Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):m1518. doi: 10.1107/S1600536812047216

(1,5-Diphenyl­thio­carbazonato-κS)trimethyl­tin(IV)

Karel G Von Eschwege a,*, Jannie C Swarts a, Manuel A S Aquino b, T Stanley Cameron c
PMCID: PMC3588764  PMID: 23468729

Abstract

In the title compound, [Sn(C13H11N4S)(CH3)3], the SnIV atom is coordinated by an S atom from the 1,5-diphenyl­thio­carbazonato (L) ligand [Sn—S 2.4710 (6) Å] and by three methyl groups [Sn—C 2.123 (3)–2.130 (2) Å] in a distorted tetra­hedral geometry. The aromatic rings of the L ligand form a dihedral angle of 2.1 (1)°.

Related literature  

For general background to dithizone and dithizonato metal complexes, see: Irving (1977). For the synthesis of dithizone, see: Pelkis et al. (1957). For structural aspects of dithizone and its oxidation products and observed solvatochromism and concentratochromism, see: Von Eschwege et al. (2011a ). For related ligand and complex structures, see: Harrowfield et al. (1983); Kong & Wong (1999); Herbstein & Schwotzer (1984); Fernandes et al. (2002); Von Eschwege et al. (2008); Laing et al. (1971). For electrochemical studies of dithizone and its Hg complex, see: Von Eschwege & Swarts (2010); Von Eschwege et al. (2011b ). For femto second laser spectroscopy studies on a photochromic dithizonatomercury complex, see: Schwoerer et al. (2011). For the weighting scheme, see: Carruthers & Watkin (1979).graphic file with name e-68-m1518-scheme1.jpg

Experimental  

Crystal data  

  • [Sn(C13H11N4S)(CH3)3]

  • M r = 419.11

  • Monoclinic, Inline graphic

  • a = 11.1058 (4) Å

  • b = 7.2672 (3) Å

  • c = 22.5024 (9) Å

  • β = 101.0116 (11)°

  • V = 1782.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 223 K

  • 0.20 × 0.19 × 0.08 mm

Data collection  

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.751, T max = 0.886

  • 17952 measured reflections

  • 4092 independent reflections

  • 3344 reflections with F 2 > 2.0σ(F 2)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.027

  • S = 1.07

  • 3344 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Watkin et al., 1999); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536812047216/cv5361sup1.cif

e-68-m1518-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047216/cv5361Isup2.hkl

e-68-m1518-Isup2.hkl (200.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Central Research Fund of the University of the Free State for financial assistance.

supplementary crystallographic information

Comment

During a study of the reactions of dimethylamino-trimethyltin, orange crystals of the title compound suitable for X-ray crystallography, were isolated from a diethyl ether solution. The structure revealed distorted tetrahedral coordination geometry around tin, with S—Sn—C bond angles 110.5 (4)°, 105.0 (4)° and 98.0 (9)°. Contrary to most bidentate metal-dithizonate complexes, but with the exception of one ligand in In(HDz)3 (Harrowfield et al., 1983) and in an osmium carbonyl cluster compound (Kong & Wong, 1999), coordination of dithizone to trimethyltin(IV) was found to be monodentate, through the sulfur atom alone. The dithizonate ligand clearly illustrates a high degree of planarity, with the ligand backbone being linear, comparable to that of uncoordinated dithizone (Herbstein & Schwotzer, 1984). The Sn—S bond length of 2.4710 (6) Å agrees well with the value of 2.433 (2) Å in a related compound, 4,6-dimethylpyrimidine-2-thione triphenyltin(IV),Ph3Sn(Me2Pymt), reported by Fernandes et al. (2002). The less bulky pyrimidine-thione ligand, however, is bidentately coordinated to Sn through both sulfur and nitrogen, forming a four-membered ring, as opposed to the usual 5-membered metal-dithizonate rings, as seen in PhHgHDz (Von Eschwege et al., 2008). In the case of Me3Sn(HDz), the metal lies completely outside the ligand plane, whereas in most other metal dithizonates the carbon-sulfur-metal angle is in the direction of the nitrogen (N4) that does not carry the imine proton, H2 (Laing et al., 1971). The three methyl carbons, being at bond distances of 2.13 (2) Å, hold the metal in the sterically more favourable out-of-plane position. Bond lengths along the ligand backbone are neither typically single nor double bond in character. However, the N3—N4 bond length of 1.267 (9) Å and the N1—C1 bond length of 1.308 (9) Å are close to typical double bond lengths of 1.25 Å and 1.29 Å respectively. Even the N1—N2 bond (1.327 (14) Å), which is expected to be a single bond, has more double bond character than single. N—N single bonds are typically 1.45 Å in length. The N3—C1 bond length of 1.40 (2) Å is shorter than an N—C single bond length of 1.47 Å. Observed deviation from single and double bond distances is further evidence of the high degree of electron delocalization along the dithizonate backbone.

Experimental

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. Dithizone (0.1 g, 0.39 mmol) was dissolved in dry benzene (100 ml) and dimethylamino-trimethyltin (0.082 g, 0.394 mmol) was added under nitrogen. The solvent was removed under reduced pressure, yielding 0.157 g (97%) orange dithizonatotrimethyltin(IV), after crystallization from diethyl ether. The product proved to be unstable in most solvents, except benzene and diethyl ether. M.p. 134°C, λmax/nm (diethyl ether) 442, δH (300 MHz, C6D6, Spectrum A7)/p.p.m.: 0.47 (6 H, s, 2 × CH3), 0.54 (3 H, s, CH3), 6.85 – 8.09 (10 H, 3 × m, C6H5).

Refinement

The amino H atom was located on a difference map and isotropically refined. C-bound H atoms were placed in calculated positions [C—H = 0.93 Å], and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A portion of the molecular packing of the title compound.

Crystal data

[Sn(C13H11N4S)(CH3)3] F(000) = 840.00
Mr = 419.11 Dx = 1.561 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 16795 reflections
a = 11.1058 (4) Å θ = 3.0–27.6°
b = 7.2672 (3) Å µ = 1.55 mm1
c = 22.5024 (9) Å T = 223 K
β = 101.0116 (11)° Needle, orange
V = 1782.69 (12) Å3 0.20 × 0.19 × 0.08 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3344 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.85 pixels mm-1 Rint = 0.023
ω scans θmax = 27.5°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −14→14
Tmin = 0.751, Tmax = 0.886 k = −9→9
17952 measured reflections l = −29→28
4092 independent reflections

Refinement

Refinement on F H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 3.3785 -1.5365 2.4749
wR(F2) = 0.027 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.32 e Å3
3344 reflections Δρmin = −0.36 e Å3
223 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement was performed using reflections with F2 > 3.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.584750 (10) 0.72516 (2) 0.103690 (10) 0.03181 (4)
S2 0.48283 (6) 0.42282 (9) 0.08476 (3) 0.03382 (14)
N1 0.54036 (19) 0.2246 (3) 0.18902 (10) 0.0345 (5)
N2 0.4294 (2) 0.2702 (3) 0.19760 (10) 0.0376 (5)
N3 0.69296 (19) 0.2259 (3) 0.13655 (9) 0.0342 (5)
N4 0.73146 (18) 0.2866 (3) 0.09132 (9) 0.0327 (4)
C1 0.6418 (3) 0.7378 (5) 0.19937 (13) 0.0556 (9)
C2 0.7339 (2) 0.7446 (3) 0.05745 (14) 0.0432 (7)
C3 0.4335 (2) 0.8952 (3) 0.06533 (13) 0.0433 (7)
C4 0.5753 (2) 0.2867 (3) 0.14066 (11) 0.0313 (5)
C5 0.3905 (2) 0.2214 (3) 0.25098 (10) 0.0288 (5)
C6 0.2710 (2) 0.2653 (3) 0.25609 (11) 0.0331 (5)
C7 0.2291 (2) 0.2216 (3) 0.30840 (12) 0.0371 (6)
C8 0.3056 (2) 0.1336 (4) 0.35559 (11) 0.0392 (6)
C9 0.4242 (2) 0.0906 (3) 0.35032 (11) 0.0372 (6)
C10 0.4679 (2) 0.1334 (3) 0.29838 (11) 0.0342 (6)
C11 0.8525 (2) 0.2291 (3) 0.08796 (11) 0.0312 (5)
C12 0.8917 (2) 0.2776 (3) 0.03507 (11) 0.0367 (6)
C13 1.0091 (2) 0.2330 (4) 0.02757 (13) 0.0456 (7)
C14 1.0872 (2) 0.1392 (4) 0.07256 (15) 0.0476 (8)
C15 1.0482 (2) 0.0905 (4) 0.12533 (14) 0.0447 (7)
C16 0.9316 (2) 0.1346 (3) 0.13339 (12) 0.0372 (6)
H1 0.6600 0.8589 0.2110 0.067*
H2 0.5792 0.6946 0.2178 0.067*
H3 0.7113 0.6652 0.2111 0.067*
H4 0.7433 0.8663 0.0463 0.052*
H5 0.8054 0.7050 0.0828 0.052*
H6 0.7185 0.6712 0.0230 0.052*
H7 0.3781 0.9004 0.0915 0.052*
H8 0.4615 1.0131 0.0594 0.052*
H9 0.3949 0.8462 0.0284 0.052*
H10 0.2194 0.3239 0.2243 0.040*
H11 0.1493 0.2516 0.3119 0.044*
H12 0.2772 0.1034 0.3907 0.047*
H13 0.4755 0.0319 0.3822 0.045*
H14 0.5479 0.1037 0.2952 0.041*
H15 0.8391 0.3401 0.0046 0.044*
H16 1.0354 0.2663 −0.0078 0.055*
H17 1.1659 0.1088 0.0674 0.057*
H18 1.1011 0.0275 0.1556 0.054*
H19 0.9058 0.1015 0.1689 0.045*
H20 0.386 (3) 0.335 (4) 0.1727 (14) 0.048 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.02999 (9) 0.03258 (9) 0.03273 (9) 0.00214 (7) 0.00567 (6) 0.00547 (7)
S2 0.0313 (2) 0.0345 (3) 0.0352 (3) −0.0008 (2) 0.0050 (2) 0.0076 (2)
N1 0.0357 (10) 0.0341 (10) 0.0367 (10) 0.0043 (8) 0.0142 (8) 0.0069 (8)
N2 0.0350 (10) 0.0453 (12) 0.0352 (10) 0.0091 (9) 0.0133 (8) 0.0130 (9)
N3 0.0337 (9) 0.0347 (10) 0.0360 (10) 0.0022 (8) 0.0112 (8) 0.0070 (8)
N4 0.0312 (9) 0.0357 (10) 0.0319 (9) −0.0010 (8) 0.0075 (7) 0.0026 (8)
C1 0.0575 (18) 0.067 (2) 0.0384 (14) 0.0051 (15) −0.0006 (12) −0.0010 (14)
C2 0.0373 (12) 0.0429 (16) 0.0514 (15) −0.0042 (10) 0.0133 (11) 0.0021 (11)
C3 0.0409 (14) 0.0390 (14) 0.0482 (15) 0.0051 (11) 0.0044 (12) 0.0079 (11)
C4 0.0313 (11) 0.0298 (10) 0.0343 (11) 0.0013 (9) 0.0102 (9) 0.0046 (9)
C5 0.0316 (10) 0.0256 (10) 0.0308 (10) −0.0018 (9) 0.0096 (8) 0.0020 (8)
C6 0.0315 (11) 0.0331 (12) 0.0348 (11) 0.0006 (9) 0.0068 (9) 0.0012 (9)
C7 0.0305 (11) 0.0404 (12) 0.0432 (12) −0.0035 (10) 0.0144 (9) −0.0032 (11)
C8 0.0439 (14) 0.0459 (15) 0.0302 (12) −0.0090 (11) 0.0134 (10) −0.0007 (10)
C9 0.0442 (14) 0.0370 (13) 0.0284 (11) −0.0020 (10) 0.0020 (10) 0.0046 (9)
C10 0.0301 (11) 0.0350 (12) 0.0376 (12) 0.0017 (9) 0.0070 (9) 0.0033 (10)
C11 0.0339 (11) 0.0290 (11) 0.0313 (10) −0.0021 (9) 0.0077 (8) −0.0034 (9)
C12 0.0381 (12) 0.0432 (13) 0.0306 (11) −0.0008 (11) 0.0108 (9) −0.0017 (10)
C13 0.0467 (14) 0.0540 (17) 0.0416 (13) −0.0017 (13) 0.0221 (11) −0.0056 (12)
C14 0.0363 (14) 0.0462 (16) 0.0628 (18) 0.0056 (11) 0.0159 (12) −0.0108 (14)
C15 0.0404 (14) 0.0387 (14) 0.0528 (16) 0.0080 (11) 0.0036 (12) 0.0023 (12)
C16 0.0411 (13) 0.0363 (13) 0.0346 (12) 0.0017 (10) 0.0080 (10) 0.0049 (10)

Geometric parameters (Å, º)

Sn1—S2 2.4710 (6) C15—C16 1.380 (4)
Sn1—C1 2.127 (2) N2—H20 0.82 (3)
Sn1—C2 2.123 (3) C1—H1 0.930
Sn1—C3 2.130 (2) C1—H2 0.930
S2—C4 1.766 (2) C1—H3 0.930
N1—N2 1.325 (3) C2—H4 0.930
N1—C4 1.304 (3) C2—H5 0.930
N2—C5 1.398 (3) C2—H6 0.930
N3—N4 1.257 (3) C3—H7 0.930
N3—C4 1.400 (3) C3—H8 0.930
N4—C11 1.423 (3) C3—H9 0.930
C5—C6 1.391 (3) C6—H10 0.930
C5—C10 1.391 (3) C7—H11 0.930
C6—C7 1.383 (3) C8—H12 0.930
C7—C8 1.383 (3) C9—H13 0.930
C8—C9 1.381 (4) C10—H14 0.930
C9—C10 1.384 (3) C12—H15 0.930
C11—C12 1.389 (3) C13—H16 0.930
C11—C16 1.395 (3) C14—H17 0.930
C12—C13 1.385 (4) C15—H18 0.930
C13—C14 1.380 (4) C16—H19 0.930
C14—C15 1.385 (4)
C3···C4i 3.526 (3) H7···C8iv 3.204
C4···C3ii 3.526 (3) H7···H4viii 3.565
C13···C13iii 3.599 (4) H7···H11iv 2.499
C13···C14iii 3.552 (4) H7···H12iv 2.839
C14···C13iii 3.552 (4) H7···H15v 3.399
Sn1···H11iv 3.506 H7···H17x 2.766
S2···H6v 3.045 H8···S2i 3.033
S2···H8ii 3.033 H8···N1i 3.266
S2···H12iv 3.314 H8···N3i 3.211
N1···H1ii 2.970 H8···N4i 3.554
N1···H3vi 3.237 H8···C2viii 3.542
N1···H7ii 3.479 H8···C3viii 3.306
N1···H8ii 3.266 H8···C4i 2.831
N2···H7ii 3.568 H8···H4viii 3.088
N3···H1ii 3.208 H8···H6viii 3.359
N3···H3vi 3.419 H8···H8viii 2.963
N3···H4ii 3.420 H8···H9viii 2.948
N3···H8ii 3.211 H8···H17x 3.395
N4···H4ii 3.228 H9···N4v 2.952
N4···H8ii 3.554 H9···C11v 3.458
N4···H9v 2.952 H9···C12v 3.354
C1···H11iv 3.196 H9···H4viii 2.926
C1···H14vii 3.561 H9···H8viii 2.948
C1···H19vii 3.263 H9···H12iv 3.379
C2···H8viii 3.542 H9···H15v 2.898
C2···H16ix 2.985 H9···H17x 3.426
C2···H17ix 3.386 H10···C5iv 3.225
C3···H4viii 3.360 H10···C6iv 3.236
C3···H8viii 3.306 H10···C7iv 3.063
C3···H11iv 3.247 H10···C8iv 2.861
C3···H12iv 3.441 H10···C9iv 2.845
C3···H15v 3.570 H10···C10iv 3.039
C3···H17x 3.362 H10···C15xii 3.136
C4···H1ii 3.534 H10···H11iv 3.592
C4···H8ii 2.831 H10···H12iv 3.296
C5···H10xi 3.225 H10···H13iv 3.276
C5···H18vii 3.050 H10···H14iv 3.555
C6···H10xi 3.236 H10···H18xii 2.826
C6···H18xii 3.168 H10···H18vii 3.378
C6···H18vii 2.919 H11···Sn1xi 3.506
C7···H2xi 3.367 H11···C1xi 3.196
C7···H7xi 3.034 H11···C3xi 3.247
C7···H10xi 3.063 H11···H1xi 3.464
C7···H18vii 2.927 H11···H2xi 2.532
C7···H20xi 3.15 (3) H11···H7xi 2.499
C8···H7xi 3.204 H11···H10xi 3.592
C8···H10xi 2.861 H11···H18vii 3.386
C8···H15xiii 3.308 H11···H20xi 3.079
C8···H18vii 3.071 H12···S2xi 3.314
C8···H20xi 3.02 (3) H12···C3xi 3.441
C9···H5vi 3.202 H12···C12xiii 3.368
C9···H10xi 2.845 H12···H7xi 2.839
C9···H16xiii 3.361 H12···H9xi 3.379
C9···H18vii 3.188 H12···H10xi 3.296
C10···H5vi 3.345 H12···H15xiii 2.558
C10···H10xi 3.039 H12···H16xiii 3.440
C10···H18vii 3.189 H12···H18vii 3.598
C11···H4ii 2.978 H12···H20xi 2.853
C11···H9v 3.458 H13···C11vi 2.907
C11···H13vii 2.907 H13···C12vi 2.830
C12···H4ii 3.446 H13···C13vi 2.956
C12···H9v 3.354 H13···C14vi 3.152
C12···H12xiv 3.368 H13···C15vi 3.221
C12···H13vii 2.830 H13···C16vi 3.109
C12···H16ix 3.494 H13···H5vi 2.719
C13···H4ix 3.548 H13···H10xi 3.276
C13···H5ix 3.545 H13···H15vi 3.266
C13···H6ix 3.499 H13···H15xiii 3.514
C13···H13vii 2.956 H13···H16vi 3.444
C13···H17iii 3.596 H13···H16xiii 2.845
C14···H4ix 3.553 H14···C1vi 3.561
C14···H6ix 3.599 H14···H1ii 3.033
C14···H13vii 3.152 H14···H2ii 3.496
C14···H16iii 3.450 H14···H3vi 2.742
C15···H10xv 3.136 H14···H5vi 3.004
C15···H13vii 3.221 H14···H10xi 3.555
C16···H2vi 3.401 H15···C3v 3.570
C16···H4ii 3.232 H15···C8xiv 3.308
C16···H5ii 3.521 H15···H7v 3.399
C16···H13vii 3.109 H15···H9v 2.898
H1···N1i 2.970 H15···H12xiv 2.558
H1···N3i 3.208 H15···H13vii 3.266
H1···C4i 3.534 H15···H13xiv 3.514
H1···H3vii 3.019 H15···H16ix 3.177
H1···H11iv 3.464 H16···C2ix 2.985
H1···H14i 3.033 H16···C9xiv 3.361
H1···H19i 3.529 H16···C12ix 3.494
H1···H19vii 3.477 H16···C14iii 3.450
H2···C7iv 3.367 H16···H4ix 2.921
H2···C16vii 3.401 H16···H5ix 2.676
H2···H11iv 2.532 H16···H6ix 2.855
H2···H14i 3.496 H16···H12xiv 3.440
H2···H19vii 2.612 H16···H13vii 3.444
H3···N1vii 3.237 H16···H13xiv 2.845
H3···N3vii 3.419 H16···H15ix 3.177
H3···H1vi 3.019 H16···H16ix 3.519
H3···H14vii 2.742 H17···C2ix 3.386
H3···H19vii 3.247 H17···C3xvi 3.362
H4···N3i 3.420 H17···C13iii 3.596
H4···N4i 3.228 H17···H4ix 2.931
H4···C3viii 3.360 H17···H6ix 3.057
H4···C11i 2.978 H17···H7xvi 2.766
H4···C12i 3.446 H17···H8xvi 3.395
H4···C13ix 3.548 H17···H9xvi 3.426
H4···C14ix 3.553 H17···H20xv 3.479
H4···C16i 3.232 H18···C5vi 3.050
H4···H7viii 3.565 H18···C6xv 3.168
H4···H8viii 3.088 H18···C6vi 2.919
H4···H9viii 2.926 H18···C7vi 2.927
H4···H16ix 2.921 H18···C8vi 3.071
H4···H17ix 2.931 H18···C9vi 3.188
H4···H19i 3.448 H18···C10vi 3.189
H5···C9vii 3.202 H18···H10xv 2.826
H5···C10vii 3.345 H18···H10vi 3.378
H5···C13ix 3.545 H18···H11vi 3.386
H5···C16i 3.521 H18···H12vi 3.598
H5···H13vii 2.719 H19···C1vi 3.263
H5···H14vii 3.004 H19···H1ii 3.529
H5···H16ix 2.676 H19···H1vi 3.477
H5···H19i 3.532 H19···H2vi 2.612
H6···S2v 3.045 H19···H3vi 3.247
H6···C13ix 3.499 H19···H4ii 3.448
H6···C14ix 3.599 H19···H5ii 3.532
H6···H8viii 3.359 H20···C7iv 3.15 (3)
H6···H16ix 2.855 H20···C8iv 3.02 (3)
H6···H17ix 3.057 H20···H11iv 3.079
H7···N1i 3.479 H20···H12iv 2.853
H7···N2i 3.568 H20···H17xii 3.479
H7···C7iv 3.034
S2—Sn1—C1 104.53 (9) H1—C1—H2 109.5
S2—Sn1—C2 110.46 (7) H1—C1—H3 109.5
S2—Sn1—C3 98.40 (7) H2—C1—H3 109.5
C1—Sn1—C2 112.56 (12) Sn1—C2—H4 109.5
C1—Sn1—C3 116.40 (12) Sn1—C2—H5 109.5
C2—Sn1—C3 113.04 (11) Sn1—C2—H6 109.5
Sn1—S2—C4 100.97 (8) H4—C2—H5 109.5
N2—N1—C4 117.9 (2) H4—C2—H6 109.5
N1—N2—C5 120.7 (2) H5—C2—H6 109.5
N4—N3—C4 114.15 (19) Sn1—C3—H7 109.5
N3—N4—C11 114.26 (19) Sn1—C3—H8 109.5
S2—C4—N1 124.29 (18) Sn1—C3—H9 109.5
S2—C4—N3 123.56 (18) H7—C3—H8 109.5
N1—C4—N3 112.1 (2) H7—C3—H9 109.5
N2—C5—C6 118.0 (2) H8—C3—H9 109.5
N2—C5—C10 121.9 (2) C5—C6—H10 120.0
C6—C5—C10 120.1 (2) C7—C6—H10 120.0
C5—C6—C7 120.0 (2) C6—C7—H11 119.9
C6—C7—C8 120.2 (2) C8—C7—H11 119.9
C7—C8—C9 119.6 (2) C7—C8—H12 120.2
C8—C9—C10 121.1 (2) C9—C8—H12 120.2
C5—C10—C9 119.1 (2) C8—C9—H13 119.5
N4—C11—C12 115.2 (2) C10—C9—H13 119.5
N4—C11—C16 125.1 (2) C5—C10—H14 120.5
C12—C11—C16 119.7 (2) C9—C10—H14 120.5
C11—C12—C13 120.1 (2) C11—C12—H15 119.9
C12—C13—C14 120.0 (2) C13—C12—H15 119.9
C13—C14—C15 120.0 (2) C12—C13—H16 120.0
C14—C15—C16 120.5 (2) C14—C13—H16 120.0
C11—C16—C15 119.6 (2) C13—C14—H17 120.0
N1—N2—H20 119 (2) C15—C14—H17 120.0
C5—N2—H20 120 (2) C14—C15—H18 119.7
Sn1—C1—H1 109.5 C16—C15—H18 119.7
Sn1—C1—H2 109.5 C11—C16—H19 120.2
Sn1—C1—H3 109.5 C15—C16—H19 120.2
C(1)—Sn(1)—S(2)—C(4) −36.42 (13) N(2)—C(5)—C(10)—C(9) 179.3 (2)
C(2)—Sn(1)—S(2)—C(4) 84.89 (12) C(6)—C(5)—C(10)—C(9) −0.0 (3)
C(3)—Sn(1)—S(2)—C(4) −156.59 (12) C(10)—C(5)—C(6)—C(7) 0.1 (2)
Sn(1)—S(2)—C(4)—N(1) 108.4 (2) C(5)—C(6)—C(7)—C(8) −0.3 (3)
Sn(1)—S(2)—C(4)—N(3) −74.7 (2) C(6)—C(7)—C(8)—C(9) 0.4 (4)
N(2)—N(1)—C(4)—S(2) −1.7 (3) C(7)—C(8)—C(9)—C(10) −0.3 (4)
N(2)—N(1)—C(4)—N(3) −178.9 (2) C(8)—C(9)—C(10)—C(5) 0.1 (3)
C(4)—N(1)—N(2)—C(5) −174.5 (2) N(4)—C(11)—C(12)—C(13) 178.3 (2)
N(1)—N(2)—C(5)—C(6) −176.9 (2) N(4)—C(11)—C(16)—C(15) −178.3 (2)
N(1)—N(2)—C(5)—C(10) 3.8 (3) C(12)—C(11)—C(16)—C(15) 0.1 (3)
N(4)—N(3)—C(4)—S(2) 4.5 (3) C(16)—C(11)—C(12)—C(13) −0.3 (3)
N(4)—N(3)—C(4)—N(1) −178.3 (2) C(11)—C(12)—C(13)—C(14) 0.4 (4)
C(4)—N(3)—N(4)—C(11) 178.29 (19) C(12)—C(13)—C(14)—C(15) −0.3 (4)
N(3)—N(4)—C(11)—C(12) 173.2 (2) C(13)—C(14)—C(15)—C(16) 0.1 (3)
N(3)—N(4)—C(11)—C(16) −8.3 (3) C(14)—C(15)—C(16)—C(11) −0.0 (3)
N(2)—C(5)—C(6)—C(7) −179.2 (2)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+2, −y, −z; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) −x+3/2, y−1/2, −z+1/2; (vii) −x+3/2, y+1/2, −z+1/2; (viii) −x+1, −y+2, −z; (ix) −x+2, −y+1, −z; (x) x−1, y+1, z; (xi) −x+1/2, y−1/2, −z+1/2; (xii) x−1, y, z; (xiii) x−1/2, −y+1/2, z+1/2; (xiv) x+1/2, −y+1/2, z−1/2; (xv) x+1, y, z; (xvi) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5361).

References

  1. Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699.
  2. Fernandes, R. M., Lang, E. S., Lopez, E. M. V. & De Souza, G. F. (2002). Polyhedron, 21, 1149–1153.
  3. Harrowfield, J. M., Pakawatchai, C. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1109–1113.
  4. Herbstein, F. H. & Schwotzer, W. (1984). J. Am. Chem. Soc. 106, 2367–2373.
  5. Irving, H. M. N. H. (1977). Dithizone. London: Chemical Society.
  6. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  7. Kong, F. & Wong, W. (1999). J. Chem. Soc. Dalton Trans. pp. 2497–2501.
  8. Laing, M., Sommerville, P. & Alsop, P. A. (1971). J. Chem. Soc. A, pp. 1247–1251.
  9. Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR 27, 2190–2194.
  10. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  11. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  12. Schwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, pp. 2653–2658. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Von Eschwege, K. G., Conradie, J. & Kuhn, A. (2011a). J. Phys. Chem. A, 115, 14637–14646. [DOI] [PubMed]
  15. Von Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. A, 112, 2211–2218. [DOI] [PubMed]
  16. Von Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.
  17. Von Eschwege, K. G., Van As, L. & Swarts, J. C. (2011b). Electrochim. Acta, 56, 10064–10068.
  18. Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1999). CRYSTALS Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536812047216/cv5361sup1.cif

e-68-m1518-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047216/cv5361Isup2.hkl

e-68-m1518-Isup2.hkl (200.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES