Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 3;68(Pt 12):m1453–m1454. doi: 10.1107/S1600536812044765

Poly[[μ-N,N′-bis­(2-hy­droxy­eth­yl)-N,N,N′,N′-tetra­methyl­propane-1,3-diaminium-κ2 O:O′]tetra-μ-bromido-dibromidodimanganese(II)]

Heikki Rinta a, Anssi Peuronen a, Manu Lahtinen a,*
PMCID: PMC3588717  PMID: 23468682

Abstract

The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)]n, consists of one MnII cation, half of a dicationic N,N′-bis­(2-hy­droxy­eth­yl)-N,N,N′,N′-tetra­methyl­propane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The MnII cation is coordinated by a single L ligand via the hy­droxy O atom and by five bromide ions, resulting in a distorted octa­hedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent MnII atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn—(μ-Br)2—Mn chains, also forming a polymeric continuum along the c axis, which completes the formation of a three-dimensional network. Classical O—H⋯Br hydrogen bonds are present. The distance between adjacent MnII atoms is 4.022 (1) Å.

Related literature  

For related structures of M II transition metal halide one-dimensional coordination polymers, see: Han et al. (2012); Englert & Schiffers (2006). For two-dimensional networks, see: Hu & Englert (2006); Turgunov et al. (2011). For properties of metal halides, see: Hitchcock et al. (2003); Wang et al. (2011). For ligand conformations, see: Kärnä et al. (2010).graphic file with name e-68-m1453-scheme1.jpg

Experimental  

Crystal data  

  • [Mn2Br6(C11H28N2O2)]

  • M r = 809.69

  • Tetragonal, Inline graphic

  • a = 8.0163 (4) Å

  • c = 35.3103 (18) Å

  • V = 2269.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.69 mm−1

  • T = 123 K

  • 0.25 × 0.25 × 0.20 mm

Data collection  

  • Bruker–NoniusKappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.440, T max = 0.746

  • 5076 measured reflections

  • 1966 independent reflections

  • 1856 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.047

  • S = 1.02

  • 1966 reflections

  • 111 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 690 Friedel pairs

  • Flack parameter: 0.048 (14)

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044765/fj2604sup1.cif

e-68-m1453-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044765/fj2604Isup2.hkl

e-68-m1453-Isup2.hkl (94.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br3i 0.75 (2) 2.49 (2) 3.232 (3) 175 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of University of Jyväsk­ylä is gratefully acknowledged.

supplementary crystallographic information

Comment

Solid state chemistry of metal halides has been widely studied in order to improve various magnetic and non-linear optical applications. In the crystal structure of the type MX4L2, the bridging qualities of the halide anions and the coordination properties of the organic ligands result in various polymeric structures. For example, one-dimensional M-(µ-X)2M bridged chains with low-dimensional arrangement have more suitable magnetic properties than classic structures of layered metal halide salts (Han et al. 2012; Wang et al. 2011 and Hitchcock et al. 2003).

The title compound, [MnII(µ-Br)2µ-(C11H28N2O2)Br]n, crystallizes in a tetragonal P43212 crystal system showing one MnII cation, half of a dicationic [C11H28N2O2]2+ ligand (L) and three bromide anions in an asymmetric unit (Fig. 1). In this three-dimensional polymer each MnII cation is coordinated by four bridging bromo anions in the equatorial plane. A single terminal bromo anion and a ligand are located in the axial positions of the distorted octahedron showing axial Br3—Mn1—O1 angle of 174.03 (8)°. The three-dimensional network structure comprises two alternating crossed Mn-(µ-Br)2—Mn chains (a- and b-axes) and an undulated L—Mn-(µ-Br)2—Mn—L chain (c-axis). Distances between parallel Mn-(µ-Br)2—Mn chains (planes through Mn -centres) are about 17.656 Å and between anti-parallel chains 8.7825 Å. This allows a formation of a structure model having alternating organic cation and a metal halide layers along c-axis (Figures 2 & 3).

In MnII cation coordination environment, the terminal Br- anion fulfills the coordination of the MnII cation to octahedral MnBr5O. The metal–metal distance along the resulting chain of octahedra is 4.022 (1) Å. All the equatorial Mn—Br bridge bond distances are almost identical but still somewhat longer than the axial Mn1—Br3 bond. The bridging bromides and the adjacent Mn -centers form folded square-planar geometry, showing nearly orthogonal contact angle of 94.05 (2)° via Mn4—Br2- Mn4 atoms, and torsion angle of 12.82 (2)° through Mn4—Br2—Mn4—Br1 atoms.

In the structure, the ligands are in S-shaped conformation between the anti-parallel Mn-(µ-Br)2—Mn chains (Fig. 4). It seems that S-conformation is an ideal conformation for this type of relatively flexible ditopic ligand (Kärnä et al. 2010). The torsion angle C2—N4—N4—C2 is 156.70°. Similar cation conformations are found in ion pair structures [ZnIIBr4(C11H28N2O2)] and (C11H28N2O2) Br2 H2O.

Classical Br3···H–O1 hydrogen bonds are present in the MnII cation coordination environment between the terminal Br- anions of MnII cation and the hydroxyl group of the neighboring metal center (Fig. 5). Hence, it seems likely that in the parent complex the hydrogen bonding steers the oxygen's coordination to the MnII cation. Weak interactions between O1 and halide bridge on the other side of Br1 and Br2 leads to distortions of chains torsion angle. The angle between the Mn1—Br1—Br2 and Mn1—Br1—Br2 planes is 162.6°. For this reason, Mn-(µ-Br)2—Mn chains zigzag-conformation (Fig. 6).

Experimental

The single crystals of the title compound were obtained in the following two steps: First, dicationic bromide salt, as the precursor, was synthesized in 30 ml of acetone by reacting 2.20 ml (13.15 mmol) of TMPDA, C7H18N2, and 2.16 ml (28.93 mmol) of 2-bromo-1-ethanol, C2H5BrO, for 48 h at 60 °C in a sealed flask. After removing the solvent, the white precipitation was washed by acetone and dried in vacuo (yield 71.6%; 3.58 g).

1H-NMR (DMSO, 250 MHz, p.p.m.): 2.08–2.32 (2H, m, CH2—CH2-CH2), 3.16 (12H, s, N—CH3), 3.31 (2H, s, H2O), 3.37–3.43 (4H, t, HO—CH2—CH2-N), 3.48–3.52 (4H, t, N—CH2-CH2—CH2-N), 3.84 (4H, s, CH2-OH), 5.29–5.33 (2H, t, OH)

Second, the precursor salt and the dried MnBr2 4H2O (molar ratio ~1:1.5) were dissolved separately in minimum volume of warm methanol before combining the solutions. The title compound was synthesized in an open flask by metathesis reaction of the two aforementioned salts. The combined solution was stirred for about 1 h at 40 °C after which it was slowly cooled to RT and methanol was allowed to evaporate slowly. After several days, purple crystals suitable for X-ray analysis were formed.

Refinement

Hydrogen atoms (except of a hydroxyl hydrogen atom that was taken from the electron density map) were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit and labeling scheme of the title compound. Ellipsoids are presented at the 50% probability level.

Fig. 2.

Fig. 2.

The one-dimensional linear chain with (µ-Br)2 bridges, Mn···Mn contact with a distance of 4.022 (1) Å and hydrogen bonding scheme.

Fig. 3.

Fig. 3.

Undulated network formed by the L ligands connecting the alternating crossed Mn-(µ-Br)2—Mn chains, viewed along b-axis.

Fig. 4.

Fig. 4.

S-shaped conformation of the ligands (only ligand backbone showed) between the anti-parallel Mn-(µ-Br)2—Mn slightly distorted octahedron chains.

Fig. 5.

Fig. 5.

The structure is stabilized by weak intermolecular interactions between Br3 and nearby ligands.

Fig. 6.

Fig. 6.

Zigzag tilting of the adjacent MnBr5O octahedra.

Crystal data

[Mn2Br6(C11H28N2O2)] Dx = 2.370 Mg m3
Mr = 809.69 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212 Cell parameters from 1871 reflections
Hall symbol: P 4nw 2abw θ = 0.4–27.9°
a = 8.0163 (4) Å µ = 11.69 mm1
c = 35.3103 (18) Å T = 123 K
V = 2269.1 (2) Å3 Block, violet
Z = 4 0.25 × 0.25 × 0.20 mm
F(000) = 1536

Data collection

Bruker–NoniusKappa APEXII diffractometer 1966 independent reflections
Radiation source: fine-focus sealed tube 1856 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 9 pixels mm-1 θmax = 25.0°, θmin = 2.8°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) k = −4→9
Tmin = 0.440, Tmax = 0.746 l = −22→41
5076 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
1966 reflections Δρmax = 0.36 e Å3
111 parameters Δρmin = −0.41 e Å3
1 restraint Absolute structure: Flack (1983), 690 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.048 (14)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C2 0.8227 (5) 0.8960 (5) 0.15487 (11) 0.0158 (9)
H2A 0.8379 0.8507 0.1290 0.019*
H2B 0.7031 0.9236 0.1580 0.019*
C3 0.8705 (5) 0.7633 (5) 0.18350 (10) 0.0143 (9)
H3A 0.8340 0.6538 0.1735 0.017*
H3B 0.9937 0.7605 0.1853 0.017*
C5 0.6146 (5) 0.7687 (6) 0.22206 (11) 0.0197 (10)
H5A 0.5825 0.6644 0.2095 0.030*
H5B 0.5680 0.8634 0.2081 0.030*
H5C 0.5713 0.7693 0.2480 0.030*
C6 0.8652 (5) 0.6412 (5) 0.24628 (11) 0.0172 (10)
H6A 0.8250 0.6531 0.2724 0.026*
H6B 0.9874 0.6423 0.2461 0.026*
H6C 0.8250 0.5356 0.2357 0.026*
C7 0.8412 (5) 0.9495 (5) 0.24099 (11) 0.0116 (9)
H7A 0.7764 0.9603 0.2647 0.014*
H7B 0.8049 1.0396 0.2237 0.014*
C8 1.0268 (5) 0.9732 (5) 0.2500 0.0140 (13)
H8A 1.0594 0.9039 0.2720 0.017* 0.50
H8B 1.0961 0.9406 0.2280 0.017* 0.50
N4 0.8013 (4) 0.7825 (4) 0.22294 (9) 0.0130 (8)
O1 0.9205 (3) 1.0470 (4) 0.15874 (8) 0.0140 (6)
Br1 0.61915 (5) 1.32320 (5) 0.175357 (11) 0.01348 (10)
Br2 1.13256 (5) 1.39037 (5) 0.167113 (10) 0.01205 (10)
Br3 0.81111 (5) 1.55274 (5) 0.090982 (11) 0.01279 (11)
Mn1 0.87136 (8) 1.27065 (7) 0.124710 (17) 0.01152 (14)
H1 1.010 (3) 1.021 (5) 0.1575 (13) 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.024 (2) 0.0120 (19) 0.011 (2) −0.004 (2) −0.003 (2) −0.0030 (18)
C3 0.021 (2) 0.014 (2) 0.009 (2) 0.001 (2) 0.0015 (19) 0.0001 (17)
C5 0.013 (2) 0.025 (2) 0.021 (2) −0.001 (2) 0.001 (2) −0.006 (2)
C6 0.023 (2) 0.013 (2) 0.015 (2) −0.0018 (19) −0.0049 (19) 0.0016 (18)
C7 0.015 (2) 0.0074 (18) 0.012 (2) −0.0020 (19) −0.0027 (18) −0.0025 (17)
C8 0.0114 (19) 0.0114 (19) 0.019 (3) 0.002 (3) 0.0015 (19) 0.0015 (19)
N4 0.0139 (16) 0.0157 (17) 0.0094 (17) 0.0011 (16) −0.0017 (14) 0.0004 (15)
O1 0.0105 (14) 0.0137 (14) 0.0178 (15) 0.0010 (13) 0.0016 (14) 0.0026 (14)
Br1 0.01241 (19) 0.0168 (2) 0.01122 (19) −0.00105 (19) 0.00124 (18) −0.00200 (18)
Br2 0.01210 (19) 0.01371 (19) 0.01035 (19) 0.00068 (18) 0.00073 (16) 0.00004 (17)
Br3 0.01400 (19) 0.01200 (19) 0.0124 (2) −0.00096 (19) −0.00056 (18) 0.00178 (17)
Mn1 0.0117 (3) 0.0115 (3) 0.0113 (3) −0.0001 (3) 0.0003 (3) 0.0014 (3)

Geometric parameters (Å, º)

C2—O1 1.449 (5) C7—C8 1.533 (5)
C2—C3 1.517 (5) C7—H7A 0.9900
C2—H2A 0.9900 C7—H7B 0.9900
C2—H2B 0.9900 C8—C7i 1.533 (5)
C3—N4 1.507 (4) C8—H8A 0.9900
C3—H3A 0.9900 C8—H8B 0.9900
C3—H3B 0.9900 O1—Mn1 2.194 (3)
C5—N4 1.501 (5) O1—H1 0.748 (19)
C5—H5A 0.9800 Br1—Mn1 2.7319 (7)
C5—H5B 0.9800 Br1—Mn1ii 2.7635 (7)
C5—H5C 0.9800 Br2—Mn1iii 2.7407 (7)
C6—N4 1.491 (5) Br2—Mn1 2.7472 (8)
C6—H6A 0.9800 Br3—Mn1 2.6010 (7)
C6—H6B 0.9800 Mn1—Br2ii 2.7407 (7)
C6—H6C 0.9800 Mn1—Br1iii 2.7635 (7)
C7—N4 1.517 (5)
O1—C2—C3 112.7 (3) C7i—C8—H8A 110.4
O1—C2—H2A 109.0 C7—C8—H8A 110.4
C3—C2—H2A 109.0 C7i—C8—H8B 110.4
O1—C2—H2B 109.0 C7—C8—H8B 110.4
C3—C2—H2B 109.0 H8A—C8—H8B 108.6
H2A—C2—H2B 107.8 C6—N4—C5 107.3 (3)
N4—C3—C2 116.8 (3) C6—N4—C3 107.9 (3)
N4—C3—H3A 108.1 C5—N4—C3 109.9 (3)
C2—C3—H3A 108.1 C6—N4—C7 111.4 (3)
N4—C3—H3B 108.1 C5—N4—C7 106.5 (3)
C2—C3—H3B 108.1 C3—N4—C7 113.6 (3)
H3A—C3—H3B 107.3 C2—O1—Mn1 122.3 (2)
N4—C5—H5A 109.5 C2—O1—H1 106 (4)
N4—C5—H5B 109.5 Mn1—O1—H1 112 (4)
H5A—C5—H5B 109.5 Mn1—Br1—Mn1ii 94.082 (12)
N4—C5—H5C 109.5 Mn1iii—Br2—Mn1 94.254 (12)
H5A—C5—H5C 109.5 O1—Mn1—Br3 174.03 (8)
H5B—C5—H5C 109.5 O1—Mn1—Br1 84.28 (8)
N4—C6—H6A 109.5 Br3—Mn1—Br1 91.62 (2)
N4—C6—H6B 109.5 O1—Mn1—Br2ii 92.05 (8)
H6A—C6—H6B 109.5 Br3—Mn1—Br2ii 91.89 (2)
N4—C6—H6C 109.5 Br1—Mn1—Br2ii 84.75 (2)
H6A—C6—H6C 109.5 O1—Mn1—Br2 81.38 (8)
H6B—C6—H6C 109.5 Br3—Mn1—Br2 95.01 (2)
N4—C7—C8 113.7 (3) Br1—Mn1—Br2 98.83 (2)
N4—C7—H7A 108.8 Br2ii—Mn1—Br2 172.12 (3)
C8—C7—H7A 108.8 O1—Mn1—Br1iii 89.94 (8)
N4—C7—H7B 108.8 Br3—Mn1—Br1iii 94.43 (2)
C8—C7—H7B 108.8 Br1—Mn1—Br1iii 173.07 (2)
H7A—C7—H7B 107.7 Br2ii—Mn1—Br1iii 91.67 (2)
C7i—C8—C7 106.5 (4) Br2—Mn1—Br1iii 84.03 (2)
O1—C2—C3—N4 79.7 (4) C2—O1—Mn1—Br2 179.1 (3)
N4—C7—C8—C7i 167.0 (4) C2—O1—Mn1—Br1iii −96.9 (3)
C2—C3—N4—C6 −179.3 (3) Mn1ii—Br1—Mn1—O1 −105.44 (8)
C2—C3—N4—C5 64.0 (5) Mn1ii—Br1—Mn1—Br3 78.92 (2)
C2—C3—N4—C7 −55.2 (5) Mn1ii—Br1—Mn1—Br2ii −12.838 (12)
C8—C7—N4—C6 54.1 (4) Mn1ii—Br1—Mn1—Br2 174.24 (3)
C8—C7—N4—C5 170.8 (3) Mn1iii—Br2—Mn1—O1 78.06 (8)
C8—C7—N4—C3 −68.1 (4) Mn1iii—Br2—Mn1—Br3 −106.73 (2)
C3—C2—O1—Mn1 −175.3 (2) Mn1iii—Br2—Mn1—Br1 160.85 (3)
C2—O1—Mn1—Br1 79.3 (3) Mn1iii—Br2—Mn1—Br1iii −12.785 (11)
C2—O1—Mn1—Br2ii −5.2 (3)

Symmetry codes: (i) −y+2, −x+2, −z+1/2; (ii) x−1/2, −y+5/2, −z+1/4; (iii) x+1/2, −y+5/2, −z+1/4.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Br3iii 0.75 (2) 2.49 (2) 3.232 (3) 175 (5)

Symmetry code: (iii) x+1/2, −y+5/2, −z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2604).

References

  1. Bruker (2008). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Englert, U. & Schiffers, S. (2006). Acta Cryst. E62, m295–m296.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Han, S., Liu, X.-Y., Cai, Z.-F. Z.-P., Yin, W.-T., Xie, X.-D., Zhou, J.-R., Yang, L.-M. & Ni, C.-L. (2012). Inorg. Chem. Commun. 24, 91–94.
  5. Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2003). Dalton Trans. pp. 2276–2279.
  6. Hu, C. & Englert, U. (2006). Angew. Chem. Int. Ed. Engl. 45, 3457–3459. [DOI] [PubMed]
  7. Kärnä, M., Lahtinen, M., Hakkarainen, P.-L. & Valkonen, J. (2010). Aust. J. Chem. 63, 1122–1137.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Turgunov, K. K., Wang, Y., Englert, U. & Shakhidoyatov, K. M. (2011). Acta Cryst. E67, m953–m954. [DOI] [PMC free article] [PubMed]
  13. Wang, Y.-Q., Sun, Q., Yue, Q., Cheng, A.-L., Song, Y. & Gao, E.-Q. (2011). Dalton Trans. 40, 10966–10974. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044765/fj2604sup1.cif

e-68-m1453-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044765/fj2604Isup2.hkl

e-68-m1453-Isup2.hkl (94.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES