Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 28;68(Pt 12):m1527. doi: 10.1107/S1600536812047605

[5-(Pyridin-2-yl)-1H-tetra­zole-κ2 N 4,N 5]bis(triphenyl­phosphane-κP)copper(I) tetra­fluoridoborate

Lei Lu a, Ping Yang a, Bing Li a, Lin-Fang Shi a,*, Hua-Ru Cao a
PMCID: PMC3588771  PMID: 23468736

Abstract

In the title CuI compound, [Cu(C6H5N5)(C18H15P)2]BF4, the CuI cation is N,N′-chelated by a 5-(pyridin-2-yl)-1H-tetra­zole ligand and coordinated by two triphenyl­phosphane ligands in a distorted tetra­hedral geometry. The tetra­zole and pyridine rings are essentially coplanar [dihedral angle = 4.1 (3)°]. The tetra­fluoridoborate anion links to the complex cation via an N—H⋯F hydrogen bond.

Related literature  

For applications of CuI complexes, see: Jia et al. (2005); Tsuboyama et al. (2007); Zhang et al. (2004). For the synthesis, see: Kuang et al. (2002); Demko & Sharpless (2001).graphic file with name e-68-m1527-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C6H5N5)(C18H15P)2]BF4

  • M r = 822.05

  • Triclinic, Inline graphic

  • a = 9.6640 (19) Å

  • b = 13.052 (3) Å

  • c = 15.947 (3) Å

  • α = 88.66 (3)°

  • β = 84.80 (3)°

  • γ = 85.72 (3)°

  • V = 1997.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.29 × 0.17 × 0.16 mm

Data collection  

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.908, T max = 0.947

  • 19069 measured reflections

  • 8838 independent reflections

  • 4984 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.166

  • S = 1.14

  • 8838 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047605/xu5633sup1.cif

e-68-m1527-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047605/xu5633Isup2.hkl

e-68-m1527-Isup2.hkl (432.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—P1 2.2575 (13)
Cu—P2 2.2538 (14)
Cu—N1 2.185 (4)
Cu—N2 2.103 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H55⋯F4i 0.86 1.80 2.650 (7) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province (grant No. LY12B02013), the Foundation of Zhejiang Education Committee (Y201119787), the National Natural Science Foundation of China (No. 51103136) and the National Natural Science Foundation of China (No. 21207117).

supplementary crystallographic information

Comment

Many copper(I) complexes have been utilized in solar energy conversion, biological probing, and organic light-emitting devices (Jia et al., 2005; Tsuboyama et al., 2007; Zhang et al., 2004). Therefore, it is pressing to explore new Cu(I) complexes served as luminescent materials. In this article, we have successfully synthesized a novel mixed ligand Cu(I) complex.

Scheme 1 and Figure 1 display the four-coordinated environment of complex [Cu(PPh3)2(L)]BF4, the coordination geometry at the Cu atom is a distorted tetrahedron. The distances of N1 and N2 to Cu1 are 2.185 (4), and 2.103 (4) Å, respectively, and the Cu—P bond lengths are 2.2575 (13) and 2.2538 (14) Å. The counter tetrafluoroboronate ion links with the complex cation via N—H···F hydrogen bonds (Table 1).

Experimental

The 5-(2-Pyridyl)tetrazole ligand was synthesized according to the literature method (Demko & Sharpless, 2001) with some minor modification. The specific synthetic procedure is as follows: (i) To a 100 ml round-bottomed flask was added 2-cyanopyridine (0.52 g, 5 mmol), sodium azide (0.36 g, 5.5 mmol), zinc bromide (1.15 g, 5 mmol), and water (30 ml). The reaction mixture was refluxed for 5 h, cooled to room temperature. Then the mixture was basified by addition of 2.5 equiv of NaOH, filtered, acidified to pH = 1, and filtered, and the solid was washed with water then 5-(2-Pyridyl)tetrazole (0.58 g, 78%) was obtained.

[Cu(PPh3)2(L)]BF4 was synthesized according to the following procedure (Kuang et al., 2002): To a 100 ml flask was added [Cu(CH3CN)4]BF4 0.314 g (1 mmol), triphenylphosphane 0.522 g(2 mmol) and 10 ml dichioromethane, kept stirring for 1 h. Then 0.148 g 5-(2-Pyridyl)tetrazole was added and stirred for another hour. After the evaporation of solvent, the product was obtained as a light green powder. Single crystals of complex [Cu(PPh3)2(L)]BF4 suitable for X-ray diffraction studies were grown from slow evaporation of a CH2Cl2 solution.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of [Cu(PPh3)2(L)]BF4, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).

Crystal data

[Cu(C6H5N5)(C18H15P)2]BF4 Z = 2
Mr = 822.05 F(000) = 844
Triclinic, P1 Dx = 1.367 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6640 (19) Å Cell parameters from 6566 reflections
b = 13.052 (3) Å θ = 3.0–26.0°
c = 15.947 (3) Å µ = 0.68 mm1
α = 88.66 (3)° T = 293 K
β = 84.80 (3)° Block, light green
γ = 85.72 (3)° 0.29 × 0.17 × 0.16 mm
V = 1997.3 (7) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 8838 independent reflections
Radiation source: fine-focus sealed tube 4984 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
phi and ω scans θmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→12
Tmin = 0.908, Tmax = 0.947 k = −16→16
19069 measured reflections l = −18→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0409P)2 + 3.0232P] where P = (Fo2 + 2Fc2)/3
8838 reflections (Δ/σ)max = 0.001
496 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.58602 (5) 0.22693 (4) 0.77067 (3) 0.04916 (17)
P1 0.57823 (11) 0.05451 (8) 0.77005 (7) 0.0470 (3)
P2 0.54981 (11) 0.33726 (8) 0.66269 (7) 0.0453 (3)
N1 0.5096 (4) 0.2971 (3) 0.8908 (2) 0.0528 (9)
N2 0.7728 (4) 0.2473 (3) 0.8243 (2) 0.0524 (9)
N3 0.9126 (4) 0.2261 (3) 0.8087 (3) 0.0661 (11)
N4 0.9758 (4) 0.2553 (4) 0.8710 (3) 0.0777 (13)
N5 0.8761 (5) 0.2956 (3) 0.9278 (3) 0.0731 (12)
H55 0.8905 0.3207 0.9754 0.088*
B1 1.0728 (9) 0.5802 (7) 0.8609 (5) 0.094 (3)
F1 1.1936 (6) 0.5302 (6) 0.8667 (4) 0.235 (4)
F2 0.9726 (7) 0.5127 (4) 0.8631 (3) 0.168 (2)
F3 1.0651 (6) 0.6349 (5) 0.7899 (3) 0.171 (2)
F4 1.0472 (6) 0.6438 (4) 0.9270 (3) 0.167 (2)
C1 0.6524 (5) 0.0373 (4) 0.9330 (3) 0.0623 (12)
H1 0.5935 0.0966 0.9411 0.075*
C2 0.6681 (4) −0.0088 (3) 0.8555 (3) 0.0478 (10)
C3 0.7541 (5) −0.0988 (4) 0.8461 (3) 0.0653 (13)
H3 0.7650 −0.1320 0.7947 0.078*
C4 0.8237 (6) −0.1392 (5) 0.9129 (4) 0.0845 (18)
H4 0.8814 −0.1992 0.9060 0.101*
C5 0.8083 (6) −0.0915 (5) 0.9885 (4) 0.0898 (19)
H5 0.8557 −0.1189 1.0331 0.108*
C6 0.7236 (6) −0.0037 (5) 0.9990 (3) 0.0853 (17)
H6 0.7134 0.0288 1.0507 0.102*
C7 0.8132 (5) 0.0060 (4) 0.6619 (3) 0.0669 (13)
H7 0.8582 0.0419 0.6997 0.080*
C8 0.8880 (6) −0.0373 (5) 0.5923 (4) 0.0832 (17)
H8 0.9837 −0.0320 0.5842 0.100*
C9 0.8223 (7) −0.0880 (5) 0.5349 (4) 0.0889 (18)
H9 0.8734 −0.1177 0.4883 0.107*
C10 0.6813 (7) −0.0948 (4) 0.5462 (4) 0.0823 (17)
H10 0.6363 −0.1272 0.5063 0.099*
C11 0.6053 (5) −0.0540 (4) 0.6167 (3) 0.0614 (12)
H11 0.5098 −0.0601 0.6246 0.074*
C12 0.6713 (4) −0.0038 (3) 0.6757 (3) 0.0507 (10)
C13 0.4103 (4) 0.0003 (4) 0.7760 (3) 0.0536 (11)
C14 0.3943 (5) −0.1031 (4) 0.7932 (3) 0.0640 (13)
H14 0.4715 −0.1464 0.8045 0.077*
C15 0.2646 (6) −0.1428 (5) 0.7937 (4) 0.0849 (18)
H15 0.2548 −0.2122 0.8052 0.102*
C16 0.1518 (6) −0.0788 (7) 0.7772 (5) 0.105 (2)
H16 0.0648 −0.1049 0.7775 0.125*
C17 0.1653 (6) 0.0231 (6) 0.7603 (5) 0.106 (2)
H17 0.0876 0.0661 0.7493 0.128*
C18 0.2942 (5) 0.0625 (4) 0.7594 (4) 0.0750 (16)
H18 0.3026 0.1319 0.7475 0.090*
C19 0.6554 (4) 0.3099 (3) 0.5644 (3) 0.0454 (10)
C20 0.6671 (5) 0.2101 (4) 0.5339 (3) 0.0629 (12)
H20 0.6228 0.1588 0.5650 0.076*
C21 0.7436 (6) 0.1857 (4) 0.4581 (3) 0.0749 (15)
H21 0.7480 0.1191 0.4380 0.090*
C22 0.8129 (5) 0.2602 (5) 0.4129 (3) 0.0721 (14)
H22 0.8659 0.2437 0.3628 0.087*
C23 0.8038 (5) 0.3585 (4) 0.4416 (3) 0.0673 (13)
H23 0.8504 0.4089 0.4110 0.081*
C24 0.7246 (5) 0.3833 (4) 0.5170 (3) 0.0569 (11)
H24 0.7184 0.4506 0.5356 0.068*
C25 0.5866 (4) 0.4693 (3) 0.6838 (3) 0.0493 (10)
C26 0.7149 (5) 0.4857 (4) 0.7118 (3) 0.0629 (13)
H26 0.7758 0.4298 0.7238 0.076*
C27 0.7529 (6) 0.5842 (4) 0.7220 (3) 0.0759 (15)
H27 0.8396 0.5947 0.7400 0.091*
C28 0.6622 (7) 0.6666 (4) 0.7055 (4) 0.0820 (17)
H28 0.6879 0.7331 0.7117 0.098*
C29 0.5351 (6) 0.6514 (4) 0.6802 (4) 0.0786 (16)
H29 0.4735 0.7076 0.6701 0.094*
C30 0.4964 (5) 0.5533 (4) 0.6692 (3) 0.0622 (13)
H30 0.4090 0.5438 0.6519 0.075*
C31 0.3718 (4) 0.3494 (3) 0.6329 (3) 0.0456 (9)
C32 0.3376 (5) 0.3416 (3) 0.5508 (3) 0.0558 (11)
H32 0.4079 0.3320 0.5072 0.067*
C33 0.1983 (5) 0.3481 (4) 0.5333 (4) 0.0720 (15)
H33 0.1759 0.3415 0.4782 0.086*
C34 0.0941 (5) 0.3641 (4) 0.5973 (4) 0.0784 (16)
H34 0.0013 0.3671 0.5856 0.094*
C35 0.1268 (5) 0.3756 (5) 0.6780 (4) 0.0801 (16)
H35 0.0563 0.3895 0.7208 0.096*
C36 0.2637 (5) 0.3666 (4) 0.6959 (3) 0.0695 (14)
H36 0.2846 0.3722 0.7514 0.083*
C37 0.3794 (5) 0.3180 (4) 0.9229 (3) 0.0710 (14)
H37 0.3071 0.3033 0.8913 0.085*
C38 0.3466 (7) 0.3612 (5) 1.0023 (4) 0.0869 (18)
H38 0.2542 0.3763 1.0225 0.104*
C39 0.4517 (8) 0.3807 (5) 1.0494 (4) 0.0923 (19)
H39 0.4319 0.4080 1.1029 0.111*
C40 0.5873 (7) 0.3598 (4) 1.0173 (3) 0.0787 (16)
H40 0.6606 0.3735 1.0483 0.094*
C41 0.6128 (5) 0.3183 (3) 0.9383 (3) 0.0539 (11)
C42 0.7515 (5) 0.2904 (3) 0.8988 (3) 0.0533 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.0538 (3) 0.0448 (3) 0.0488 (3) 0.0032 (2) −0.0101 (2) 0.0002 (2)
P1 0.0445 (6) 0.0425 (6) 0.0540 (7) 0.0010 (4) −0.0083 (5) −0.0014 (5)
P2 0.0472 (6) 0.0423 (6) 0.0463 (6) 0.0039 (4) −0.0101 (5) 0.0008 (5)
N1 0.058 (2) 0.052 (2) 0.047 (2) 0.0029 (17) 0.0012 (17) 0.0002 (17)
N2 0.052 (2) 0.051 (2) 0.052 (2) 0.0000 (16) −0.0021 (17) 0.0046 (17)
N3 0.049 (2) 0.070 (3) 0.079 (3) 0.0067 (19) −0.008 (2) 0.001 (2)
N4 0.057 (3) 0.085 (3) 0.094 (4) 0.002 (2) −0.023 (3) −0.006 (3)
N5 0.073 (3) 0.075 (3) 0.075 (3) −0.002 (2) −0.032 (2) −0.009 (2)
B1 0.101 (6) 0.097 (6) 0.091 (6) 0.010 (5) −0.057 (5) −0.029 (5)
F1 0.174 (5) 0.282 (8) 0.247 (7) 0.130 (5) −0.103 (5) −0.132 (6)
F2 0.234 (6) 0.144 (4) 0.143 (4) −0.071 (4) −0.069 (4) 0.022 (3)
F3 0.189 (5) 0.211 (6) 0.134 (4) −0.100 (4) −0.066 (4) 0.044 (4)
F4 0.192 (5) 0.168 (4) 0.145 (4) 0.061 (4) −0.079 (4) −0.090 (4)
C1 0.069 (3) 0.062 (3) 0.054 (3) −0.001 (2) −0.001 (2) 0.006 (2)
C2 0.042 (2) 0.046 (2) 0.055 (3) −0.0010 (18) −0.0031 (18) 0.004 (2)
C3 0.068 (3) 0.056 (3) 0.070 (3) 0.010 (2) −0.009 (3) 0.005 (2)
C4 0.077 (4) 0.081 (4) 0.090 (4) 0.022 (3) −0.007 (3) 0.029 (3)
C5 0.085 (4) 0.116 (5) 0.067 (4) 0.007 (4) −0.019 (3) 0.038 (4)
C6 0.104 (5) 0.099 (5) 0.052 (3) 0.004 (4) −0.015 (3) 0.012 (3)
C7 0.052 (3) 0.082 (4) 0.066 (3) −0.003 (2) −0.003 (2) −0.002 (3)
C8 0.064 (3) 0.095 (5) 0.084 (4) 0.008 (3) 0.019 (3) −0.003 (3)
C9 0.108 (5) 0.070 (4) 0.082 (4) −0.003 (3) 0.032 (4) −0.013 (3)
C10 0.112 (5) 0.068 (4) 0.066 (4) −0.023 (3) 0.011 (3) −0.023 (3)
C11 0.065 (3) 0.056 (3) 0.063 (3) −0.009 (2) 0.003 (2) −0.010 (2)
C12 0.052 (2) 0.042 (2) 0.058 (3) −0.0024 (18) −0.006 (2) 0.005 (2)
C13 0.047 (2) 0.057 (3) 0.056 (3) 0.008 (2) −0.005 (2) −0.014 (2)
C14 0.054 (3) 0.065 (3) 0.073 (3) −0.008 (2) 0.003 (2) −0.010 (3)
C15 0.070 (4) 0.092 (4) 0.095 (4) −0.035 (3) 0.011 (3) −0.022 (3)
C16 0.050 (3) 0.145 (7) 0.121 (6) −0.023 (4) 0.006 (3) −0.055 (5)
C17 0.046 (3) 0.123 (6) 0.151 (7) 0.013 (3) −0.022 (3) −0.056 (5)
C18 0.052 (3) 0.069 (3) 0.107 (4) 0.006 (2) −0.021 (3) −0.024 (3)
C19 0.041 (2) 0.046 (2) 0.049 (2) 0.0042 (17) −0.0122 (18) 0.0079 (19)
C20 0.074 (3) 0.047 (3) 0.065 (3) 0.007 (2) −0.001 (2) 0.000 (2)
C21 0.096 (4) 0.060 (3) 0.064 (3) 0.014 (3) 0.001 (3) −0.009 (3)
C22 0.070 (3) 0.084 (4) 0.059 (3) 0.015 (3) 0.000 (3) −0.005 (3)
C23 0.063 (3) 0.077 (4) 0.060 (3) −0.001 (3) −0.003 (2) 0.007 (3)
C24 0.064 (3) 0.057 (3) 0.049 (3) 0.002 (2) −0.005 (2) −0.002 (2)
C25 0.052 (2) 0.050 (3) 0.047 (2) 0.0005 (19) −0.0151 (19) −0.0027 (19)
C26 0.060 (3) 0.062 (3) 0.070 (3) −0.003 (2) −0.023 (2) 0.005 (2)
C27 0.080 (4) 0.079 (4) 0.074 (4) −0.022 (3) −0.027 (3) −0.002 (3)
C28 0.104 (5) 0.059 (3) 0.089 (4) −0.014 (3) −0.029 (3) −0.020 (3)
C29 0.097 (4) 0.046 (3) 0.094 (4) 0.011 (3) −0.026 (3) −0.017 (3)
C30 0.065 (3) 0.052 (3) 0.071 (3) 0.007 (2) −0.023 (2) −0.011 (2)
C31 0.048 (2) 0.036 (2) 0.051 (2) 0.0021 (17) −0.0053 (19) 0.0008 (18)
C32 0.060 (3) 0.056 (3) 0.052 (3) 0.001 (2) −0.009 (2) −0.010 (2)
C33 0.060 (3) 0.080 (4) 0.081 (4) −0.001 (3) −0.032 (3) −0.017 (3)
C34 0.048 (3) 0.086 (4) 0.105 (5) −0.009 (3) −0.023 (3) 0.000 (3)
C35 0.048 (3) 0.102 (5) 0.087 (4) 0.002 (3) 0.001 (3) 0.015 (3)
C36 0.055 (3) 0.095 (4) 0.057 (3) 0.006 (3) −0.005 (2) 0.008 (3)
C37 0.056 (3) 0.081 (4) 0.071 (3) 0.003 (3) 0.011 (2) 0.000 (3)
C38 0.087 (4) 0.080 (4) 0.085 (4) 0.011 (3) 0.027 (3) 0.002 (3)
C39 0.124 (6) 0.085 (5) 0.063 (4) 0.006 (4) 0.013 (4) −0.014 (3)
C40 0.103 (4) 0.076 (4) 0.056 (3) 0.000 (3) −0.004 (3) −0.013 (3)
C41 0.071 (3) 0.044 (3) 0.046 (2) 0.002 (2) −0.009 (2) −0.0014 (19)
C42 0.059 (3) 0.045 (3) 0.057 (3) 0.000 (2) −0.014 (2) 0.001 (2)

Geometric parameters (Å, º)

Cu—P1 2.2575 (13) C15—H15 0.9300
Cu—P2 2.2538 (14) C16—C17 1.364 (10)
Cu—N1 2.185 (4) C16—H16 0.9300
Cu—N2 2.103 (4) C17—C18 1.381 (8)
P1—C13 1.812 (5) C17—H17 0.9300
P1—C2 1.831 (4) C18—H18 0.9300
P1—C12 1.832 (5) C19—C24 1.381 (6)
P2—C19 1.819 (4) C19—C20 1.394 (6)
P2—C31 1.820 (4) C20—C21 1.389 (7)
P2—C25 1.830 (4) C20—H20 0.9300
N1—C37 1.326 (6) C21—C22 1.375 (7)
N1—C41 1.355 (5) C21—H21 0.9300
N2—C42 1.320 (5) C22—C23 1.366 (7)
N2—N3 1.360 (5) C22—H22 0.9300
N3—N4 1.292 (6) C23—C24 1.396 (6)
N4—N5 1.346 (6) C23—H23 0.9300
N5—C42 1.336 (6) C24—H24 0.9300
N5—H55 0.8600 C25—C30 1.378 (6)
B1—F1 1.304 (8) C25—C26 1.388 (6)
B1—F3 1.329 (9) C26—C27 1.381 (7)
B1—F4 1.351 (8) C26—H26 0.9300
B1—F2 1.355 (9) C27—C28 1.371 (7)
C1—C2 1.378 (6) C27—H27 0.9300
C1—C6 1.384 (7) C28—C29 1.357 (7)
C1—H1 0.9300 C28—H28 0.9300
C2—C3 1.390 (6) C29—C30 1.380 (7)
C3—C4 1.384 (7) C29—H29 0.9300
C3—H3 0.9300 C30—H30 0.9300
C4—C5 1.361 (8) C31—C32 1.387 (6)
C4—H4 0.9300 C31—C36 1.391 (6)
C5—C6 1.362 (8) C32—C33 1.396 (6)
C5—H5 0.9300 C32—H32 0.9300
C6—H6 0.9300 C33—C34 1.375 (7)
C7—C8 1.377 (7) C33—H33 0.9300
C7—C12 1.384 (6) C34—C35 1.367 (8)
C7—H7 0.9300 C34—H34 0.9300
C8—C9 1.370 (8) C35—C36 1.375 (7)
C8—H8 0.9300 C35—H35 0.9300
C9—C10 1.367 (8) C36—H36 0.9300
C9—H9 0.9300 C37—C38 1.399 (8)
C10—C11 1.381 (7) C37—H37 0.9300
C10—H10 0.9300 C38—C39 1.360 (9)
C11—C12 1.385 (6) C38—H38 0.9300
C11—H11 0.9300 C39—C40 1.373 (8)
C13—C18 1.377 (6) C39—H39 0.9300
C13—C14 1.388 (6) C40—C41 1.378 (6)
C14—C15 1.391 (7) C40—H40 0.9300
C14—H14 0.9300 C41—C42 1.452 (6)
C15—C16 1.364 (9)
N2—Cu—N1 78.18 (14) C17—C16—H16 119.6
N2—Cu—P2 112.66 (11) C15—C16—H16 119.6
N1—Cu—P2 110.72 (10) C16—C17—C18 120.0 (6)
N2—Cu—P1 103.38 (11) C16—C17—H17 120.0
N1—Cu—P1 114.14 (11) C18—C17—H17 120.0
P2—Cu—P1 126.75 (5) C13—C18—C17 120.9 (6)
C13—P1—C2 105.0 (2) C13—C18—H18 119.5
C13—P1—C12 103.4 (2) C17—C18—H18 119.5
C2—P1—C12 102.91 (19) C24—C19—C20 117.5 (4)
C13—P1—Cu 119.03 (15) C24—C19—P2 123.5 (3)
C2—P1—Cu 112.17 (15) C20—C19—P2 119.0 (3)
C12—P1—Cu 112.77 (15) C21—C20—C19 121.3 (5)
C19—P2—C31 104.20 (18) C21—C20—H20 119.4
C19—P2—C25 102.9 (2) C19—C20—H20 119.4
C31—P2—C25 103.88 (18) C22—C21—C20 119.9 (5)
C19—P2—Cu 116.03 (13) C22—C21—H21 120.1
C31—P2—Cu 114.80 (14) C20—C21—H21 120.1
C25—P2—Cu 113.54 (14) C23—C22—C21 120.0 (5)
C37—N1—C41 117.5 (4) C23—C22—H22 120.0
C37—N1—Cu 129.1 (3) C21—C22—H22 120.0
C41—N1—Cu 113.3 (3) C22—C23—C24 120.1 (5)
C42—N2—N3 107.1 (4) C22—C23—H23 120.0
C42—N2—Cu 112.5 (3) C24—C23—H23 120.0
N3—N2—Cu 140.3 (3) C19—C24—C23 121.3 (5)
N4—N3—N2 110.0 (4) C19—C24—H24 119.3
N3—N4—N5 106.4 (4) C23—C24—H24 119.3
C42—N5—N4 109.5 (4) C30—C25—C26 118.5 (4)
C42—N5—H55 125.3 C30—C25—P2 123.3 (3)
N4—N5—H55 125.3 C26—C25—P2 118.1 (3)
F1—B1—F3 113.6 (9) C27—C26—C25 120.6 (5)
F1—B1—F4 108.3 (5) C27—C26—H26 119.7
F3—B1—F4 109.1 (7) C25—C26—H26 119.7
F1—B1—F2 109.4 (8) C28—C27—C26 119.7 (5)
F3—B1—F2 106.8 (5) C28—C27—H27 120.2
F4—B1—F2 109.5 (8) C26—C27—H27 120.2
C2—C1—C6 120.7 (5) C29—C28—C27 120.2 (5)
C2—C1—H1 119.7 C29—C28—H28 119.9
C6—C1—H1 119.7 C27—C28—H28 119.9
C1—C2—C3 118.3 (4) C28—C29—C30 120.5 (5)
C1—C2—P1 117.8 (3) C28—C29—H29 119.7
C3—C2—P1 123.8 (4) C30—C29—H29 119.7
C4—C3—C2 120.3 (5) C25—C30—C29 120.4 (5)
C4—C3—H3 119.9 C25—C30—H30 119.8
C2—C3—H3 119.9 C29—C30—H30 119.8
C5—C4—C3 120.4 (5) C32—C31—C36 118.0 (4)
C5—C4—H4 119.8 C32—C31—P2 123.6 (3)
C3—C4—H4 119.8 C36—C31—P2 118.4 (3)
C4—C5—C6 120.0 (5) C31—C32—C33 120.3 (5)
C4—C5—H5 120.0 C31—C32—H32 119.9
C6—C5—H5 120.0 C33—C32—H32 119.9
C5—C6—C1 120.3 (6) C34—C33—C32 120.1 (5)
C5—C6—H6 119.9 C34—C33—H33 120.0
C1—C6—H6 119.9 C32—C33—H33 120.0
C8—C7—C12 120.2 (5) C35—C34—C33 120.1 (5)
C8—C7—H7 119.9 C35—C34—H34 119.9
C12—C7—H7 119.9 C33—C34—H34 119.9
C9—C8—C7 120.4 (5) C34—C35—C36 120.0 (5)
C9—C8—H8 119.8 C34—C35—H35 120.0
C7—C8—H8 119.8 C36—C35—H35 120.0
C10—C9—C8 119.8 (5) C35—C36—C31 121.4 (5)
C10—C9—H9 120.1 C35—C36—H36 119.3
C8—C9—H9 120.1 C31—C36—H36 119.3
C9—C10—C11 120.4 (5) N1—C37—C38 122.5 (5)
C9—C10—H10 119.8 N1—C37—H37 118.7
C11—C10—H10 119.8 C38—C37—H37 118.7
C10—C11—C12 120.1 (5) C39—C38—C37 119.1 (6)
C10—C11—H11 120.0 C39—C38—H38 120.5
C12—C11—H11 120.0 C37—C38—H38 120.5
C7—C12—C11 118.9 (4) C38—C39—C40 119.3 (6)
C7—C12—P1 118.1 (4) C38—C39—H39 120.3
C11—C12—P1 123.0 (3) C40—C39—H39 120.3
C18—C13—C14 118.1 (4) C39—C40—C41 118.8 (6)
C18—C13—P1 119.2 (4) C39—C40—H40 120.6
C14—C13—P1 122.6 (3) C41—C40—H40 120.6
C13—C14—C15 120.9 (5) N1—C41—C40 122.7 (5)
C13—C14—H14 119.5 N1—C41—C42 113.5 (4)
C15—C14—H14 119.5 C40—C41—C42 123.8 (5)
C16—C15—C14 119.3 (6) N2—C42—N5 107.1 (4)
C16—C15—H15 120.4 N2—C42—C41 122.5 (4)
C14—C15—H15 120.4 N5—C42—C41 130.3 (4)
C17—C16—C15 120.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H55···F4i 0.86 1.80 2.650 (7) 168

Symmetry code: (i) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5633).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950. [DOI] [PubMed]
  4. Jia, W., McCormick, T., Tao, Y., Liu, J. & Wang, S. (2005). Inorg. Chem. 44, 5706–5712. [DOI] [PubMed]
  5. Kuang, S., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313–3322. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tsuboyama, A., Kuge, K., Furugori, M., Okada, S., Hoshino, M. & Ueno, K. (2007). Inorg. Chem. 46, 1992–2001. [DOI] [PubMed]
  8. Zhang, Q.-S., Zhou, Q.-G., Cheng, Y., Wang, L.-X., Ma, D.-G., Jing, X.-B. & Wang, F.-S. (2004). Adv. Mater. 16, 432–436.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047605/xu5633sup1.cif

e-68-m1527-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047605/xu5633Isup2.hkl

e-68-m1527-Isup2.hkl (432.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES