Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 6;69(Pt 3):o345. doi: 10.1107/S1600536813002948

3-(4-Meth­oxy­benzo­yl)-6-nitro­coumarin

Saleta Vazquez-Rodriguez a,*, Eugenio Uriarte a, Lourdes Santana a
PMCID: PMC3588552  PMID: 23476538

Abstract

In the title coumarin derivative (also known as 2H-chromen-2-one or 2H-1-benzopyran-2-one), C17H11NO6, the coumarin ring system is nearly planar, with a dihedral angle of 3.35 (9)° between the pyrone and the benzene rings. The dihedral angle between the planes formed by the coumarin ring system and the benzene substituent is 54.60 (7)°, clearly showing the non-coplanarity of the whole aromatic system. The crystal studied was a non-merohedral twin; the minor component refined to approximately 0.44.

Related literature  

For the synthesis of the title compound, see: Raju et al. (2010). For examples of the biological activity of coumarin derivatives, see: Borges et al. (2009), Matos et al. (2011a ,b ,c ), Viña et al. (2012a ,b ); Vazquez-Rodriguez et al. (2013).graphic file with name e-69-0o345-scheme1.jpg

Experimental  

Crystal data  

  • C17H11NO6

  • M r = 325.27

  • Monoclinic, Inline graphic

  • a = 8.875 (3) Å

  • b = 17.266 (5) Å

  • c = 9.174 (3) Å

  • β = 95.401 (15)°

  • V = 1399.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.67 × 0.14 × 0.03 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.604, T max = 0.745

  • 30736 measured reflections

  • 2864 independent reflections

  • 2200 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.126

  • S = 0.91

  • 2864 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002948/go2080sup1.cif

e-69-0o345-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002948/go2080Isup2.hkl

e-69-0o345-Isup2.hkl (137.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002948/go2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the funds of the Xunta da Galicia (09CSA030203PR) and the Ministerio de Sanidad y Consumo (PS09/00501). SVR thanks the FPU program for her PhD grant AP2008–04263.

supplementary crystallographic information

Comment

Coumarin derivative compounds present a great interest in the medicinal chemistry field due to the displayed biological properties that they present (Borges et al. 2009, Matos et al. 2011a, Matos et al. 2011b, Matos et al. 2011c, Vazquez-Rodriguez et al. 2013, Viña et al. 2012a and Viña et al. 2012b). The title structure is a 3-substituted coumarin derivative containing a 4-methoxybenzoyl ring at the mentioned position and a nitro group at position 6 of the coumarin scaffold. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-benzoyl moiety regarding to this nucleus. From the single-crystal diffraction measurements one can conclude that both the pyrone and benzene rings in the coumarin motif are essentially planar, presenting dihedral angle of 3.35 (9)°. The planarity of the coumarin moiety is also evident by the torsion angle value between their carbons C3—C2—C7—C8 (-175.89 (18)°).

In addition, the torsion angles of the carbonyl group versus the coumarin moiety and the phenyl ring are C10—C9—C15—O16 (43.2 (2)°) and O16—C15—C17—C18 (-152.9 (2)°) respectively. These values are typical of the torsion permitted by the rotation present at position 3. Presence of the carbonyl group at position 3 provokes a non coplanarity of the benzoyl moiety regarding to the coumarin scaffold. This fact is evident taking into account the dihedral angles formed by the planes of the coumarin, the carbonyl and the phenyl groups. Dihedral angle between the coumarin moiety and the carbonyl group is 38.66 (9)°; between the carbonyl and the phenyl group is 25.76 (10)° and between the coumarin scaffold and the phenyl group is 54.60 (7)°.

Experimental

3-(4-Methoxybenzoyl)-6-nitrocoumarin was prepared according to the following protocol: to a solution of 2-hydroxy-5-nitrobenzaldehyde (1 mmol) and ethyl 4-methoxybenzoylacetate (1 mmol) in ethanol (4 ml), a catalytic amount of piperidine (5%) was added dropwise and the reaction was stirred at refluxed for 4 h. The precipitated was filtered and the solid obtained was recrystallized in dichlomethane/methanol in a 73% yield. Mp 257–259 °C.

Refinement

H atoms were treated as riding atoms with C—H(aromatic), 0.95Å with Uiso = 1.2Ueq(C), C—H(methyl) = 0.98Å, with Uiso = 1.5Ueq(C). The positions of methyl hydrogens were checked on a final difference map. The structure was refined as a two-component non-merohedral twin with a BASF parameter of 0.4374.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title structure viewed along the b axis.

Crystal data

C17H11NO6 F(000) = 672
Mr = 325.27 Dx = 1.544 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.7107 Å
a = 8.875 (3) Å Cell parameters from 1848 reflections
b = 17.266 (5) Å θ = 2.4–26.2°
c = 9.174 (3) Å µ = 0.12 mm1
β = 95.401 (15)° T = 100 K
V = 1399.6 (7) Å3 Prism, colourless
Z = 4 0.67 × 0.14 × 0.03 mm

Data collection

Bruker APEXII CCD diffractometer 2864 independent reflections
Radiation source: fine-focus sealed tube 2200 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
ω and phi scans θmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.604, Tmax = 0.745 k = 0→21
30736 measured reflections l = 0→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.3903P] where P = (Fo2 + 2Fc2)/3
2864 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. 1H NMR (250 MHz, DMSO-d6) δ p.p.m. 8.29 (d, J = 3.2 Hz, 1H, H-4), 7.75 (dd, J = 9.8, 3.1 Hz, 1H, H-7), 7.69–7.56 (m, 3H, H-5, o-H-2, o-H-6), 7.04 (d, J = 8.3 Hz, 2H, m-H-3, m-H5), 6.08 (d, J = 9.6 Hz, 1H, H-8), 3.83 (s, 3H, –OMe); 13C NMR (63 MHz, DMSO-d6) δ p.p.m. 192.91, 177.98, 166.65, 162.34, 138.75, 131.40, 130.83, 130.47, 129.32, 128.05, 127.28, 121.24, 120.67, 113.84, 55.61; MS EI m/z (%): 326 ([M+1]+, 25), 325 ([M]+, 93), 190 (34), 135 (100), 92 (27), 77 (37); Elem. Anal. Calcd. for C17H11NO6: C, C, 62.77; H, 3.41; Found: C, 62.72; H, 3.32.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.0307 (2) 0.13803 (12) 0.5978 (2) 0.0137 (4)
C3 −0.0864 (2) 0.16362 (12) 0.6744 (2) 0.0153 (5)
H3 −0.1256 0.2145 0.6595 0.018*
C4 −0.1455 (2) 0.11473 (12) 0.7723 (2) 0.0164 (5)
H4 −0.2265 0.1310 0.8257 0.020*
C5 −0.0842 (2) 0.04053 (13) 0.7918 (2) 0.0156 (5)
C6 0.0352 (2) 0.01480 (13) 0.7193 (2) 0.0147 (5)
H6 0.0751 −0.0358 0.7364 0.018*
C7 0.0969 (2) 0.06452 (12) 0.6200 (2) 0.0131 (4)
C8 0.2244 (2) 0.04597 (12) 0.5416 (2) 0.0135 (4)
H8 0.2701 −0.0036 0.5544 0.016*
C9 0.2809 (2) 0.09697 (11) 0.4506 (2) 0.0131 (4)
C10 0.2034 (2) 0.17126 (12) 0.4186 (2) 0.0149 (5)
C15 0.4152 (2) 0.07478 (12) 0.3707 (2) 0.0146 (5)
C17 0.5336 (2) 0.13255 (12) 0.3473 (2) 0.0147 (5)
C18 0.5631 (2) 0.19667 (12) 0.4378 (2) 0.0144 (5)
H18 0.5055 0.2041 0.5189 0.017*
C19 0.6746 (2) 0.24980 (13) 0.4121 (2) 0.0154 (5)
H19 0.6941 0.2928 0.4756 0.018*
C20 0.7579 (2) 0.23946 (12) 0.2922 (2) 0.0154 (5)
C21 0.7319 (2) 0.17463 (12) 0.2022 (2) 0.0171 (5)
H21 0.7901 0.1671 0.1216 0.021*
C22 0.6222 (2) 0.12166 (12) 0.2302 (2) 0.0146 (5)
H22 0.6064 0.0773 0.1694 0.018*
C24 0.9071 (3) 0.35368 (12) 0.3471 (2) 0.0205 (5)
H24A 0.9528 0.3331 0.4406 0.031*
H24B 0.8180 0.3847 0.3641 0.031*
H24C 0.9809 0.3862 0.3027 0.031*
N11 −0.1513 (2) −0.01184 (11) 0.89252 (19) 0.0186 (4)
O1 0.08130 (16) 0.18773 (8) 0.49739 (15) 0.0152 (3)
O12 −0.11434 (19) −0.08064 (9) 0.89156 (18) 0.0273 (4)
O13 −0.24056 (19) 0.01484 (9) 0.97419 (17) 0.0248 (4)
O14 0.23187 (18) 0.21826 (9) 0.32929 (17) 0.0224 (4)
O16 0.42438 (17) 0.00770 (9) 0.32955 (17) 0.0196 (4)
O23 0.86233 (17) 0.29040 (8) 0.24994 (16) 0.0185 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0131 (10) 0.0141 (10) 0.0138 (10) −0.0044 (9) 0.0010 (8) 0.0002 (8)
C3 0.0147 (11) 0.0139 (11) 0.0172 (11) 0.0022 (9) 0.0008 (9) −0.0025 (8)
C4 0.0141 (11) 0.0192 (11) 0.0163 (11) −0.0001 (9) 0.0030 (9) −0.0046 (9)
C5 0.0140 (10) 0.0202 (11) 0.0127 (10) −0.0056 (9) 0.0020 (8) −0.0014 (9)
C6 0.0145 (11) 0.0150 (11) 0.0143 (11) −0.0009 (9) 0.0004 (9) −0.0011 (8)
C7 0.0102 (10) 0.0157 (10) 0.0132 (10) −0.0015 (9) 0.0003 (8) −0.0033 (8)
C8 0.0139 (10) 0.0110 (10) 0.0154 (10) 0.0009 (9) −0.0006 (8) −0.0031 (8)
C9 0.0120 (10) 0.0137 (11) 0.0140 (10) −0.0018 (9) 0.0023 (8) −0.0032 (8)
C10 0.0112 (11) 0.0165 (11) 0.0172 (11) −0.0016 (9) 0.0034 (9) −0.0018 (9)
C15 0.0134 (11) 0.0176 (12) 0.0130 (10) 0.0009 (9) 0.0017 (8) 0.0011 (8)
C17 0.0132 (11) 0.0170 (12) 0.0143 (10) 0.0037 (9) 0.0038 (8) 0.0031 (8)
C18 0.0120 (11) 0.0180 (12) 0.0136 (10) 0.0028 (9) 0.0037 (8) 0.0011 (8)
C19 0.0155 (11) 0.0161 (10) 0.0145 (11) 0.0022 (9) 0.0014 (8) −0.0008 (9)
C20 0.0112 (10) 0.0180 (12) 0.0171 (11) 0.0019 (9) 0.0020 (8) 0.0054 (9)
C21 0.0154 (11) 0.0212 (12) 0.0155 (11) 0.0034 (9) 0.0063 (8) 0.0008 (9)
C22 0.0163 (11) 0.0129 (11) 0.0149 (10) 0.0034 (9) 0.0020 (8) −0.0015 (8)
C24 0.0198 (12) 0.0183 (11) 0.0232 (12) −0.0040 (10) 0.0013 (9) 0.0031 (9)
N11 0.0188 (10) 0.0222 (11) 0.0151 (10) −0.0038 (8) 0.0033 (8) −0.0001 (8)
O1 0.0138 (8) 0.0141 (7) 0.0183 (8) 0.0015 (6) 0.0047 (6) 0.0019 (6)
O12 0.0319 (10) 0.0213 (9) 0.0304 (10) −0.0009 (7) 0.0119 (7) 0.0048 (7)
O13 0.0268 (9) 0.0303 (9) 0.0195 (8) −0.0015 (8) 0.0134 (7) −0.0017 (7)
O14 0.0203 (9) 0.0209 (8) 0.0271 (9) 0.0003 (7) 0.0076 (7) 0.0086 (7)
O16 0.0204 (8) 0.0160 (8) 0.0234 (9) 0.0007 (7) 0.0070 (7) −0.0037 (6)
O23 0.0174 (8) 0.0188 (8) 0.0200 (8) −0.0043 (7) 0.0060 (6) 0.0018 (6)

Geometric parameters (Å, º)

C2—O1 1.365 (2) C15—C17 1.479 (3)
C2—C3 1.381 (3) C17—C18 1.394 (3)
C2—C7 1.405 (3) C17—C22 1.403 (3)
C3—C4 1.372 (3) C18—C19 1.386 (3)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.397 (3) C19—C20 1.393 (3)
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.377 (3) C20—O23 1.361 (3)
C5—N11 1.459 (3) C20—C21 1.397 (3)
C6—C7 1.400 (3) C21—C22 1.377 (3)
C6—H6 0.9500 C21—H21 0.9500
C7—C8 1.433 (3) C22—H22 0.9500
C8—C9 1.343 (3) C24—O23 1.442 (3)
C8—H8 0.9500 C24—H24A 0.9800
C9—C10 1.472 (3) C24—H24B 0.9800
C9—C15 1.506 (3) C24—H24C 0.9800
C10—O14 1.197 (3) N11—O13 1.230 (2)
C10—O1 1.387 (3) N11—O12 1.233 (2)
C15—O16 1.223 (3)
O1—C2—C3 116.95 (18) C18—C17—C22 118.4 (2)
O1—C2—C7 120.40 (19) C18—C17—C15 123.04 (19)
C3—C2—C7 122.65 (19) C22—C17—C15 118.55 (19)
C4—C3—C2 119.25 (19) C19—C18—C17 121.4 (2)
C4—C3—H3 120.4 C19—C18—H18 119.3
C2—C3—H3 120.4 C17—C18—H18 119.3
C3—C4—C5 118.7 (2) C18—C19—C20 119.3 (2)
C3—C4—H4 120.7 C18—C19—H19 120.3
C5—C4—H4 120.7 C20—C19—H19 120.3
C6—C5—C4 122.8 (2) O23—C20—C19 124.6 (2)
C6—C5—N11 118.98 (19) O23—C20—C21 115.35 (19)
C4—C5—N11 118.18 (19) C19—C20—C21 120.0 (2)
C5—C6—C7 118.8 (2) C22—C21—C20 120.1 (2)
C5—C6—H6 120.6 C22—C21—H21 119.9
C7—C6—H6 120.6 C20—C21—H21 119.9
C6—C7—C2 117.68 (19) C21—C22—C17 120.7 (2)
C6—C7—C8 124.40 (19) C21—C22—H22 119.6
C2—C7—C8 117.91 (19) C17—C22—H22 119.6
C9—C8—C7 121.61 (19) O23—C24—H24A 109.5
C9—C8—H8 119.2 O23—C24—H24B 109.5
C7—C8—H8 119.2 H24A—C24—H24B 109.5
C8—C9—C10 120.03 (19) O23—C24—H24C 109.5
C8—C9—C15 119.64 (18) H24A—C24—H24C 109.5
C10—C9—C15 120.09 (18) H24B—C24—H24C 109.5
O14—C10—O1 116.33 (19) O13—N11—O12 123.53 (18)
O14—C10—C9 127.0 (2) O13—N11—C5 118.57 (18)
O1—C10—C9 116.64 (18) O12—N11—C5 117.90 (18)
O16—C15—C17 121.65 (19) C2—O1—C10 123.03 (16)
O16—C15—C9 118.01 (19) C20—O23—C24 117.96 (17)
C17—C15—C9 120.31 (18)
O1—C2—C3—C4 177.38 (18) O16—C15—C17—C18 −152.9 (2)
C7—C2—C3—C4 −2.6 (3) C9—C15—C17—C18 25.3 (3)
C2—C3—C4—C5 0.4 (3) O16—C15—C17—C22 25.9 (3)
C3—C4—C5—C6 1.4 (3) C9—C15—C17—C22 −155.83 (19)
C3—C4—C5—N11 −177.98 (19) C22—C17—C18—C19 1.4 (3)
C4—C5—C6—C7 −1.0 (3) C15—C17—C18—C19 −179.72 (19)
N11—C5—C6—C7 178.44 (18) C17—C18—C19—C20 0.8 (3)
C5—C6—C7—C2 −1.2 (3) C18—C19—C20—O23 175.13 (19)
C5—C6—C7—C8 177.66 (19) C18—C19—C20—C21 −2.1 (3)
O1—C2—C7—C6 −176.97 (17) O23—C20—C21—C22 −176.26 (18)
C3—C2—C7—C6 3.1 (3) C19—C20—C21—C22 1.2 (3)
O1—C2—C7—C8 4.1 (3) C20—C21—C22—C17 1.0 (3)
C3—C2—C7—C8 −175.89 (19) C18—C17—C22—C21 −2.3 (3)
C6—C7—C8—C9 −178.2 (2) C15—C17—C22—C21 178.75 (19)
C2—C7—C8—C9 0.6 (3) C6—C5—N11—O13 168.4 (2)
C7—C8—C9—C10 −5.7 (3) C4—C5—N11—O13 −12.2 (3)
C7—C8—C9—C15 179.94 (18) C6—C5—N11—O12 −11.2 (3)
C8—C9—C10—O14 −171.9 (2) C4—C5—N11—O12 168.27 (19)
C15—C9—C10—O14 2.5 (3) C3—C2—O1—C10 176.38 (18)
C8—C9—C10—O1 6.1 (3) C7—C2—O1—C10 −3.6 (3)
C15—C9—C10—O1 −179.58 (17) O14—C10—O1—C2 176.75 (18)
C8—C9—C15—O16 35.9 (3) C9—C10—O1—C2 −1.4 (3)
C10—C9—C15—O16 −138.5 (2) C19—C20—O23—C24 9.7 (3)
C8—C9—C15—C17 −142.4 (2) C21—C20—O23—C24 −172.89 (18)
C10—C9—C15—C17 43.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2080).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.
  3. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011c). Bioorg. Med. Chem. Lett. 21, 3342–3345. [DOI] [PubMed]
  6. Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011a). J. Med. Chem. 54, 7127–7137. [DOI] [PubMed]
  7. Matos, M. J., Vazquez-Rodriguez, S., Santan, L., Uriarte, E. & Viña, D. (2011b). Bioorg. Med. Chem. Lett. 21, 4224–4227. [DOI] [PubMed]
  8. Raju, B. C., Tiwari, A. K., Kumar, J. A., Ali, A. Z., Agawane, S. B., Saidachary, G. & Madhusudana, K. (2010). Bioorg. Med. Chem. 18, 358–365. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K.-N. (2013). J. Pharm. Pharmacol. DOI: 10.1111/jphp.12028. [DOI] [PubMed]
  11. Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012b). Chem. Med. Chem. 7, 464–470. [DOI] [PubMed]
  12. Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012a). Med. Chem. Commun. 3, 213–218.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002948/go2080sup1.cif

e-69-0o345-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002948/go2080Isup2.hkl

e-69-0o345-Isup2.hkl (137.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002948/go2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES