.3970 (3) 0.4378 (3) 0.0341 (6)
C12 0.2061 (3) 0.5133 (3) 0.4189 (3) 0.0313 (6)
H12 0.1793 0.5960 0.3485 0.038*
C13 0.0795 (3) 0.3964 (3) 0.3530 (3) 0.0409 (7)
C14 −0.0426 (3) 0.5437 (3) 0.1590 (3) 0.0340 (6)
C15 −0.0365 (3) 0.6471 (3) 0.0409 (3) 0.0376 (7)
H15 0.0330 0.6907 0.0166 0.045*
C16 −0.1348 (3) 0.6846 (3) −0.0406 (3) 0.0382 (7)
H16 −0.1282 0.7524 −0.1204 0.046*
C17 −0.2423 (3) 0.5272 (3) 0.1045 (3) 0.0369 (7)
H17 −0.3129 0.4853 0.1275 0.044*
C18 −0.1476 (3) 0.4817 (3) 0.1902 (3) 0.0370 (7)
H18 −0.1538 0.4104 0.2682 0.044*
C19 0.2186 (4) 0.9110 (4) 0.7613 (3) 0.0545 (9)
H19 0.2605 0.8947 0.8304 0.065*
C20 0.0111 (6) 1.0277 (7) 0.8395 (5) 0.117 (2)
H20A 0.0717 1.0157 0.8972 0.175*
H20B −0.0559 0.9783 0.8832 0.175*
H20C −0.0336 1.1257 0.7962 0.175*
C21 0.0159 (4) 0.9925 (5) 0.6498 (4) 0.0822 (14)
H21A 0.0778 0.9484 0.6009 0.123*
H21B −0.0188 1.0909 0.5994 0.123*
H21C −0.0583 0.9509 0.6814 0.123*
S1 0.35897 (7) 1.64365 (7) 0.09048 (6) 0.02617 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0327 (2) 0.0243 (2) 0.0321 (2) −0.01067 (15) −0.00462 (14) −0.01040 (15)
N1 0.0385 (13) 0.0254 (12) 0.0305 (12) −0.0126 (10) −0.0007 (10) −0.0117 (10)
N2 0.0321 (12) 0.0323 (13) 0.0355 (13) −0.0133 (10) −0.0032 (10) −0.0142 (11)
N3 0.0520 (16) 0.0320 (13) 0.0266 (12) −0.0217 (12) 0.0028 (11) −0.0129 (11)
N4 0.0379 (14) 0.0442 (16) 0.0385 (14) −0.0215 (12) −0.0046 (11) −0.0124 (12)
N5 0.0508 (18) 0.0533 (19) 0.0501 (18) −0.0023 (15) 0.0016 (14) −0.0175 (15)
O1 0.0801 (18) 0.0271 (11) 0.0528 (14) −0.0155 (11) −0.0306 (13) −0.0125 (10)
O2 0.0414 (12) 0.0321 (11) 0.0329 (11) −0.0089 (9) −0.0065 (9) −0.0155 (9)
O3 0.0326 (12) 0.0469 (14) 0.0551 (14) 0.0003 (10) 0.0030 (10) −0.0214 (12)
O4 0.0353 (11) 0.0422 (12) 0.0366 (11) −0.0174 (10) 0.0062 (9) −0.0111 (10)
O5 0.0409 (12) 0.0268 (11) 0.0405 (12) −0.0070 (9) −0.0109 (10) −0.0126 (10)
O6 0.0858 (19) 0.0503 (14) 0.0287 (11) −0.0387 (13) −0.0043 (11) −0.0123 (10)
O7 0.101 (2) 0.0432 (15) 0.088 (2) −0.0383 (15) −0.0528 (18) 0.0010 (14)
O8 0.0632 (18) 0.101 (2) 0.0707 (19) 0.0272 (17) −0.0212 (15) −0.0551 (19)
C1 0.0449 (17) 0.0358 (16) 0.0266 (14) −0.0145 (14) 0.0023 (12) −0.0142 (13)
C2 0.0505 (18) 0.0317 (15) 0.0296 (14) −0.0172 (14) 0.0029 (13) −0.0163 (13)
C3 0.0349 (15) 0.0281 (14) 0.0304 (14) −0.0122 (12) −0.0009 (12) −0.0126 (12)
C4 0.0474 (18) 0.0330 (16) 0.0280 (14) −0.0186 (14) 0.0027 (12) −0.0137 (12)
C5 0.0434 (17) 0.0301 (15) 0.0346 (15) −0.0144 (13) 0.0007 (13) −0.0164 (13)
C6 0.0380 (16) 0.0323 (15) 0.0303 (14) −0.0159 (13) −0.0002 (12) −0.0103 (12)
C7 0.0335 (15) 0.0302 (15) 0.0295 (14) −0.0116 (12) 0.0003 (11) −0.0118 (12)
C8 0.0388 (16) 0.0371 (16) 0.0306 (15) −0.0140 (13) −0.0059 (12) −0.0098 (13)
C9 0.056 (2) 0.0301 (17) 0.0439 (18) −0.0130 (15) −0.0169 (16) 0.0015 (14)
C10 0.0509 (19) 0.0300 (16) 0.0484 (19) −0.0170 (14) −0.0113 (15) −0.0068 (14)
C11 0.0344 (15) 0.0295 (15) 0.0387 (16) −0.0122 (12) −0.0035 (12) −0.0114 (13)
C12 0.0357 (15) 0.0287 (15) 0.0284 (14) −0.0120 (12) −0.0021 (12) −0.0085 (12)
C13 0.0429 (18) 0.0350 (17) 0.0471 (18) −0.0144 (14) −0.0104 (14) −0.0135 (15)
C14 0.0342 (15) 0.0360 (16) 0.0387 (16) −0.0099 (13) −0.0029 (12) −0.0209 (14)
C15 0.0337 (15) 0.0378 (17) 0.0423 (17) −0.0183 (13) −0.0019 (13) −0.0118 (14)
C16 0.0402 (17) 0.0351 (17) 0.0388 (16) −0.0169 (14) −0.0043 (13) −0.0095 (13)
C17 0.0352 (16) 0.0431 (18) 0.0370 (16) −0.0168 (14) −0.0009 (13) −0.0168 (14)
C18 0.0359 (16) 0.0463 (18) 0.0323 (15) −0.0185 (14) 0.0009 (12) −0.0153 (14)
C19 0.055 (2) 0.053 (2) 0.044 (2) 0.0042 (18) −0.0135 (17) −0.0192 (18)
C20 0.101 (4) 0.128 (5) 0.106 (4) −0.004 (4) 0.036 (4) −0.069 (4)
C21 0.054 (3) 0.087 (3) 0.094 (4) −0.019 (2) −0.022 (2) −0.021 (3)
S1 0.0283 (3) 0.0230 (3) 0.0297 (3) −0.0089 (3) −0.0005 (3) −0.0122 (3)

Geometric parameters (Å, º)

Cu1—O1 1.942 (2) C2—H2 0.9300
Cu1—O5 1.961 (2) C3—C4 1.395 (4)
Cu1—N1 2.007 (2) C4—C5 1.367 (4)
Cu1—N2i 2.015 (2) C4—H4 0.9300
Cu1—O4ii 2.269 (2) C5—H5 0.9300
N1—C5 1.337 (3) C6—C7 1.494 (4)
N1—C1 1.349 (3) C7—C12 1.389 (4)
N2—C17 1.340 (4) C7—C8 1.394 (4)
N2—C16 1.354 (4) C8—C9 1.382 (4)
N2—Cu1i 2.015 (2) C8—H8 0.9300
N3—C6 1.381 (3) C9—C10 1.377 (4)
N3—C3 1.382 (3) C9—H9 0.9300
N3—H3A 0.86 (3) C10—C11 1.396 (4)
N4—C13 1.367 (4) C10—H10 0.9300
N4—C14 1.401 (4) C11—C12 1.382 (4)
N4—H4A 0.87 (3) C11—C13 1.497 (4)
N5—C19 1.314 (5) C12—H12 0.9300
N5—C20 1.435 (5) C14—C15 1.383 (4)
N5—C21 1.460 (5) C14—C18 1.384 (4)
O1—S1 1.481 (2) C15—C16 1.380 (4)
O2—S1 1.473 (2) C15—H15 0.9300
O3—S1 1.457 (2) C16—H16 0.9300
O4—S1 1.454 (2) C17—C18 1.369 (4)
O4—Cu1ii 2.269 (2) C17—H17 0.9300
O5—H5A 0.82 (3) C18—H18 0.9300
O5—H5B 0.81 (3) C19—H19 0.9300
O6—C6 1.211 (3) C20—H20A 0.9600
O7—C13 1.215 (4) C20—H20B 0.9600
O8—C19 1.209 (4) C20—H20C 0.9600
C1—C2 1.359 (4) C21—H21A 0.9600
C1—H1 0.9300 C21—H21B 0.9600
C2—C3 1.401 (4) C21—H21C 0.9600
O1—Cu1—O5 90.75 (9) C7—C8—H8 120.5
O1—Cu1—N1 169.85 (10) C10—C9—C8 120.8 (3)
O5—Cu1—N1 89.23 (10) C10—C9—H9 119.6
O1—Cu1—N2i 85.21 (10) C8—C9—H9 119.6
O5—Cu1—N2i 162.72 (10) C9—C10—C11 120.6 (3)
N1—Cu1—N2i 91.82 (10) C9—C10—H10 119.7
O1—Cu1—O4ii 102.68 (10) C11—C10—H10 119.7
O5—Cu1—O4ii 100.05 (9) C12—C11—C10 118.8 (3)
N1—Cu1—O4ii 87.31 (9) C12—C11—C13 123.7 (3)
N2i—Cu1—O4ii 97.23 (9) C10—C11—C13 117.5 (3)
C5—N1—C1 116.0 (2) C11—C12—C7 120.6 (3)
C5—N1—Cu1 123.07 (19) C11—C12—H12 119.7
C1—N1—Cu1 120.74 (19) C7—C12—H12 119.7
C17—N2—C16 115.7 (3) O7—C13—N4 122.5 (3)
C17—N2—Cu1i 118.66 (19) O7—C13—C11 120.7 (3)
C16—N2—Cu1i 125.3 (2) N4—C13—C11 116.7 (3)
C6—N3—C3 126.9 (2) C15—C14—C18 118.2 (3)
C6—N3—H3A 116 (2) C15—C14—N4 118.3 (3)
C3—N3—H3A 116 (2) C18—C14—N4 123.5 (3)
C13—N4—C14 126.0 (3) C16—C15—C14 119.1 (3)
C13—N4—H4A 119 (2) C16—C15—H15 120.4
C14—N4—H4A 115 (2) C14—C15—H15 120.4
C19—N5—C20 121.9 (4) N2—C16—C15 123.4 (3)
C19—N5—C21 119.8 (3) N2—C16—H16 118.3
C20—N5—C21 118.3 (4) C15—C16—H16 118.3
S1—O1—Cu1 141.81 (14) N2—C17—C18 124.6 (3)
S1—O4—Cu1ii 131.29 (13) N2—C17—H17 117.7
Cu1—O5—H5A 116 (3) C18—C17—H17 117.7
Cu1—O5—H5B 103 (3) C17—C18—C14 118.8 (3)
H5A—O5—H5B 108 (4) C17—C18—H18 120.6
N1—C1—C2 123.8 (3) C14—C18—H18 120.6
N1—C1—H1 118.1 O8—C19—N5 123.9 (4)
C2—C1—H1 118.1 O8—C19—H19 118.0
C1—C2—C3 119.5 (3) N5—C19—H19 118.0
C1—C2—H2 120.3 N5—C20—H20A 109.5
C3—C2—H2 120.3 N5—C20—H20B 109.5
N3—C3—C4 124.7 (3) H20A—C20—H20B 109.5
N3—C3—C2 117.8 (2) N5—C20—H20C 109.5
C4—C3—C2 117.4 (3) H20A—C20—H20C 109.5
C5—C4—C3 118.4 (3) H20B—C20—H20C 109.5
C5—C4—H4 120.8 N5—C21—H21A 109.5
C3—C4—H4 120.8 N5—C21—H21B 109.5
N1—C5—C4 124.9 (3) H21A—C21—H21B 109.5
N1—C5—H5 117.5 N5—C21—H21C 109.5
C4—C5—H5 117.5 H21A—C21—H21C 109.5
O6—C6—N3 123.6 (3) H21B—C21—H21C 109.5
O6—C6—C7 122.4 (3) O4—S1—O3 111.13 (14)
N3—C6—C7 114.1 (2) O4—S1—O2 110.28 (13)
C12—C7—C8 120.2 (3) O3—S1—O2 109.69 (13)
C12—C7—C6 121.7 (3) O4—S1—O1 108.42 (14)
C8—C7—C6 118.1 (3) O3—S1—O1 107.80 (15)
C9—C8—C7 119.0 (3) O2—S1—O1 109.46 (12)
C9—C8—H8 120.5
O1—Cu1—N1—C5 −51.2 (6) C8—C9—C10—C11 −0.8 (5)
O5—Cu1—N1—C5 38.8 (2) C9—C10—C11—C12 1.1 (5)
N2i—Cu1—N1—C5 −123.9 (2) C9—C10—C11—C13 −176.4 (3)
O4ii—Cu1—N1—C5 138.9 (2) C10—C11—C12—C7 0.1 (4)
O1—Cu1—N1—C1 123.0 (5) C13—C11—C12—C7 177.4 (3)
O5—Cu1—N1—C1 −147.0 (2) C8—C7—C12—C11 −1.6 (4)
N2i—Cu1—N1—C1 50.3 (2) C6—C7—C12—C11 −179.6 (3)
O4ii—Cu1—N1—C1 −46.9 (2) C14—N4—C13—O7 11.6 (5)
O5—Cu1—O1—S1 −2.5 (3) C14—N4—C13—C11 −167.5 (3)
N1—Cu1—O1—S1 87.3 (6) C12—C11—C13—O7 −167.7 (3)
N2i—Cu1—O1—S1 160.7 (3) C10—C11—C13—O7 9.7 (5)
O4ii—Cu1—O1—S1 −103.0 (3) C12—C11—C13—N4 11.4 (5)
C5—N1—C1—C2 2.9 (4) C10—C11—C13—N4 −171.3 (3)
Cu1—N1—C1—C2 −171.7 (2) C13—N4—C14—C15 −168.0 (3)
N1—C1—C2—C3 −0.7 (5) C13—N4—C14—C18 13.9 (5)
C6—N3—C3—C4 −9.6 (5) C18—C14—C15—C16 0.2 (5)
C6—N3—C3—C2 173.1 (3) N4—C14—C15—C16 −178.0 (3)
C1—C2—C3—N3 175.6 (3) C17—N2—C16—C15 −2.2 (4)
C1—C2—C3—C4 −1.9 (4) Cu1i—N2—C16—C15 −176.3 (2)
N3—C3—C4—C5 −175.1 (3) C14—C15—C16—N2 1.7 (5)
C2—C3—C4—C5 2.2 (4) C16—N2—C17—C18 0.9 (5)
C1—N1—C5—C4 −2.6 (4) Cu1i—N2—C17—C18 175.4 (2)
Cu1—N1—C5—C4 171.9 (2) N2—C17—C18—C14 0.9 (5)
C3—C4—C5—N1 0.1 (5) C15—C14—C18—C17 −1.5 (5)
C3—N3—C6—O6 −9.8 (5) N4—C14—C18—C17 176.6 (3)
C3—N3—C6—C7 170.9 (3) C20—N5—C19—O8 −173.9 (5)
O6—C6—C7—C12 150.7 (3) C21—N5—C19—O8 4.0 (6)
N3—C6—C7—C12 −30.1 (4) Cu1ii—O4—S1—O3 −161.85 (15)
O6—C6—C7—C8 −27.4 (4) Cu1ii—O4—S1—O2 76.27 (18)
N3—C6—C7—C8 151.8 (3) Cu1ii—O4—S1—O1 −43.6 (2)
C12—C7—C8—C9 1.9 (5) Cu1—O1—S1—O4 125.2 (3)
C6—C7—C8—C9 180.0 (3) Cu1—O1—S1—O3 −114.4 (3)
C7—C8—C9—C10 −0.7 (5) Cu1—O1—S1—O2 4.8 (3)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+3, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O2iii 0.86 (3) 2.03 (3) 2.867 (3) 164 (3)
N4—H4A···O3iii 0.87 (3) 2.25 (3) 3.103 (4) 168 (3)
O5—H5A···O8iv 0.82 (3) 1.81 (3) 2.626 (4) 179 (4)
O5—H5B···O2 0.81 (3) 1.90 (3) 2.684 (3) 164 (4)
C4—H4···O8 0.93 2.45 3.325 (4) 157
C18—H18···O6v 0.93 2.55 3.277 (4) 136
C19—H19···O4vi 0.93 2.47 3.286 (4) 146
C20—H20C···O3vii 0.96 2.58 3.226 (6) 125

Symmetry codes: (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1; (v) −x, −y+1, −z+1; (vi) x, y−1, z+1; (vii) −x, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2555).

References

  1. Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2009). CrystEngComm, 11, 792–802.
  2. Gong, Y., Zhou, Y. C., Li, J. H., Cao, R. & Qin, J. B. (2010). Dalton Trans. 39, 9923–9928. [DOI] [PubMed]
  3. Gong, Y., Zhou, Y. C., Liu, T. F., Lu, J., Proserpioc, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982–5984. [DOI] [PubMed]
  4. Kim, K., Park, S., Park, K. M. & Lee, S. S. (2011). Cryst. Growth Des. 11, 4059–4067.
  5. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813003413/su2555sup1.cif

e-69-0m150-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813003413/su2555Isup2.hkl

e-69-0m150-Isup2.hkl (273.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES