Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 23;69(Pt 3):o437. doi: 10.1107/S1600536813004893

4-Dimethyl­amino-1-(4-meth­oxy­phen­yl)-2,5-dioxo-2,5-dihydro-1H-pyrrole-3-carbonitrile

Bakr F Abdel-Wahab a,, Hanan A Mohamed a, Abdelbasset A Farahat b, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3588536  PMID: 23476607

Abstract

In the title compound, C14H13N3O3, a twist occurs, as seen in the dihedral angle of 53.60 (12)° between the pyrrole and benzene rings. A three-dimensional architecture is formed in the crystal whereby layers of mol­ecules in the ac plane are connected by C—H⋯O and C—H⋯π inter­actions.

Related literature  

For background to the biological activity exhibited by pyrroles and pyran­opyrroles, see: Amer et al. (2008, 2009).graphic file with name e-69-0o437-scheme1.jpg

Experimental  

Crystal data  

  • C14H13N3O3

  • M r = 271.27

  • Monoclinic, Inline graphic

  • a = 12.7408 (14) Å

  • b = 7.8520 (9) Å

  • c = 14.4194 (18) Å

  • β = 115.163 (14)°

  • V = 1305.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.40 × 0.20 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.869, T max = 1.000

  • 8113 measured reflections

  • 3020 independent reflections

  • 1772 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.153

  • S = 1.04

  • 3020 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813004893/hb7042sup1.cif

e-69-0o437-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004893/hb7042Isup2.hkl

e-69-0o437-Isup2.hkl (148.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004893/hb7042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.96 2.54 3.397 (3) 149
C12—H12⋯O1ii 0.93 2.54 3.384 (3) 151
C5—H5BCg1iii 0.96 2.94 3.848 (3) 158
C6—H6BCg1iv 0.96 3.00 3.781 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound (I) was investigated owing to the biological activities exhibited pyrroles and pyranopyrrole analogues (Amer et al. 2009; Amer et al. 2008). Herein, its crystal structure determination is described.

Crystallography shows that fusion of 1-(4-methoxyphenyl)-4-oxopyrrolidine-3-carbonitrile with excess 1,1-dimethoxy-N,N-dimethylmethanamine afforded 4-(dimethylamino)-1-(4-methoxyphenyl)-2,5-dioxo-2,5-dihydro-1H-pyrrole-3-carbonitrile (I) not the expected 2-((dimethylamino)methylene)-1-(4-methoxyphenyl)-4-oxopyrrolidine-3-carbonitrile (II).

In (I), Fig. 1, the dihedral angle of 53.60 (12)° between the pyrrole (r.m.s. deviation = 0.005 Å) and benzene rings indicates a significant twist in the molecule. The methoxy substituent is twisted out of the plane of the ring to which it is attached as seen in the value of the C14—O3—C11—C10 torsion angle of -13.9 (4)°. The dimethylamino group is also slightly twisted out of the plane through the pyrrole ring to which it is attached; the C5—N2—C2—C1 torsion angle is 8.7 (3)°.

The three-dimensional architecture of (I) is consolidated by C—H···O interactions, involving both carbonyl-O atoms, as well as C—H···π interactions whereby the benzene ring serves as a bridge between molecules, Fig. 2 and Table 1.

Experimental

A mixture of 1-(4-methoxyphenyl)-4-oxopyrrolidine-3-carbonitrile (0.22 g, 0.001 M) and excess 1,1-dimethoxy-N,N-dimethylmethanamine (0.2 ml) was heated under reflux for about 1.5 h on water bath. The resultant solid was filtered and dried. Re-crystallization was by slow evaporation of its DMF solution which yielded yellow prisms in 28% yield. M.pt. 482–483 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing in projection down the a axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C14H13N3O3 F(000) = 568
Mr = 271.27 Dx = 1.380 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1717 reflections
a = 12.7408 (14) Å θ = 2.9–27.5°
b = 7.8520 (9) Å µ = 0.10 mm1
c = 14.4194 (18) Å T = 295 K
β = 115.163 (14)° Prism, yellow
V = 1305.6 (3) Å3 0.40 × 0.20 × 0.10 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3020 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1772 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.040
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.9°
ω scan h = −16→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→10
Tmin = 0.869, Tmax = 1.000 l = −17→18
8113 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.268P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3020 reflections Δρmax = 0.20 e Å3
184 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0065 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.87550 (12) 0.4211 (2) 0.83764 (12) 0.0638 (5)
O2 0.54480 (12) 0.7013 (2) 0.63309 (13) 0.0643 (5)
O3 0.86456 (14) 0.6113 (3) 0.40226 (13) 0.0700 (5)
N1 0.72098 (13) 0.5628 (2) 0.71557 (13) 0.0457 (5)
N2 0.74285 (15) 0.4605 (3) 0.96511 (14) 0.0517 (5)
N3 0.43202 (18) 0.7134 (3) 0.82506 (18) 0.0764 (7)
C1 0.78270 (17) 0.4912 (3) 0.81026 (17) 0.0461 (5)
C2 0.71002 (16) 0.5147 (3) 0.87029 (16) 0.0448 (5)
C3 0.60974 (16) 0.5976 (3) 0.80526 (16) 0.0463 (6)
C4 0.61362 (16) 0.6288 (3) 0.70794 (17) 0.0471 (6)
C5 0.85888 (19) 0.3921 (4) 1.03016 (18) 0.0665 (8)
H5A 0.9024 0.3797 0.9901 0.100*
H5B 0.8511 0.2831 1.0567 0.100*
H5C 0.8987 0.4689 1.0859 0.100*
C6 0.6647 (2) 0.4773 (4) 1.01516 (18) 0.0644 (7)
H6A 0.5885 0.4397 0.9693 0.097*
H6B 0.6615 0.5944 1.0329 0.097*
H6C 0.6929 0.4089 1.0761 0.097*
C7 0.51255 (19) 0.6588 (3) 0.81992 (18) 0.0551 (6)
C8 0.75727 (16) 0.5680 (3) 0.63493 (16) 0.0445 (5)
C9 0.68625 (17) 0.5068 (3) 0.53895 (17) 0.0501 (6)
H9 0.6157 0.4570 0.5278 0.060*
C10 0.71847 (18) 0.5185 (3) 0.45933 (18) 0.0528 (6)
H10 0.6694 0.4782 0.3947 0.063*
C11 0.82415 (18) 0.5903 (3) 0.47577 (18) 0.0522 (6)
C12 0.89700 (18) 0.6489 (3) 0.57264 (18) 0.0558 (6)
H12 0.9687 0.6952 0.5843 0.067*
C13 0.86383 (17) 0.6389 (3) 0.65152 (17) 0.0518 (6)
H13 0.9127 0.6796 0.7161 0.062*
C14 0.8062 (2) 0.5219 (4) 0.3082 (2) 0.0729 (8)
H14A 0.8420 0.5479 0.2632 0.109*
H14B 0.7263 0.5559 0.2766 0.109*
H14C 0.8111 0.4016 0.3213 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0468 (9) 0.0708 (13) 0.0703 (11) 0.0171 (8) 0.0215 (8) 0.0120 (9)
O2 0.0497 (9) 0.0694 (13) 0.0663 (10) 0.0130 (8) 0.0174 (8) 0.0112 (10)
O3 0.0740 (11) 0.0761 (14) 0.0704 (11) −0.0066 (9) 0.0409 (9) 0.0007 (10)
N1 0.0349 (9) 0.0490 (12) 0.0492 (10) 0.0021 (8) 0.0143 (8) 0.0038 (9)
N2 0.0497 (10) 0.0507 (13) 0.0499 (11) −0.0038 (9) 0.0165 (8) −0.0009 (9)
N3 0.0643 (13) 0.0814 (19) 0.0946 (17) 0.0171 (12) 0.0445 (12) 0.0116 (14)
C1 0.0391 (11) 0.0387 (13) 0.0550 (13) −0.0014 (9) 0.0146 (9) −0.0004 (11)
C2 0.0408 (11) 0.0387 (13) 0.0486 (12) −0.0057 (9) 0.0131 (9) −0.0051 (10)
C3 0.0373 (11) 0.0429 (14) 0.0555 (13) −0.0018 (9) 0.0167 (9) −0.0026 (11)
C4 0.0358 (11) 0.0446 (14) 0.0558 (13) 0.0010 (9) 0.0145 (9) 0.0002 (11)
C5 0.0574 (14) 0.070 (2) 0.0572 (14) 0.0056 (12) 0.0102 (11) 0.0095 (13)
C6 0.0663 (15) 0.071 (2) 0.0569 (15) −0.0048 (13) 0.0276 (12) −0.0023 (13)
C7 0.0495 (13) 0.0514 (16) 0.0641 (15) 0.0005 (11) 0.0240 (11) 0.0017 (12)
C8 0.0389 (11) 0.0400 (13) 0.0520 (13) 0.0016 (9) 0.0168 (9) 0.0016 (10)
C9 0.0388 (11) 0.0452 (14) 0.0610 (14) −0.0034 (9) 0.0162 (10) 0.0007 (12)
C10 0.0474 (12) 0.0538 (16) 0.0530 (13) −0.0010 (10) 0.0174 (10) −0.0009 (12)
C11 0.0524 (13) 0.0473 (15) 0.0604 (14) 0.0034 (10) 0.0273 (11) 0.0045 (12)
C12 0.0428 (12) 0.0532 (16) 0.0731 (16) −0.0064 (10) 0.0262 (11) −0.0014 (13)
C13 0.0385 (11) 0.0518 (15) 0.0586 (14) −0.0045 (10) 0.0144 (10) −0.0051 (12)
C14 0.0936 (19) 0.065 (2) 0.0674 (17) 0.0095 (15) 0.0411 (15) 0.0042 (15)

Geometric parameters (Å, º)

O1—C1 1.208 (2) C5—H5C 0.9600
O2—C4 1.206 (3) C6—H6A 0.9600
O3—C11 1.371 (3) C6—H6B 0.9600
O3—C14 1.424 (3) C6—H6C 0.9600
N1—C1 1.373 (3) C8—C9 1.378 (3)
N1—C8 1.423 (3) C8—C13 1.391 (3)
N1—C4 1.422 (3) C9—C10 1.377 (3)
N2—C2 1.319 (3) C9—H9 0.9300
N2—C6 1.463 (3) C10—C11 1.384 (3)
N2—C5 1.475 (3) C10—H10 0.9300
N3—C7 1.143 (3) C11—C12 1.386 (3)
C1—C2 1.524 (3) C12—C13 1.374 (3)
C2—C3 1.384 (3) C12—H12 0.9300
C3—C7 1.425 (3) C13—H13 0.9300
C3—C4 1.446 (3) C14—H14A 0.9600
C5—H5A 0.9600 C14—H14B 0.9600
C5—H5B 0.9600 C14—H14C 0.9600
C11—O3—C14 117.5 (2) N2—C6—H6C 109.5
C1—N1—C8 125.20 (17) H6A—C6—H6C 109.5
C1—N1—C4 110.58 (18) H6B—C6—H6C 109.5
C8—N1—C4 124.21 (17) N3—C7—C3 175.1 (3)
C2—N2—C6 119.99 (19) C9—C8—C13 119.2 (2)
C2—N2—C5 124.6 (2) C9—C8—N1 120.52 (18)
C6—N2—C5 115.32 (19) C13—C8—N1 120.23 (19)
O1—C1—N1 125.4 (2) C10—C9—C8 120.9 (2)
O1—C1—C2 128.0 (2) C10—C9—H9 119.6
N1—C1—C2 106.60 (17) C8—C9—H9 119.6
N2—C2—C3 130.4 (2) C9—C10—C11 119.8 (2)
N2—C2—C1 123.25 (19) C9—C10—H10 120.1
C3—C2—C1 106.32 (19) C11—C10—H10 120.1
C2—C3—C7 131.9 (2) O3—C11—C12 115.4 (2)
C2—C3—C4 109.54 (18) O3—C11—C10 125.0 (2)
C7—C3—C4 118.50 (18) C12—C11—C10 119.6 (2)
O2—C4—N1 123.4 (2) C13—C12—C11 120.4 (2)
O2—C4—C3 129.56 (19) C13—C12—H12 119.8
N1—C4—C3 106.97 (17) C11—C12—H12 119.8
N2—C5—H5A 109.5 C12—C13—C8 120.1 (2)
N2—C5—H5B 109.5 C12—C13—H13 119.9
H5A—C5—H5B 109.5 C8—C13—H13 119.9
N2—C5—H5C 109.5 O3—C14—H14A 109.5
H5A—C5—H5C 109.5 O3—C14—H14B 109.5
H5B—C5—H5C 109.5 H14A—C14—H14B 109.5
N2—C6—H6A 109.5 O3—C14—H14C 109.5
N2—C6—H6B 109.5 H14A—C14—H14C 109.5
H6A—C6—H6B 109.5 H14B—C14—H14C 109.5
C8—N1—C1—O1 −0.9 (4) C2—C3—C4—O2 −177.8 (2)
C4—N1—C1—O1 177.9 (2) C7—C3—C4—O2 −0.2 (4)
C8—N1—C1—C2 −179.66 (19) C2—C3—C4—N1 −0.4 (3)
C4—N1—C1—C2 −0.9 (2) C7—C3—C4—N1 177.2 (2)
C6—N2—C2—C3 3.3 (4) C1—N1—C8—C9 126.3 (2)
C5—N2—C2—C3 −172.2 (2) C4—N1—C8—C9 −52.3 (3)
C6—N2—C2—C1 −175.7 (2) C1—N1—C8—C13 −55.3 (3)
C5—N2—C2—C1 8.7 (3) C4—N1—C8—C13 126.1 (2)
O1—C1—C2—N2 1.2 (4) C13—C8—C9—C10 −1.4 (4)
N1—C1—C2—N2 179.9 (2) N1—C8—C9—C10 177.0 (2)
O1—C1—C2—C3 −178.1 (2) C8—C9—C10—C11 0.9 (4)
N1—C1—C2—C3 0.6 (2) C14—O3—C11—C12 166.8 (2)
N2—C2—C3—C7 3.6 (4) C14—O3—C11—C10 −13.9 (4)
C1—C2—C3—C7 −177.2 (2) C9—C10—C11—O3 −178.9 (2)
N2—C2—C3—C4 −179.3 (2) C9—C10—C11—C12 0.4 (4)
C1—C2—C3—C4 −0.1 (2) O3—C11—C12—C13 178.1 (2)
C1—N1—C4—O2 178.4 (2) C10—C11—C12—C13 −1.3 (4)
C8—N1—C4—O2 −2.8 (4) C11—C12—C13—C8 0.8 (4)
C1—N1—C4—C3 0.8 (2) C9—C8—C13—C12 0.6 (4)
C8—N1—C4—C3 179.62 (19) N1—C8—C13—C12 −177.8 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C8–C13 benzene ring.

D—H···A D—H H···A D···A D—H···A
C6—H6A···O2i 0.96 2.54 3.397 (3) 149
C12—H12···O1ii 0.93 2.54 3.384 (3) 151
C5—H5B···Cg1iii 0.96 2.94 3.848 (3) 158
C6—H6B···Cg1iv 0.96 3.00 3.781 (3) 140

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, −y−1/2, z−1/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7042).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Amer, F. A.-K., Hammouda, M., El-Ahl, A.-A. S. & Abdel-Wahab, B. F. (2008). J. Heterocycl. Chem. 45, 1549–1569.
  3. Amer, F. A.-K., Hammouda, M., El-Ahl, A. A. S. & Abdel-Wahab, B. F. (2009). Synth. Commun 39, 416–425.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813004893/hb7042sup1.cif

e-69-0o437-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004893/hb7042Isup2.hkl

e-69-0o437-Isup2.hkl (148.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813004893/hb7042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES