Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):m1471. doi: 10.1107/S1600536812045928

Di-μ-bromido-bis­[bromido(4,7-diphenyl-1,10-phenanthroline-κ2 N,N′)cadmium]

Sadif A Shirvan a,*, Sara Haydari Dezfuli a, Fereydoon Khazali a, Manouchehr Aghajeri a, Ali Borsalani b
PMCID: PMC3588733  PMID: 23468698

Abstract

The title compound, [Cd2Br4(C24H16N2)2], consists of a centrosymmetric dimeric unit in which two Br atoms bridge two CdII atoms, forming a four-membered ring. A terminal Br atom and a bidentate chelating 4,7-diphenyl-1,10-phenanthroline ligand complete a square-pyramidal geometry for the CdII atom. In the crystal, C—H⋯Br hydrogen bonds and π–π contacts between the pyridine and phenyl rings [centroid–centroid distances = 3.704 (4) and 3.715 (4) Å] lead to a three-dimensional supra­molecular structure.

Related literature  

For related structures, see: Abedi et al. (2012); Ahmadi et al. (2008); Alizadeh et al. (2010); Chesnut et al. (2001); Gaballa et al. (2003); Yousefi et al. (2008).graphic file with name e-68-m1471-scheme1.jpg

Experimental  

Crystal data  

  • [Cd2Br4(C24H16N2)2]

  • M r = 1209.20

  • Monoclinic, Inline graphic

  • a = 10.1704 (4) Å

  • b = 12.4702 (5) Å

  • c = 17.3444 (7) Å

  • β = 103.187 (3)°

  • V = 2141.73 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.76 mm−1

  • T = 120 K

  • 0.25 × 0.18 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.385, T max = 0.502

  • 12072 measured reflections

  • 4200 independent reflections

  • 3248 reflections with I > 2σ(I)

  • R int = 0.090

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.129

  • S = 1.05

  • 4200 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045928/hy2601sup1.cif

e-68-m1471-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045928/hy2601Isup2.hkl

e-68-m1471-Isup2.hkl (205.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.336 (6)
Cd1—N2 2.349 (6)
Cd1—Br1 2.5537 (9)
Cd1—Br2 2.6653 (8)
Cd1—Br2i 2.7518 (9)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br2i 0.93 2.90 3.554 (7) 129
C21—H21⋯Br1ii 0.93 2.79 3.582 (8) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

supplementary crystallographic information

Comment

4,7-Diphenyl-1,10-phenanthroline (Ph2phen) is a good bidentate ligand, and numerous complexes with Ph2phen have been prepared, such as that of mercury (Alizadeh et al., 2010; Yousefi et al., 2008), gold (Ahmadi et al., 2008), indium (Abedi et al., 2012), copper (Chesnut et al., 2001) and platinum (Gaballa et al., 2003). Here, we report the synthesis and structure of the title compound.

The structure of the title compound (Fig. 1) consists of a centrosymmetric dimeric unit, [Cd2Br4(Ph2phen)2], in which two Br atoms bridge two CdII atoms, forming a four-membered ring; a terminal Br atom and a bidentate chelating Ph2phen complete a five coordination (Table 1). In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and π–π contacts (Fig. 2) between the pyridine and phenyl rings, Cg3···Cg4i and Cg6···Cg6i [symmetry code: (i) 1-x, 2-y, -z, Cg3, Cg4 and Cg6 are the centroids of the rings N1/C1–C3/C10/C24, N2/C13–C14/C21–C23 and C10–C13/C23–C24, respectively], with centroid–centroid distances of 3.704 (4) and 3.715 (4) Å, stabilize the structure.

Experimental

For the preparation of the title compound, a solution of Ph2phen (0.44 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.62 g, 77.1%).

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd2Br4(C24H16N2)2] F(000) = 1168
Mr = 1209.20 Dx = 1.875 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 12072 reflections
a = 10.1704 (4) Å θ = 2.4–26.0°
b = 12.4702 (5) Å µ = 4.76 mm1
c = 17.3444 (7) Å T = 120 K
β = 103.187 (3)° Prism, colorless
V = 2141.73 (15) Å3 0.25 × 0.18 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 4200 independent reflections
Radiation source: fine-focus sealed tube 3248 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.090
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→9
Tmin = 0.385, Tmax = 0.502 k = −15→15
12072 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2] where P = (Fo2 + 2Fc2)/3
4200 reflections (Δ/σ)max = 0.005
262 parameters Δρmax = 1.15 e Å3
0 restraints Δρmin = −1.05 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3033 (7) 0.7552 (6) 0.0038 (4) 0.0220 (15)
H1 0.2143 0.7327 −0.0137 0.026*
C2 0.4054 (7) 0.6893 (6) −0.0089 (4) 0.0212 (15)
H2 0.3842 0.6233 −0.0336 0.025*
C3 0.5378 (7) 0.7205 (5) 0.0147 (4) 0.0198 (14)
C4 0.6478 (8) 0.6468 (5) 0.0047 (5) 0.0230 (15)
C5 0.6445 (9) 0.6043 (6) −0.0702 (5) 0.0342 (19)
H5 0.5770 0.6250 −0.1134 0.041*
C6 0.7429 (9) 0.5306 (7) −0.0800 (6) 0.044 (2)
H6 0.7435 0.5048 −0.1302 0.052*
C7 0.8396 (9) 0.4960 (6) −0.0150 (6) 0.039 (2)
H7 0.9039 0.4457 −0.0212 0.047*
C8 0.8401 (8) 0.5363 (7) 0.0590 (6) 0.0329 (18)
H8 0.9037 0.5117 0.1028 0.040*
C9 0.7462 (8) 0.6139 (6) 0.0690 (5) 0.0281 (17)
H9 0.7500 0.6432 0.1187 0.034*
C10 0.5663 (7) 0.8236 (5) 0.0511 (4) 0.0171 (14)
C11 0.6978 (8) 0.8691 (6) 0.0725 (4) 0.0206 (15)
H11 0.7700 0.8317 0.0608 0.025*
C12 0.7213 (7) 0.9657 (6) 0.1095 (4) 0.0187 (14)
H12 0.8079 0.9947 0.1206 0.022*
C13 0.6142 (7) 1.0227 (5) 0.1312 (4) 0.0163 (13)
C14 0.6353 (8) 1.1181 (6) 0.1777 (4) 0.0226 (15)
C15 0.7704 (7) 1.1668 (5) 0.2081 (4) 0.0195 (14)
C16 0.8805 (9) 1.1070 (6) 0.2449 (4) 0.0303 (18)
H16 0.8708 1.0338 0.2523 0.036*
C17 1.0068 (8) 1.1553 (7) 0.2711 (5) 0.0318 (19)
H17 1.0812 1.1140 0.2948 0.038*
C18 1.0212 (9) 1.2650 (7) 0.2618 (5) 0.037 (2)
H18 1.1052 1.2975 0.2789 0.045*
C19 0.9106 (9) 1.3248 (7) 0.2272 (4) 0.0301 (18)
H19 0.9203 1.3982 0.2204 0.036*
C20 0.7865 (7) 1.2787 (6) 0.2025 (4) 0.0229 (15)
H20 0.7118 1.3214 0.1817 0.027*
C21 0.5205 (8) 1.1675 (6) 0.1945 (5) 0.0261 (16)
H21 0.5298 1.2292 0.2254 0.031*
C22 0.3948 (7) 1.1245 (6) 0.1654 (4) 0.0236 (16)
H22 0.3213 1.1601 0.1770 0.028*
C23 0.4797 (7) 0.9847 (5) 0.1065 (4) 0.0159 (13)
C24 0.4563 (7) 0.8838 (5) 0.0639 (4) 0.0172 (14)
N1 0.3274 (6) 0.8502 (5) 0.0403 (3) 0.0190 (12)
N2 0.3701 (6) 1.0356 (5) 0.1218 (3) 0.0197 (12)
Cd1 0.15894 (5) 0.95338 (4) 0.07604 (3) 0.01781 (15)
Br1 0.10996 (9) 0.87751 (7) 0.20336 (5) 0.0309 (2)
Br2 0.03037 (7) 1.14002 (5) 0.04404 (4) 0.02161 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.020 (4) 0.023 (4) 0.026 (4) −0.002 (3) 0.011 (3) 0.000 (3)
C2 0.019 (3) 0.024 (4) 0.024 (3) −0.001 (3) 0.012 (3) −0.008 (3)
C3 0.025 (4) 0.016 (3) 0.018 (3) 0.000 (3) 0.005 (3) 0.003 (3)
C4 0.024 (4) 0.015 (3) 0.032 (4) −0.004 (3) 0.011 (3) −0.004 (3)
C5 0.040 (5) 0.024 (4) 0.038 (5) −0.004 (4) 0.010 (4) −0.012 (4)
C6 0.038 (5) 0.033 (5) 0.062 (6) −0.001 (4) 0.017 (4) −0.022 (4)
C7 0.031 (4) 0.018 (4) 0.079 (7) −0.002 (3) 0.037 (5) −0.012 (4)
C8 0.016 (3) 0.031 (4) 0.055 (5) 0.001 (3) 0.017 (3) 0.008 (4)
C9 0.026 (4) 0.025 (4) 0.040 (4) 0.002 (3) 0.023 (4) 0.002 (3)
C10 0.019 (3) 0.016 (3) 0.016 (3) 0.002 (3) 0.004 (3) 0.001 (3)
C11 0.027 (4) 0.022 (3) 0.015 (3) 0.002 (3) 0.010 (3) −0.003 (3)
C12 0.018 (3) 0.021 (3) 0.016 (3) −0.005 (3) 0.003 (3) 0.001 (3)
C13 0.017 (3) 0.021 (3) 0.015 (3) 0.002 (3) 0.012 (3) 0.004 (3)
C14 0.027 (4) 0.017 (3) 0.022 (3) −0.002 (3) 0.001 (3) −0.002 (3)
C15 0.026 (4) 0.017 (3) 0.017 (3) 0.001 (3) 0.007 (3) −0.004 (3)
C16 0.044 (5) 0.026 (4) 0.018 (4) 0.002 (4) 0.002 (3) −0.005 (3)
C17 0.024 (4) 0.047 (5) 0.023 (4) 0.006 (4) 0.002 (3) −0.016 (4)
C18 0.034 (5) 0.046 (5) 0.034 (4) −0.016 (4) 0.014 (4) −0.024 (4)
C19 0.038 (5) 0.032 (4) 0.023 (4) −0.010 (4) 0.011 (3) −0.008 (3)
C20 0.023 (4) 0.025 (4) 0.022 (3) 0.002 (3) 0.008 (3) −0.006 (3)
C21 0.024 (4) 0.021 (4) 0.033 (4) 0.006 (3) 0.006 (3) −0.008 (3)
C22 0.020 (4) 0.026 (4) 0.031 (4) 0.006 (3) 0.020 (3) −0.001 (3)
C23 0.020 (3) 0.016 (3) 0.013 (3) 0.001 (3) 0.007 (3) 0.002 (2)
C24 0.023 (4) 0.014 (3) 0.013 (3) 0.001 (3) 0.002 (3) 0.001 (3)
N1 0.018 (3) 0.022 (3) 0.019 (3) −0.002 (2) 0.007 (2) 0.001 (2)
N2 0.019 (3) 0.023 (3) 0.023 (3) 0.005 (3) 0.016 (2) 0.003 (3)
Cd1 0.0164 (3) 0.0199 (3) 0.0193 (2) 0.0026 (2) 0.00858 (18) 0.0045 (2)
Br1 0.0369 (4) 0.0325 (4) 0.0291 (4) 0.0053 (3) 0.0195 (3) 0.0146 (3)
Br2 0.0191 (3) 0.0189 (3) 0.0267 (4) 0.0035 (3) 0.0050 (3) 0.0001 (3)

Geometric parameters (Å, º)

C1—N1 1.339 (9) C14—C21 1.409 (11)
C1—C2 1.381 (10) C14—C15 1.484 (10)
C1—H1 0.9300 C15—C16 1.375 (11)
C2—C3 1.372 (10) C15—C20 1.411 (10)
C2—H2 0.9300 C16—C17 1.398 (12)
C3—C10 1.432 (9) C16—H16 0.9300
C3—C4 1.489 (10) C17—C18 1.389 (13)
C4—C9 1.379 (11) C17—H17 0.9300
C4—C5 1.396 (11) C18—C19 1.369 (13)
C5—C6 1.398 (12) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.365 (11)
C6—C7 1.385 (14) C19—H19 0.9300
C6—H6 0.9300 C20—H20 0.9300
C7—C8 1.377 (13) C21—C22 1.371 (11)
C7—H7 0.9300 C21—H21 0.9300
C8—C9 1.398 (11) C22—N2 1.333 (9)
C8—H8 0.9300 C22—H22 0.9300
C9—H9 0.9300 C23—N2 1.361 (9)
C10—C24 1.406 (10) C23—C24 1.452 (9)
C10—C11 1.423 (10) C24—N1 1.349 (9)
C11—C12 1.361 (9) Cd1—N1 2.336 (6)
C11—H11 0.9300 Cd1—N2 2.349 (6)
C12—C13 1.421 (10) Cd1—Br1 2.5537 (9)
C12—H12 0.9300 Cd1—Br2 2.6653 (8)
C13—C23 1.418 (9) Cd1—Br2i 2.7518 (9)
C13—C14 1.426 (9)
N1—C1—C2 122.6 (7) C15—C16—C17 120.5 (8)
N1—C1—H1 118.7 C15—C16—H16 119.8
C2—C1—H1 118.7 C17—C16—H16 119.8
C3—C2—C1 120.4 (7) C18—C17—C16 120.1 (8)
C3—C2—H2 119.8 C18—C17—H17 120.0
C1—C2—H2 119.8 C16—C17—H17 120.0
C2—C3—C10 118.2 (7) C19—C18—C17 119.3 (8)
C2—C3—C4 120.2 (6) C19—C18—H18 120.4
C10—C3—C4 121.6 (6) C17—C18—H18 120.4
C9—C4—C5 119.9 (7) C20—C19—C18 121.1 (8)
C9—C4—C3 121.0 (7) C20—C19—H19 119.4
C5—C4—C3 118.9 (7) C18—C19—H19 119.4
C4—C5—C6 119.8 (8) C19—C20—C15 120.6 (7)
C4—C5—H5 120.1 C19—C20—H20 119.7
C6—C5—H5 120.1 C15—C20—H20 119.7
C7—C6—C5 120.0 (9) C22—C21—C14 120.0 (7)
C7—C6—H6 120.0 C22—C21—H21 120.0
C5—C6—H6 120.0 C14—C21—H21 120.0
C8—C7—C6 119.8 (8) N2—C22—C21 125.0 (7)
C8—C7—H7 120.1 N2—C22—H22 117.5
C6—C7—H7 120.1 C21—C22—H22 117.5
C7—C8—C9 120.7 (8) N2—C23—C13 124.2 (6)
C7—C8—H8 119.7 N2—C23—C24 117.2 (6)
C9—C8—H8 119.7 C13—C23—C24 118.6 (6)
C4—C9—C8 119.7 (8) N1—C24—C10 122.7 (6)
C4—C9—H9 120.1 N1—C24—C23 117.3 (6)
C8—C9—H9 120.1 C10—C24—C23 120.0 (6)
C24—C10—C11 118.7 (6) C1—N1—C24 118.6 (6)
C24—C10—C3 117.4 (6) C1—N1—Cd1 123.1 (5)
C11—C10—C3 123.8 (7) C24—N1—Cd1 118.0 (4)
C12—C11—C10 122.0 (7) C22—N2—C23 116.2 (6)
C12—C11—H11 119.0 C22—N2—Cd1 126.5 (5)
C10—C11—H11 119.0 C23—N2—Cd1 117.2 (4)
C11—C12—C13 120.4 (6) N1—Cd1—N2 70.2 (2)
C11—C12—H12 119.8 N1—Cd1—Br1 108.95 (14)
C13—C12—H12 119.8 N2—Cd1—Br1 102.32 (14)
C23—C13—C12 119.8 (6) N1—Cd1—Br2 141.29 (14)
C23—C13—C14 117.4 (6) N2—Cd1—Br2 93.23 (14)
C12—C13—C14 122.8 (6) Br1—Cd1—Br2 108.68 (3)
C21—C14—C13 117.2 (7) N1—Cd1—Br2i 89.71 (14)
C21—C14—C15 119.5 (6) N2—Cd1—Br2i 150.28 (14)
C13—C14—C15 123.3 (7) Br1—Cd1—Br2i 104.89 (3)
C16—C15—C20 118.3 (7) Br2—Cd1—Br2i 89.24 (3)
C16—C15—C14 122.2 (7) Cd1—Br2—Cd1i 90.76 (3)
C20—C15—C14 119.5 (7)
N1—C1—C2—C3 −1.2 (11) C14—C13—C23—N2 2.6 (10)
C1—C2—C3—C10 −1.3 (10) C12—C13—C23—C24 4.2 (9)
C1—C2—C3—C4 176.8 (7) C14—C13—C23—C24 −175.7 (6)
C2—C3—C4—C9 −120.8 (8) C11—C10—C24—N1 175.1 (6)
C10—C3—C4—C9 57.2 (10) C3—C10—C24—N1 −2.9 (10)
C2—C3—C4—C5 54.2 (10) C11—C10—C24—C23 −7.1 (9)
C10—C3—C4—C5 −127.8 (8) C3—C10—C24—C23 174.8 (6)
C9—C4—C5—C6 −1.6 (12) N2—C23—C24—N1 2.3 (9)
C3—C4—C5—C6 −176.7 (7) C13—C23—C24—N1 −179.2 (6)
C4—C5—C6—C7 3.1 (13) N2—C23—C24—C10 −175.6 (6)
C5—C6—C7—C8 −1.5 (13) C13—C23—C24—C10 2.9 (9)
C6—C7—C8—C9 −1.6 (12) C2—C1—N1—C24 1.6 (10)
C5—C4—C9—C8 −1.5 (11) C2—C1—N1—Cd1 −172.4 (5)
C3—C4—C9—C8 173.5 (7) C10—C24—N1—C1 0.6 (10)
C7—C8—C9—C4 3.1 (11) C23—C24—N1—C1 −177.3 (6)
C2—C3—C10—C24 3.2 (9) C10—C24—N1—Cd1 174.8 (5)
C4—C3—C10—C24 −174.8 (6) C23—C24—N1—Cd1 −3.0 (8)
C2—C3—C10—C11 −174.7 (7) C21—C22—N2—C23 0.7 (10)
C4—C3—C10—C11 7.2 (10) C21—C22—N2—Cd1 176.5 (6)
C24—C10—C11—C12 4.4 (10) C13—C23—N2—C22 −2.6 (9)
C3—C10—C11—C12 −177.7 (6) C24—C23—N2—C22 175.7 (6)
C10—C11—C12—C13 2.7 (10) C13—C23—N2—Cd1 −178.8 (5)
C11—C12—C13—C23 −7.1 (9) C24—C23—N2—Cd1 −0.5 (7)
C11—C12—C13—C14 172.8 (6) C1—N1—Cd1—N2 176.0 (6)
C23—C13—C14—C21 −0.7 (9) C24—N1—Cd1—N2 2.0 (5)
C12—C13—C14—C21 179.4 (7) C1—N1—Cd1—Br1 79.3 (5)
C23—C13—C14—C15 179.6 (6) C24—N1—Cd1—Br1 −94.7 (5)
C12—C13—C14—C15 −0.3 (10) C1—N1—Cd1—Br2 −114.7 (5)
C21—C14—C15—C16 133.3 (8) C24—N1—Cd1—Br2 71.2 (5)
C13—C14—C15—C16 −47.1 (11) C1—N1—Cd1—Br2i −26.3 (5)
C21—C14—C15—C20 −44.0 (10) C24—N1—Cd1—Br2i 159.7 (5)
C13—C14—C15—C20 135.7 (7) C22—N2—Cd1—N1 −176.5 (6)
C20—C15—C16—C17 −4.2 (11) C23—N2—Cd1—N1 −0.7 (4)
C14—C15—C16—C17 178.5 (7) C22—N2—Cd1—Br1 −70.6 (6)
C15—C16—C17—C18 1.5 (12) C23—N2—Cd1—Br1 105.2 (4)
C16—C17—C18—C19 0.3 (12) C22—N2—Cd1—Br2 39.3 (6)
C17—C18—C19—C20 0.6 (12) C23—N2—Cd1—Br2 −144.9 (4)
C18—C19—C20—C15 −3.4 (11) C22—N2—Cd1—Br2i 133.5 (5)
C16—C15—C20—C19 5.2 (11) C23—N2—Cd1—Br2i −50.7 (6)
C14—C15—C20—C19 −177.5 (7) N1—Cd1—Br2—Cd1i 88.6 (2)
C13—C14—C21—C22 −1.0 (11) N2—Cd1—Br2—Cd1i 150.36 (14)
C15—C14—C21—C22 178.7 (7) Br1—Cd1—Br2—Cd1i −105.47 (3)
C14—C21—C22—N2 1.1 (12) Br2i—Cd1—Br2—Cd1i 0.0
C12—C13—C23—N2 −177.5 (6)

Symmetry code: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···Br2i 0.93 2.90 3.554 (7) 129
C21—H21···Br1ii 0.93 2.79 3.582 (8) 144

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2601).

References

  1. Abedi, A., Amani, V. & Safari, N. (2012). Main Group Chem. 11, 223–233.
  2. Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157. [DOI] [PMC free article] [PubMed]
  3. Alizadeh, R., Amani, V., Farshady, A. A. & Khavasi, H. R. (2010). J. Coord. Chem. 63, 2122–2131.
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581–2586.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045928/hy2601sup1.cif

e-68-m1471-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045928/hy2601Isup2.hkl

e-68-m1471-Isup2.hkl (205.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES