Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 28;69(Pt 3):o458–o459. doi: 10.1107/S160053681300528X

(E)-2-[4-(Diethyl­amino)­styr­yl]-1-ethyl­pyridinium iodide monohydrate

Suchada Chantrapromma a,*,, Nawong Boonnak b, Narissara Kaewmanee a, Ching Kheng Quah c, Hoong-Kun Fun d,c,§
PMCID: PMC3588554  PMID: 23476625

Abstract

In the title hydrated salt, C19H25N2 +·I·H2O, the 4-(diethyl­amino)­phenyl unit of the cation is disordered over two positions in a 0.847 (3):0.153 (3) ratio. The cation is twisted, with dihedral angles between the pyridinium and benzene rings of 11.25 (13) and 10.7 (8)° for the major and minor components, respectively. In the crystal, the three components are linked into a centrosymmetric 2:2:2 unit by O—H⋯I and C—H⋯O hydrogen bonds. π–π inter­actions with centroid–centroid distances of 3.5065 (7)–3.790 (9) Å are also present.

Related literature  

For background to and applications of amino­styrylpyridinium compounds, see: Chanawanno et al. (2010); Larnbert et al. (1996). For related structures, see: Fun et al. (2011a ,b ); Kaewmanee et al. (2010). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-0o458-scheme1.jpg

Experimental  

Crystal data  

  • C19H25N2 +·I·H2O

  • M r = 426.33

  • Triclinic, Inline graphic

  • a = 7.9969 (1) Å

  • b = 9.1336 (1) Å

  • c = 14.7740 (2) Å

  • α = 96.220 (1)°

  • β = 105.430 (1)°

  • γ = 105.060 (1)°

  • V = 986.05 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.13 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.677, T max = 0.816

  • 32289 measured reflections

  • 8664 independent reflections

  • 7821 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.055

  • S = 1.08

  • 8664 reflections

  • 254 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300528X/is5238sup1.cif

e-69-0o458-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300528X/is5238Isup2.hkl

e-69-0o458-Isup2.hkl (423.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300528X/is5238Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯I1i 0.85 (3) 2.71 (2) 3.5498 (12) 176 (2)
O1W—H2W⋯I1ii 0.86 (3) 2.75 (3) 3.6055 (13) 171 (2)
C3—H3A⋯O1W iii 0.95 2.35 3.2072 (19) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SC, NB and NK thank Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/PFIZIK/910323.

supplementary crystallographic information

Comment

Aminostyryl pyridinium (ASP) salts have been widely synthesized and used as fluorescence dyes for lymphocytes labeling and preliminary diagnostic imaging studies on dogs having a sodium-urate-induced inflammation in their stifle joints (Larnbert et al., 1996). Moreover, ASP salts have been reported to possess antibacterial activity (Chanawanno et al., 2010). During the course of our research on synthesis and antibacterial activity of quaternary ammonium compounds (Chanawanno et al., 2010; Kaewmanee et al., 2010), the title aminostyryl pyridinium derivative (I) was synthesized and tested for antibacterial activity. Our antibacterial assay showed that (I) exhibit moderate activity against Pseudomonas aeruginosa. Herein its crystal structure is reported.

The asymmetric unit of the title compound (I) (Fig. 1) consists of the C19H25N2+ cation, I- anion and one H2O molecule. The 4-diethylaminophenyl unit of the cation is disordered over two positions; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.847 (3)/0.153 (3). The cation exists in the trans configuration with respect to the C6═C7 double bond [1.3548 (16) Å] and the torsion angle C5—C6—C7—C8 = -176.54 (12)°. The cation is twisted as indicated by the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 11.25 (13) and 10.7 (8)° for the major and minor components, respectively. It is interesting that the two ethyl groups of diethylamino moiety of both major and minor components deviated from the attached benzene ring but in different conformations in that the two ethyl units of the major component A point towards the same direction (Fig. 2), whereas they pointed opposite to each other for the minor component B (Fig. 3). These orientations of the diethylamino group can be indicated by the torsion angles C11A—N2A—C16A—C17A = -81.12 (19)° and C11A—N2A—C18A—C19A = 81.4 (2)° for the major component A and C11B—N2B—C16B—C17B = 87.0 (11)° and C11B—N2B—C18B—C19B = 93.0 (19)° for the minor component B. The other ethyl unit attached to atom N1 also deviated from its bound pyridinium ring with the torsion angle C5—N1—C14—C15 = -86.95 (14)° for the major component A and -81 (7)° for the minor component B. The bond lengths of cation are in normal ranges (Allen et al., 1987) and comparable with related structures (Fun et al., 2011a,b; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are linked into a centrosymmetric 2:2:2 unit of the three components by O—H···I hydrogen bonds and a weak C—H···O interaction (Fig. 4 and Table 1). π–π interactions with the centroid distances of Cg1···Cg1v = 3.5065 (7) Å [symmetry code (v) = 1 - x, 2 - y, 1 - z], Cg1···Cg2ii = 3.5796 (16) Å and Cg1···Cg3ii = 3.790 (9) Å were observed; Cg1, Cg2 and Cg3 are the centroids of N1/C1–C5, C8/C9A–C13A and C8/C9B–C13B rings, respectively.

Experimental

The title compound (I) was prepared by mixing 1:1:1 molar ratio solutions of 1-ethyl-2-methylpyridinium iodide (1 g, 4 mmol), 4-diethylaminobenzaldehyde (0.7 g, 4 mmol) and piperidine (0.4 ml, 4 mmol) in methanol (40 ml). The resulting solution was stirred for 4 h under a nitrogen atmosphere. The orange solid which formed was filtered and washed with diethylether. Orange block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks, M.p. 446–448 K.

Refinement

Water H atoms were located in a difference Fourier map and the positions were refined freely, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were fixed geometrically and all hydrogen atoms were allowed to ride on their parent atoms, with d(C—H) = 0.95 for aromatic and CH, 0.99 for CH2 and 0.98 Å for CH3 atoms. Their Uiso values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. The 4-diethylaminophenyl unit is disordered over two sites with refined site occupancies of 0.847 (3) and 0.153 (3). The non-hydrogen atoms of the minor component were refined isotropically with the Uiso values of N2B, C9B, C10B, C11B, C12B and C13B being fixed at 0.01583 Å2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.

Fig. 2.

Fig. 2.

The molecular structure of the major component A, showing the orientation of the two ethyl groups of the diethylamino pointing towards the same direction.

Fig. 3.

Fig. 3.

The molecular structure of the minor component B, showing the orientation of the two ethyl groups of the diethylamino pointing in opposite direction.

Fig. 4.

Fig. 4.

The crystal packing of the major component viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C19H25N2+·I·H2O Z = 2
Mr = 426.33 F(000) = 432
Triclinic, P1 Dx = 1.436 Mg m3
Hall symbol: -P 1 Melting point = 466–468 K
a = 7.9969 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1336 (1) Å Cell parameters from 8664 reflections
c = 14.7740 (2) Å θ = 1.5–35.2°
α = 96.220 (1)° µ = 1.63 mm1
β = 105.430 (1)° T = 100 K
γ = 105.060 (1)° Block, orange
V = 986.05 (2) Å3 0.26 × 0.23 × 0.13 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8664 independent reflections
Radiation source: fine-focus sealed tube 7821 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 8.33 pixels mm-1 θmax = 35.2°, θmin = 1.5°
ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.677, Tmax = 0.816 l = −23→23
32289 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0222P)2 + 0.355P] where P = (Fo2 + 2Fc2)/3
8664 reflections (Δ/σ)max = 0.002
254 parameters Δρmax = 0.78 e Å3
20 restraints Δρmin = −0.99 e Å3

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
I1 0.748096 (12) 0.409068 (8) 0.331067 (6) 0.02160 (3)
O1W 0.11907 (16) 0.28996 (13) 0.46705 (9) 0.0284 (2)
H1W 0.155 (3) 0.359 (3) 0.5168 (17) 0.043*
H2W 0.029 (3) 0.310 (3) 0.4293 (17) 0.043*
N1 0.35581 (14) 0.74599 (11) 0.39233 (7) 0.01566 (17)
C1 0.22228 (17) 0.76646 (14) 0.42876 (9) 0.0186 (2)
H1A 0.1520 0.6823 0.4484 0.022*
C2 0.18657 (17) 0.90514 (14) 0.43787 (9) 0.0197 (2)
H2A 0.0926 0.9176 0.4632 0.024*
C3 0.29171 (17) 1.02765 (14) 0.40898 (9) 0.0191 (2)
H3A 0.2723 1.1260 0.4160 0.023*
C4 0.42409 (17) 1.00497 (13) 0.37018 (9) 0.0175 (2)
H4A 0.4942 1.0884 0.3498 0.021*
C5 0.45769 (16) 0.86130 (12) 0.36008 (8) 0.01505 (19)
C6 0.59165 (16) 0.83175 (13) 0.31664 (9) 0.0161 (2)
H6A 0.5979 0.7292 0.3053 0.019*
C7 0.70797 (16) 0.94503 (13) 0.29176 (8) 0.01576 (19)
H7A 0.7022 1.0469 0.3076 0.019*
C8 0.83991 (16) 0.92867 (12) 0.24387 (8) 0.01542 (19)
C14 0.38311 (18) 0.59060 (13) 0.38875 (10) 0.0191 (2)
H14A 0.3470 0.5438 0.4407 0.023*
H14B 0.5137 0.6016 0.3994 0.023*
C15 0.2723 (2) 0.48452 (15) 0.29321 (11) 0.0260 (3)
H15A 0.2873 0.3816 0.2947 0.039*
H15B 0.3145 0.5264 0.2421 0.039*
H15C 0.1435 0.4771 0.2812 0.039*
N2A 1.2553 (2) 0.91163 (15) 0.11947 (12) 0.0199 (3) 0.847 (3)
C9A 0.9548 (3) 1.0628 (4) 0.22893 (14) 0.0158 (4) 0.847 (3)
H9A 0.9404 1.1600 0.2487 0.019* 0.847 (3)
C10A 1.0880 (2) 1.0578 (2) 0.18638 (12) 0.0167 (3) 0.847 (3)
H10A 1.1620 1.1511 0.1770 0.020* 0.847 (3)
C11A 1.1162 (2) 0.9159 (2) 0.15659 (11) 0.0162 (3) 0.847 (3)
C12A 0.9984 (7) 0.7803 (5) 0.1698 (5) 0.0183 (9) 0.847 (3)
H12A 1.0092 0.6826 0.1477 0.022* 0.847 (3)
C13A 0.8679 (6) 0.7869 (6) 0.2142 (4) 0.0168 (7) 0.847 (3)
H13A 0.7954 0.6941 0.2249 0.020* 0.847 (3)
C16A 1.3859 (2) 1.05464 (18) 0.11576 (11) 0.0219 (3) 0.847 (3)
H16A 1.4992 1.0323 0.1127 0.026* 0.847 (3)
H16B 1.4162 1.1291 0.1759 0.026* 0.847 (3)
C17A 1.3210 (3) 1.1305 (2) 0.03204 (13) 0.0289 (4) 0.847 (3)
H17A 1.4122 1.2292 0.0378 0.043* 0.847 (3)
H17B 1.2056 1.1488 0.0324 0.043* 0.847 (3)
H17C 1.3031 1.0625 −0.0280 0.043* 0.847 (3)
C18A 1.2781 (3) 0.7663 (2) 0.08186 (18) 0.0221 (4) 0.847 (3)
H18A 1.2523 0.6923 0.1243 0.027* 0.847 (3)
H18B 1.4067 0.7846 0.0838 0.027* 0.847 (3)
C19A 1.1561 (5) 0.6927 (4) −0.02058 (19) 0.0335 (5) 0.847 (3)
H19A 1.1788 0.5957 −0.0405 0.050* 0.847 (3)
H19B 1.1832 0.7635 −0.0637 0.050* 0.847 (3)
H19C 1.0282 0.6718 −0.0231 0.050* 0.847 (3)
N2B 1.1981 (11) 0.9042 (8) 0.0815 (6) 0.016* 0.153 (3)
C9B 0.932 (2) 1.059 (2) 0.2133 (12) 0.016* 0.153 (3)
H9B 0.9092 1.1547 0.2278 0.019* 0.153 (3)
C10B 1.0539 (16) 1.0528 (13) 0.1633 (8) 0.016* 0.153 (3)
H10B 1.1190 1.1446 0.1479 0.019* 0.153 (3)
C11B 1.0830 (16) 0.9109 (13) 0.1347 (8) 0.016* 0.153 (3)
C12B 0.982 (5) 0.779 (3) 0.161 (3) 0.016* 0.153 (3)
H12B 1.0049 0.6830 0.1481 0.019* 0.153 (3)
C13B 0.851 (4) 0.788 (4) 0.204 (2) 0.016* 0.153 (3)
H13B 0.7665 0.6950 0.2076 0.019* 0.153 (3)
C16B 1.2738 (12) 1.0334 (9) 0.0393 (6) 0.0224 (18)* 0.153 (3)
H16C 1.1818 1.0880 0.0200 0.027* 0.153 (3)
H16D 1.2972 0.9918 −0.0192 0.027* 0.153 (3)
C17B 1.4473 (13) 1.1485 (11) 0.1044 (7) 0.028 (2)* 0.153 (3)
H37D 1.4800 1.2380 0.0745 0.042* 0.153 (3)
H37E 1.5451 1.1002 0.1156 0.042* 0.153 (3)
H37F 1.4297 1.1822 0.1656 0.042* 0.153 (3)
C18B 1.246 (2) 0.7623 (14) 0.0573 (9) 0.024 (3)* 0.153 (3)
H18C 1.2383 0.7014 0.1084 0.029* 0.153 (3)
H18D 1.3733 0.7919 0.0565 0.029* 0.153 (3)
C19B 1.129 (4) 0.662 (3) −0.0358 (16) 0.068 (9)* 0.153 (3)
H39D 1.1699 0.5718 −0.0466 0.102* 0.153 (3)
H39E 1.1363 0.7206 −0.0873 0.102* 0.153 (3)
H39F 1.0023 0.6287 −0.0351 0.102* 0.153 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02157 (4) 0.01510 (3) 0.03178 (5) 0.00740 (3) 0.01155 (3) 0.00642 (3)
O1W 0.0277 (5) 0.0287 (5) 0.0332 (6) 0.0139 (4) 0.0125 (5) 0.0033 (4)
N1 0.0139 (4) 0.0150 (4) 0.0190 (4) 0.0045 (3) 0.0065 (4) 0.0034 (3)
C1 0.0151 (5) 0.0207 (5) 0.0214 (5) 0.0051 (4) 0.0082 (4) 0.0039 (4)
C2 0.0163 (5) 0.0230 (5) 0.0211 (5) 0.0078 (4) 0.0072 (4) 0.0016 (4)
C3 0.0195 (5) 0.0194 (5) 0.0196 (5) 0.0093 (4) 0.0055 (4) 0.0019 (4)
C4 0.0189 (5) 0.0148 (4) 0.0200 (5) 0.0061 (4) 0.0070 (4) 0.0030 (4)
C5 0.0144 (5) 0.0140 (4) 0.0170 (5) 0.0039 (3) 0.0056 (4) 0.0028 (3)
C6 0.0165 (5) 0.0146 (4) 0.0193 (5) 0.0050 (4) 0.0084 (4) 0.0035 (4)
C7 0.0161 (5) 0.0146 (4) 0.0179 (5) 0.0049 (4) 0.0069 (4) 0.0035 (4)
C8 0.0165 (5) 0.0141 (4) 0.0168 (5) 0.0044 (4) 0.0070 (4) 0.0036 (4)
C14 0.0192 (5) 0.0148 (4) 0.0275 (6) 0.0064 (4) 0.0114 (5) 0.0077 (4)
C15 0.0231 (6) 0.0165 (5) 0.0362 (7) 0.0032 (4) 0.0100 (6) 0.0000 (5)
N2A 0.0189 (6) 0.0213 (5) 0.0225 (7) 0.0066 (5) 0.0114 (6) 0.0030 (5)
C9A 0.0178 (10) 0.0138 (5) 0.0158 (10) 0.0042 (7) 0.0062 (8) 0.0022 (8)
C10A 0.0172 (8) 0.0160 (5) 0.0169 (8) 0.0030 (5) 0.0071 (6) 0.0025 (6)
C11A 0.0161 (8) 0.0184 (5) 0.0150 (7) 0.0057 (6) 0.0061 (6) 0.0026 (6)
C12A 0.0204 (17) 0.0155 (5) 0.021 (2) 0.0068 (7) 0.0088 (17) 0.0031 (7)
C13A 0.0179 (13) 0.0137 (5) 0.0203 (17) 0.0051 (7) 0.0076 (13) 0.0045 (8)
C16A 0.0166 (7) 0.0262 (7) 0.0224 (7) 0.0040 (5) 0.0082 (5) 0.0035 (5)
C17A 0.0342 (9) 0.0323 (8) 0.0247 (8) 0.0097 (7) 0.0151 (7) 0.0087 (6)
C18A 0.0256 (10) 0.0258 (8) 0.0205 (10) 0.0122 (7) 0.0120 (9) 0.0036 (7)
C19A 0.0454 (14) 0.0327 (10) 0.0234 (9) 0.0128 (10) 0.0124 (9) 0.0023 (8)

Geometric parameters (Å, º)

O1W—H1W 0.84 (2) C12A—H12A 0.9500
O1W—H2W 0.86 (3) C13A—H13A 0.9500
N1—C1 1.3611 (15) C16A—C17A 1.520 (3)
N1—C5 1.3672 (15) C16A—H16A 0.9900
N1—C14 1.4886 (15) C16A—H16B 0.9900
C1—C2 1.3695 (17) C17A—H17A 0.9800
C1—H1A 0.9500 C17A—H17B 0.9800
C2—C3 1.3953 (18) C17A—H17C 0.9800
C2—H2A 0.9500 C18A—C19A 1.532 (4)
C3—C4 1.3796 (17) C18A—H18A 0.9900
C3—H3A 0.9500 C18A—H18B 0.9900
C4—C5 1.4066 (16) C19A—H19A 0.9800
C4—H4A 0.9500 C19A—H19B 0.9800
C5—C6 1.4529 (16) C19A—H19C 0.9800
C6—C7 1.3548 (16) N2B—C11B 1.369 (11)
C6—H6A 0.9500 N2B—C16B 1.462 (10)
C7—C8 1.4465 (16) N2B—C18B 1.477 (12)
C7—H7A 0.9500 C9B—C10B 1.379 (15)
C8—C13B 1.39 (3) C9B—H9B 0.9500
C8—C9A 1.405 (3) C10B—C11B 1.415 (12)
C8—C13A 1.414 (5) C10B—H10B 0.9500
C8—C9B 1.42 (2) C11B—C12B 1.419 (15)
C14—C15 1.5193 (19) C12B—C13B 1.383 (17)
C14—H14A 0.9900 C12B—H12B 0.9500
C14—H14B 0.9900 C13B—H13B 0.9500
C15—H15A 0.9800 C16B—C17B 1.506 (11)
C15—H15B 0.9800 C16B—H16C 0.9900
C15—H15C 0.9800 C16B—H16D 0.9900
N2A—C11A 1.372 (2) C17B—H37D 0.9800
N2A—C18A 1.457 (2) C17B—H37E 0.9800
N2A—C16A 1.462 (2) C17B—H37F 0.9800
C9A—C10A 1.381 (3) C18B—C19B 1.484 (16)
C9A—H9A 0.9500 C18B—H18C 0.9900
C10A—C11A 1.416 (2) C18B—H18D 0.9900
C10A—H10A 0.9500 C19B—H39D 0.9800
C11A—C12A 1.416 (3) C19B—H39E 0.9800
C12A—C13A 1.382 (3) C19B—H39F 0.9800
H1W—O1W—H2W 105 (2) C11A—C12A—H12A 119.3
C1—N1—C5 121.81 (10) C12A—C13A—C8 121.4 (4)
C1—N1—C14 116.17 (10) C12A—C13A—H13A 119.3
C5—N1—C14 122.02 (10) C8—C13A—H13A 119.3
N1—C1—C2 121.79 (12) N2A—C16A—C17A 114.86 (15)
N1—C1—H1A 119.1 N2A—C16A—H16A 108.6
C2—C1—H1A 119.1 C17A—C16A—H16A 108.6
C1—C2—C3 118.30 (11) N2A—C16A—H16B 108.6
C1—C2—H2A 120.9 C17A—C16A—H16B 108.6
C3—C2—H2A 120.9 H16A—C16A—H16B 107.5
C4—C3—C2 119.53 (11) N2A—C18A—C19A 114.4 (2)
C4—C3—H3A 120.2 N2A—C18A—H18A 108.7
C2—C3—H3A 120.2 C19A—C18A—H18A 108.7
C3—C4—C5 121.55 (11) N2A—C18A—H18B 108.7
C3—C4—H4A 119.2 C19A—C18A—H18B 108.7
C5—C4—H4A 119.2 H18A—C18A—H18B 107.6
N1—C5—C4 116.96 (10) C11B—N2B—C16B 122.6 (7)
N1—C5—C6 119.97 (10) C11B—N2B—C18B 122.3 (9)
C4—C5—C6 123.06 (11) C16B—N2B—C18B 115.0 (8)
C7—C6—C5 122.42 (10) C10B—C9B—C8 122.4 (15)
C7—C6—H6A 118.8 C10B—C9B—H9B 118.8
C5—C6—H6A 118.8 C8—C9B—H9B 118.8
C6—C7—C8 127.43 (10) C9B—C10B—C11B 120.6 (13)
C6—C7—H7A 116.3 C9B—C10B—H10B 119.7
C8—C7—H7A 116.3 C11B—C10B—H10B 119.7
C13B—C8—C9A 117.3 (10) N2B—C11B—C10B 120.3 (10)
C9A—C8—C13A 116.9 (2) N2B—C11B—C12B 123.1 (14)
C13B—C8—C9B 115.7 (12) C10B—C11B—C12B 116.6 (14)
C13A—C8—C9B 116.6 (7) C13B—C12B—C11B 121 (2)
C13B—C8—C7 124.1 (10) C13B—C12B—H12B 119.4
C9A—C8—C7 118.43 (13) C11B—C12B—H12B 119.4
C13A—C8—C7 124.64 (19) C12B—C13B—C8 122 (2)
C9B—C8—C7 118.3 (7) C12B—C13B—H13B 119.2
N1—C14—C15 111.56 (11) C8—C13B—H13B 119.2
N1—C14—H14A 109.3 N2B—C16B—C17B 114.5 (8)
C15—C14—H14A 109.3 N2B—C16B—H16C 108.6
N1—C14—H14B 109.3 C17B—C16B—H16C 108.6
C15—C14—H14B 109.3 N2B—C16B—H16D 108.6
H14A—C14—H14B 108.0 C17B—C16B—H16D 108.6
C14—C15—H15A 109.5 H16C—C16B—H16D 107.6
C14—C15—H15B 109.5 C16B—C17B—H37D 109.5
H15A—C15—H15B 109.5 C16B—C17B—H37E 109.5
C14—C15—H15C 109.5 H37D—C17B—H37E 109.5
H15A—C15—H15C 109.5 C16B—C17B—H37F 109.5
H15B—C15—H15C 109.5 H37D—C17B—H37F 109.5
C11A—N2A—C18A 121.83 (15) H37E—C17B—H37F 109.5
C11A—N2A—C16A 120.56 (13) N2B—C18B—C19B 114.7 (14)
C18A—N2A—C16A 117.61 (13) N2B—C18B—H18C 108.6
C10A—C9A—C8 122.1 (2) C19B—C18B—H18C 108.6
C10A—C9A—H9A 118.9 N2B—C18B—H18D 108.6
C8—C9A—H9A 118.9 C19B—C18B—H18D 108.6
C9A—C10A—C11A 121.06 (19) H18C—C18B—H18D 107.6
C9A—C10A—H10A 119.5 C18B—C19B—H39D 109.5
C11A—C10A—H10A 119.5 C18B—C19B—H39E 109.5
N2A—C11A—C12A 121.9 (2) H39D—C19B—H39E 109.5
N2A—C11A—C10A 121.11 (16) C18B—C19B—H39F 109.5
C12A—C11A—C10A 116.9 (2) H39D—C19B—H39F 109.5
C13A—C12A—C11A 121.5 (4) H39E—C19B—H39F 109.5
C13A—C12A—H12A 119.3
C5—N1—C1—C2 −2.09 (19) C10A—C11A—C12A—C13A −3.2 (7)
C14—N1—C1—C2 178.50 (12) C11A—C12A—C13A—C8 3.3 (8)
N1—C1—C2—C3 −0.24 (19) C13B—C8—C13A—C12A 93 (10)
C1—C2—C3—C4 1.65 (19) C9A—C8—C13A—C12A −2.0 (6)
C2—C3—C4—C5 −0.85 (19) C9B—C8—C13A—C12A 9.2 (10)
C1—N1—C5—C4 2.81 (17) C7—C8—C13A—C12A −179.1 (4)
C14—N1—C5—C4 −177.81 (11) C11A—N2A—C16A—C17A −81.12 (19)
C1—N1—C5—C6 −176.43 (11) C18A—N2A—C16A—C17A 98.4 (2)
C14—N1—C5—C6 2.94 (17) C11A—N2A—C18A—C19A 81.4 (2)
C3—C4—C5—N1 −1.35 (18) C16A—N2A—C18A—C19A −98.1 (2)
C3—C4—C5—C6 177.87 (12) C13B—C8—C9B—C10B −12 (2)
N1—C5—C6—C7 −173.61 (12) C9A—C8—C9B—C10B 89 (5)
C4—C5—C6—C7 7.19 (19) C13A—C8—C9B—C10B −4.8 (18)
C5—C6—C7—C8 −176.54 (12) C7—C8—C9B—C10B −177.0 (11)
C6—C7—C8—C13B 8.8 (18) C8—C9B—C10B—C11B 4 (2)
C6—C7—C8—C9A −176.71 (14) C16B—N2B—C11B—C10B −9.6 (15)
C6—C7—C8—C13A 0.4 (3) C18B—N2B—C11B—C10B 174.4 (10)
C6—C7—C8—C9B 172.0 (8) C16B—N2B—C11B—C12B 168 (2)
C1—N1—C14—C15 92.46 (13) C18B—N2B—C11B—C12B −8 (3)
C5—N1—C14—C15 −86.95 (14) C9B—C10B—C11B—N2B 177.1 (12)
C13B—C8—C9A—C10A −7.1 (16) C9B—C10B—C11B—C12B 0 (3)
C13A—C8—C9A—C10A 0.7 (3) N2B—C11B—C12B—C13B −172 (3)
C9B—C8—C9A—C10A −90 (4) C10B—C11B—C12B—C13B 5 (5)
C7—C8—C9A—C10A 178.03 (14) C11B—C12B—C13B—C8 −15 (6)
C8—C9A—C10A—C11A −0.7 (2) C9A—C8—C13B—C12B 6 (4)
C18A—N2A—C11A—C12A 6.8 (4) C13A—C8—C13B—C12B −82 (10)
C16A—N2A—C11A—C12A −173.7 (4) C9B—C8—C13B—C12B 17 (4)
C18A—N2A—C11A—C10A −175.31 (17) C7—C8—C13B—C12B −179 (3)
C16A—N2A—C11A—C10A 4.2 (2) C11B—N2B—C16B—C17B 87.0 (11)
C9A—C10A—C11A—N2A −176.13 (15) C18B—N2B—C16B—C17B −96.8 (10)
C9A—C10A—C11A—C12A 1.9 (4) C11B—N2B—C18B—C19B 93.0 (19)
N2A—C11A—C12A—C13A 174.8 (4) C16B—N2B—C18B—C19B −83.3 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···I1i 0.85 (3) 2.71 (2) 3.5498 (12) 176 (2)
O1W—H2W···I1ii 0.86 (3) 2.75 (3) 3.6055 (13) 171 (2)
C3—H3A···O1Wiii 0.95 2.35 3.2072 (19) 150

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5238).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. [DOI] [PubMed]
  4. Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, o593–o594. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488–o2489. [DOI] [PMC free article] [PubMed]
  6. Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640. [DOI] [PMC free article] [PubMed]
  7. Larnbert, C., Mease, R. C., Amen, L., Le, T., Sabet, H. & McAfee, J. G. (1996). Nucl. Med. Biol., 23, 417–427. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300528X/is5238sup1.cif

e-69-0o458-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300528X/is5238Isup2.hkl

e-69-0o458-Isup2.hkl (423.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300528X/is5238Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES