Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):m1528. doi: 10.1107/S1600536812047678

Bis[4-(dimethyl­amino)­pyridinium] bis­[4-(dimethyl­amino)­pyridine-κN 1]tetra­kis­(thio­cyanato-κN)manganate(II)

Susanne Wöhlert a,*, Inke Jess a, Christian Näther a
PMCID: PMC3588772  PMID: 23468737

Abstract

In the crystal structure of the title compound, (C7H11N2)2[Mn(NCS)4(C7H10N2)2], the manganese(II) cations are coordinated by four N-bonded thio­cyanate anions and two N-bonded 4-(dimethyl­amino)­pyridine ligands into discrete complex dianions. For charge balance, two 4-(dimethylamino)pyridine counter cations are present, which do not coordinate to the metal cation. The asymmetric unit consists of one manganese(II) cation, four thio­cyanate anions and two 4-(dimethyl­amino)­pyridine ligands, as well as two protonated 4-(dimethyl­amino)­pyridinium cations. The discrete complex anions are connected to the non-coordinating pyridinium cations by weak N—H⋯S hydrogen-bonding inter­actions.

Related literature  

For general background, see: Boeckmann & Näther (2011, 2012).graphic file with name e-68-m1528-scheme1.jpg

Experimental  

Crystal data  

  • (C7H11N2)2[Mn(NCS)4(C7H10N2)2]

  • M r = 777.96

  • Triclinic, Inline graphic

  • a = 11.7307 (8) Å

  • b = 11.9010 (9) Å

  • c = 15.4224 (12) Å

  • α = 102.520 (9)°

  • β = 96.794 (9)°

  • γ = 107.400 (8)°

  • V = 1966.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 180 K

  • 0.18 × 0.11 × 0.05 mm

Data collection  

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.873, T max = 0.968

  • 24452 measured reflections

  • 9338 independent reflections

  • 6752 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.121

  • S = 1.02

  • 9338 reflections

  • 450 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: XCIF in SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047678/vm2182sup1.cif

e-68-m1528-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047678/vm2182Isup2.hkl

e-68-m1528-Isup2.hkl (456.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—N1 2.1928 (17)
Mn1—N2 2.2014 (19)
Mn1—N3 2.2468 (19)
Mn1—N4 2.2535 (18)
Mn1—N20 2.2561 (16)
Mn1—N10 2.2659 (16)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N30—H30⋯S4 0.88 2.36 3.217 (2) 165
N40—H40A⋯S3i 0.88 2.35 3.213 (3) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Comment

The structure determination was performed during a project on the synthesis, thermal and magnetic properties of coordination compounds based on transition metal thiocyanates and neutral N-donor co-ligands (Boeckmann & Näther, 2011 & 2012). In order to investigate the influence of the co-ligand, N,N'-dimethylaminopyridine was reacted with manganese(II) thiocyanate which resulted in the formation of crystals of the title compound that were identified by single-crystal X-ray diffraction.

In the crystal structure of the title compound each manganese(II) cation is coordinated by four N-bonded thiocyanato anions and two N-bonded dimethylaminopyridine ligands (Fig. 1). The MnN6 octahedra are slightly distorted with distances in the range of 2.1928 (19) Å to 2.2659 (16) Å (Table 1). The angles arround the manganese(II) cations are ranging from 87.73 (6)° to 92.86 (7) ° and 173.95 (6) ° to 178.78 (7) ° (Table 1). There are additional protonated dimethylaminopyridine ligands that does not coordinate to the metal cations, but which are linked to the complex cations by weak intermolecular N–H···S hydrogen bonding, which are ranging from 3.213 (3) Å (N40-H40A···S3[1 + x, 1 + y, 1 + z]) to 3.217 (2) Å (N30-H30···S4, see Fig. 2).

Experimental

MnSO4xH2O, Ba(NCS)2x3H2O and N,N'-dimethylaminopyridine were obtained from Sigma Aldrich. 0.15 mmol (26 mg) Mn(NCS)2 and 0.3 mmol (58.3 mg) dimethylaminopyridine were reacted with 1 mL ethanol in a snap cap vial. After three days yellow colored block-shaped single crystals of the title compound were obtained.

Refinement

All C-H and N-H H atoms were located in difference map but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C, N) (1.5 for the methyl H atoms) using a riding model with Caromatic = 0.95 Å, CmethylH = 0.98 Å and N—H = 0.88 Å.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound with view along the crystallographic b-axis. Intermolecular hydrogen bonding is shown as dashed lines.

Crystal data

(C7H11N2)2[Mn(NCS)4(C7H10N2)2] Z = 2
Mr = 777.96 F(000) = 814
Triclinic, P1 Dx = 1.314 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.7307 (8) Å Cell parameters from 24452 reflections
b = 11.9010 (9) Å θ = 2.6–28.0°
c = 15.4224 (12) Å µ = 0.59 mm1
α = 102.520 (9)° T = 180 K
β = 96.794 (9)° Block, yellow
γ = 107.400 (8)° 0.18 × 0.11 × 0.05 mm
V = 1966.6 (3) Å3

Data collection

Stoe IPDS-1 diffractometer 9338 independent reflections
Radiation source: fine-focus sealed tube 6752 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
phi scan θmax = 28.0°, θmin = 2.6°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −15→15
Tmin = 0.873, Tmax = 0.968 k = −15→15
24452 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.0822P] where P = (Fo2 + 2Fc2)/3
9338 reflections (Δ/σ)max = 0.001
450 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.68016 (2) 0.43208 (2) 0.733534 (19) 0.03223 (9)
N1 0.58727 (17) 0.35462 (17) 0.83317 (13) 0.0465 (4)
C1 0.5433 (2) 0.29723 (19) 0.87948 (16) 0.0449 (5)
S1 0.48122 (9) 0.21875 (8) 0.94635 (7) 0.0889 (3)
N2 0.81931 (17) 0.57958 (16) 0.84005 (13) 0.0479 (4)
C2 0.90686 (19) 0.65777 (17) 0.87884 (14) 0.0387 (4)
S2 1.03117 (6) 0.76864 (5) 0.93376 (6) 0.0679 (2)
N3 0.54216 (18) 0.28333 (16) 0.62122 (14) 0.0516 (5)
C3 0.45842 (18) 0.19649 (17) 0.59757 (13) 0.0363 (4)
S3 0.33917 (6) 0.07240 (6) 0.56332 (5) 0.0677 (2)
N4 0.77439 (18) 0.50766 (18) 0.62913 (14) 0.0507 (5)
C4 0.84494 (19) 0.58781 (17) 0.61404 (13) 0.0364 (4)
S4 0.94638 (7) 0.70095 (6) 0.59289 (5) 0.0673 (2)
N10 0.79695 (14) 0.31067 (13) 0.72983 (11) 0.0344 (3)
C10 0.81667 (19) 0.25345 (17) 0.65092 (14) 0.0392 (4)
H10 0.7793 0.2649 0.5969 0.047*
C11 0.8868 (2) 0.17989 (17) 0.64293 (15) 0.0429 (5)
H11 0.8969 0.1422 0.5847 0.052*
C12 0.94409 (18) 0.15981 (16) 0.72082 (16) 0.0416 (5)
C13 0.92381 (19) 0.21962 (18) 0.80340 (15) 0.0418 (5)
H13 0.9598 0.2103 0.8587 0.050*
C14 0.85175 (18) 0.29156 (17) 0.80394 (14) 0.0379 (4)
H14 0.8398 0.3307 0.8610 0.045*
N11 1.01300 (19) 0.08574 (18) 0.71490 (18) 0.0611 (6)
C15 1.0336 (3) 0.0294 (2) 0.6272 (3) 0.0813 (10)
H15A 0.9558 −0.0266 0.5891 0.122*
H15B 1.0894 −0.0161 0.6356 0.122*
H15C 1.0694 0.0930 0.5977 0.122*
C16 1.0718 (3) 0.0642 (3) 0.7951 (3) 0.0855 (11)
H16A 1.1449 0.1348 0.8250 0.128*
H16B 1.0949 −0.0089 0.7775 0.128*
H16C 1.0153 0.0522 0.8369 0.128*
N20 0.56112 (15) 0.54793 (14) 0.72115 (11) 0.0345 (3)
C20 0.51483 (18) 0.55514 (17) 0.63922 (13) 0.0369 (4)
H20 0.5362 0.5118 0.5879 0.044*
C21 0.43956 (19) 0.61995 (17) 0.62432 (13) 0.0365 (4)
H21 0.4107 0.6209 0.5644 0.044*
C22 0.40472 (17) 0.68564 (16) 0.69838 (13) 0.0346 (4)
C23 0.45337 (18) 0.67870 (16) 0.78447 (13) 0.0359 (4)
H23 0.4343 0.7210 0.8374 0.043*
C24 0.52809 (17) 0.61082 (16) 0.79141 (13) 0.0348 (4)
H24 0.5590 0.6079 0.8504 0.042*
N21 0.32914 (17) 0.74991 (16) 0.68615 (13) 0.0444 (4)
C25 0.2838 (2) 0.7546 (2) 0.59538 (18) 0.0538 (6)
H25A 0.3527 0.7902 0.5682 0.081*
H25B 0.2312 0.8051 0.5989 0.081*
H25C 0.2371 0.6718 0.5580 0.081*
C26 0.2942 (2) 0.8181 (2) 0.76234 (19) 0.0584 (6)
H26A 0.2535 0.7623 0.7962 0.088*
H26B 0.2384 0.8571 0.7401 0.088*
H26C 0.3670 0.8808 0.8022 0.088*
N30 0.84902 (18) 0.59839 (17) 0.37737 (13) 0.0502 (5)
H30 0.8663 0.6130 0.4367 0.060*
C30 0.9012 (2) 0.5296 (2) 0.32567 (17) 0.0483 (5)
H30A 0.9558 0.4972 0.3539 0.058*
C31 0.87713 (18) 0.50555 (17) 0.23413 (15) 0.0392 (4)
H31 0.9138 0.4557 0.1987 0.047*
C32 0.79728 (17) 0.55486 (15) 0.19124 (13) 0.0333 (4)
C33 0.74295 (19) 0.62532 (17) 0.24890 (15) 0.0405 (4)
H33 0.6869 0.6585 0.2236 0.049*
C34 0.7712 (2) 0.64492 (19) 0.33973 (16) 0.0474 (5)
H34 0.7351 0.6927 0.3776 0.057*
N31 0.77449 (17) 0.53660 (16) 0.10194 (12) 0.0436 (4)
C35 0.8320 (3) 0.4662 (2) 0.04314 (17) 0.0598 (6)
H35A 0.8009 0.3803 0.0438 0.090*
H35B 0.9205 0.4984 0.0650 0.090*
H35C 0.8133 0.4727 −0.0188 0.090*
C36 0.6889 (3) 0.5836 (2) 0.05802 (17) 0.0583 (6)
H36A 0.7067 0.6697 0.0892 0.087*
H36B 0.6056 0.5366 0.0606 0.087*
H36C 0.6966 0.5761 −0.0054 0.087*
N40 1.3442 (2) 1.0729 (2) 1.35554 (18) 0.0741 (7)
H40A 1.3569 1.0786 1.4140 0.089*
C40 1.3919 (2) 1.0029 (2) 1.3001 (2) 0.0652 (8)
H40 1.4394 0.9611 1.3249 0.078*
C41 1.37352 (19) 0.99125 (19) 1.21042 (19) 0.0495 (6)
H41 1.4083 0.9419 1.1726 0.059*
C42 1.30213 (17) 1.05255 (16) 1.17213 (17) 0.0414 (5)
C43 1.2558 (2) 1.12694 (19) 1.23391 (19) 0.0509 (6)
H43 1.2093 1.1717 1.2120 0.061*
C44 1.2772 (3) 1.1342 (2) 1.3222 (2) 0.0644 (7)
H44 1.2448 1.1834 1.3624 0.077*
N41 1.28055 (16) 1.04136 (15) 1.08378 (14) 0.0445 (4)
C45 1.3279 (2) 0.9643 (2) 1.02188 (19) 0.0555 (6)
H45A 1.4171 0.9935 1.0382 0.083*
H45B 1.3027 0.9675 0.9598 0.083*
H45C 1.2959 0.8799 1.0259 0.083*
C46 1.2060 (2) 1.1027 (2) 1.0441 (2) 0.0581 (6)
H46A 1.1233 1.0732 1.0556 0.087*
H46B 1.2030 1.0853 0.9786 0.087*
H46C 1.2416 1.1911 1.0714 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02959 (15) 0.02651 (13) 0.03901 (16) 0.00659 (10) 0.00554 (11) 0.01014 (11)
N1 0.0466 (10) 0.0481 (10) 0.0521 (11) 0.0159 (8) 0.0183 (9) 0.0232 (8)
C1 0.0484 (12) 0.0459 (11) 0.0602 (13) 0.0322 (10) 0.0241 (11) 0.0243 (10)
S1 0.1152 (7) 0.0995 (6) 0.1337 (7) 0.0841 (6) 0.0926 (6) 0.0925 (6)
N2 0.0442 (10) 0.0363 (9) 0.0529 (11) 0.0093 (8) −0.0018 (9) 0.0028 (8)
C2 0.0388 (11) 0.0325 (9) 0.0478 (11) 0.0203 (8) 0.0054 (9) 0.0069 (8)
S2 0.0375 (3) 0.0424 (3) 0.1037 (6) 0.0146 (2) −0.0138 (3) −0.0082 (3)
N3 0.0442 (10) 0.0387 (9) 0.0582 (12) 0.0076 (8) −0.0057 (9) 0.0025 (8)
C3 0.0367 (10) 0.0362 (9) 0.0368 (10) 0.0177 (8) 0.0022 (8) 0.0065 (8)
S3 0.0525 (4) 0.0541 (3) 0.0742 (4) −0.0096 (3) 0.0026 (3) 0.0156 (3)
N4 0.0523 (11) 0.0505 (10) 0.0601 (12) 0.0184 (9) 0.0235 (10) 0.0282 (9)
C4 0.0417 (11) 0.0404 (10) 0.0347 (10) 0.0215 (8) 0.0103 (8) 0.0131 (8)
S4 0.0672 (4) 0.0586 (4) 0.0569 (4) −0.0107 (3) 0.0068 (3) 0.0244 (3)
N10 0.0323 (8) 0.0317 (7) 0.0374 (8) 0.0098 (6) 0.0050 (7) 0.0079 (6)
C10 0.0426 (11) 0.0352 (9) 0.0369 (10) 0.0114 (8) 0.0050 (8) 0.0077 (8)
C11 0.0421 (11) 0.0331 (9) 0.0491 (12) 0.0098 (8) 0.0129 (9) 0.0036 (8)
C12 0.0291 (10) 0.0269 (8) 0.0661 (14) 0.0057 (7) 0.0088 (9) 0.0121 (9)
C13 0.0361 (11) 0.0368 (9) 0.0487 (12) 0.0086 (8) 0.0000 (9) 0.0135 (9)
C14 0.0369 (10) 0.0353 (9) 0.0369 (10) 0.0088 (8) 0.0042 (8) 0.0069 (8)
N11 0.0457 (11) 0.0421 (10) 0.1033 (18) 0.0220 (9) 0.0201 (12) 0.0215 (11)
C15 0.0727 (19) 0.0453 (13) 0.139 (3) 0.0292 (13) 0.054 (2) 0.0190 (16)
C16 0.0543 (17) 0.0700 (18) 0.142 (3) 0.0330 (14) 0.0018 (18) 0.041 (2)
N20 0.0338 (8) 0.0320 (7) 0.0382 (8) 0.0111 (6) 0.0060 (7) 0.0107 (6)
C20 0.0408 (11) 0.0368 (9) 0.0343 (9) 0.0159 (8) 0.0083 (8) 0.0070 (7)
C21 0.0402 (11) 0.0379 (9) 0.0340 (9) 0.0160 (8) 0.0068 (8) 0.0109 (8)
C22 0.0323 (10) 0.0278 (8) 0.0435 (10) 0.0082 (7) 0.0100 (8) 0.0103 (7)
C23 0.0382 (10) 0.0307 (8) 0.0371 (10) 0.0084 (7) 0.0127 (8) 0.0071 (7)
C24 0.0349 (10) 0.0330 (9) 0.0333 (9) 0.0064 (7) 0.0053 (8) 0.0103 (7)
N21 0.0481 (10) 0.0421 (9) 0.0509 (10) 0.0260 (8) 0.0120 (8) 0.0115 (8)
C25 0.0541 (14) 0.0552 (13) 0.0665 (15) 0.0310 (11) 0.0122 (12) 0.0274 (12)
C26 0.0582 (15) 0.0530 (13) 0.0718 (17) 0.0335 (12) 0.0189 (13) 0.0078 (12)
N30 0.0524 (11) 0.0491 (10) 0.0413 (10) 0.0029 (9) 0.0119 (9) 0.0147 (8)
C30 0.0394 (11) 0.0479 (11) 0.0606 (14) 0.0107 (9) 0.0073 (10) 0.0273 (11)
C31 0.0345 (10) 0.0361 (9) 0.0534 (12) 0.0169 (8) 0.0105 (9) 0.0169 (8)
C32 0.0302 (9) 0.0258 (8) 0.0453 (11) 0.0112 (7) 0.0079 (8) 0.0096 (7)
C33 0.0387 (11) 0.0315 (9) 0.0534 (12) 0.0157 (8) 0.0130 (9) 0.0080 (8)
C34 0.0473 (12) 0.0365 (10) 0.0551 (13) 0.0085 (9) 0.0217 (10) 0.0071 (9)
N31 0.0505 (11) 0.0422 (9) 0.0446 (10) 0.0286 (8) 0.0063 (8) 0.0079 (7)
C35 0.0777 (18) 0.0674 (15) 0.0462 (13) 0.0473 (14) 0.0131 (12) 0.0064 (11)
C36 0.0701 (17) 0.0613 (14) 0.0520 (13) 0.0410 (13) −0.0021 (12) 0.0130 (11)
N40 0.0617 (15) 0.0691 (15) 0.0688 (15) −0.0134 (12) 0.0079 (12) 0.0243 (13)
C40 0.0426 (13) 0.0569 (15) 0.090 (2) 0.0009 (11) −0.0024 (13) 0.0387 (15)
C41 0.0324 (11) 0.0368 (10) 0.0816 (17) 0.0105 (8) 0.0084 (11) 0.0233 (11)
C42 0.0263 (9) 0.0272 (8) 0.0725 (15) 0.0081 (7) 0.0120 (9) 0.0171 (9)
C43 0.0392 (12) 0.0380 (10) 0.0768 (17) 0.0117 (9) 0.0205 (11) 0.0146 (10)
C44 0.0524 (15) 0.0523 (14) 0.0772 (19) 0.0009 (11) 0.0238 (14) 0.0119 (13)
N41 0.0376 (9) 0.0363 (8) 0.0659 (12) 0.0194 (7) 0.0112 (9) 0.0161 (8)
C45 0.0474 (13) 0.0452 (12) 0.0766 (17) 0.0202 (10) 0.0191 (12) 0.0115 (11)
C46 0.0525 (14) 0.0541 (13) 0.0782 (17) 0.0295 (11) 0.0067 (13) 0.0257 (12)

Geometric parameters (Å, º)

Mn1—N1 2.1928 (17) C25—H25A 0.9800
Mn1—N2 2.2014 (19) C25—H25B 0.9800
Mn1—N3 2.2468 (19) C25—H25C 0.9800
Mn1—N4 2.2535 (18) C26—H26A 0.9800
Mn1—N20 2.2561 (16) C26—H26B 0.9800
Mn1—N10 2.2659 (16) C26—H26C 0.9800
N1—C1 1.153 (3) N30—C34 1.339 (3)
C1—S1 1.629 (2) N30—C30 1.346 (3)
N2—C2 1.149 (3) N30—H30 0.8800
C2—S2 1.630 (2) C30—C31 1.355 (3)
N3—C3 1.145 (3) C30—H30A 0.9500
C3—S3 1.633 (2) C31—C32 1.418 (3)
N4—C4 1.148 (3) C31—H31 0.9500
C4—S4 1.631 (2) C32—N31 1.328 (3)
N10—C14 1.341 (2) C32—C33 1.425 (3)
N10—C10 1.342 (3) C33—C34 1.352 (3)
C10—C11 1.366 (3) C33—H33 0.9500
C10—H10 0.9500 C34—H34 0.9500
C11—C12 1.408 (3) N31—C36 1.456 (3)
C11—H11 0.9500 N31—C35 1.461 (3)
C12—N11 1.359 (3) C35—H35A 0.9800
C12—C13 1.402 (3) C35—H35B 0.9800
C13—C14 1.371 (3) C35—H35C 0.9800
C13—H13 0.9500 C36—H36A 0.9800
C14—H14 0.9500 C36—H36B 0.9800
N11—C16 1.454 (4) C36—H36C 0.9800
N11—C15 1.456 (4) N40—C40 1.349 (4)
C15—H15A 0.9800 N40—C44 1.350 (4)
C15—H15B 0.9800 N40—H40A 0.8800
C15—H15C 0.9800 C40—C41 1.345 (4)
C16—H16A 0.9800 C40—H40 0.9500
C16—H16B 0.9800 C41—C42 1.420 (3)
C16—H16C 0.9800 C41—H41 0.9500
N20—C24 1.344 (3) C42—N41 1.326 (3)
N20—C20 1.346 (2) C42—C43 1.425 (3)
C20—C21 1.365 (3) C43—C44 1.335 (4)
C20—H20 0.9500 C43—H43 0.9500
C21—C22 1.413 (3) C44—H44 0.9500
C21—H21 0.9500 N41—C45 1.453 (3)
C22—N21 1.355 (2) N41—C46 1.457 (3)
C22—C23 1.411 (3) C45—H45A 0.9800
C23—C24 1.368 (3) C45—H45B 0.9800
C23—H23 0.9500 C45—H45C 0.9800
C24—H24 0.9500 C46—H46A 0.9800
N21—C26 1.452 (3) C46—H46B 0.9800
N21—C25 1.457 (3) C46—H46C 0.9800
N1—Mn1—N2 92.28 (7) N21—C25—H25B 109.5
N1—Mn1—N3 89.70 (8) H25A—C25—H25B 109.5
N2—Mn1—N3 177.98 (7) N21—C25—H25C 109.5
N1—Mn1—N4 178.78 (7) H25A—C25—H25C 109.5
N2—Mn1—N4 88.76 (8) H25B—C25—H25C 109.5
N3—Mn1—N4 89.26 (8) N21—C26—H26A 109.5
N1—Mn1—N20 92.86 (6) N21—C26—H26B 109.5
N2—Mn1—N20 92.57 (7) H26A—C26—H26B 109.5
N3—Mn1—N20 87.73 (7) N21—C26—H26C 109.5
N4—Mn1—N20 87.73 (6) H26A—C26—H26C 109.5
N1—Mn1—N10 91.48 (6) H26B—C26—H26C 109.5
N2—Mn1—N10 91.46 (7) C34—N30—C30 120.9 (2)
N3—Mn1—N10 88.08 (7) C34—N30—H30 119.6
N4—Mn1—N10 87.86 (6) C30—N30—H30 119.6
N20—Mn1—N10 173.95 (6) N30—C30—C31 121.2 (2)
C1—N1—Mn1 168.73 (18) N30—C30—H30A 119.4
N1—C1—S1 178.8 (2) C31—C30—H30A 119.4
C2—N2—Mn1 163.48 (19) C30—C31—C32 120.0 (2)
N2—C2—S2 179.9 (3) C30—C31—H31 120.0
C3—N3—Mn1 150.20 (18) C32—C31—H31 120.0
N3—C3—S3 179.7 (2) N31—C32—C31 121.73 (18)
C4—N4—Mn1 147.24 (19) N31—C32—C33 121.70 (18)
N4—C4—S4 179.3 (2) C31—C32—C33 116.57 (19)
C14—N10—C10 115.37 (17) C34—C33—C32 120.0 (2)
C14—N10—Mn1 123.78 (13) C34—C33—H33 120.0
C10—N10—Mn1 120.85 (13) C32—C33—H33 120.0
N10—C10—C11 124.47 (19) N30—C34—C33 121.4 (2)
N10—C10—H10 117.8 N30—C34—H34 119.3
C11—C10—H10 117.8 C33—C34—H34 119.3
C10—C11—C12 120.1 (2) C32—N31—C36 121.46 (18)
C10—C11—H11 120.0 C32—N31—C35 121.58 (17)
C12—C11—H11 120.0 C36—N31—C35 116.95 (19)
N11—C12—C13 123.0 (2) N31—C35—H35A 109.5
N11—C12—C11 121.4 (2) N31—C35—H35B 109.5
C13—C12—C11 115.61 (18) H35A—C35—H35B 109.5
C14—C13—C12 119.70 (19) N31—C35—H35C 109.5
C14—C13—H13 120.2 H35A—C35—H35C 109.5
C12—C13—H13 120.2 H35B—C35—H35C 109.5
N10—C14—C13 124.79 (19) N31—C36—H36A 109.5
N10—C14—H14 117.6 N31—C36—H36B 109.5
C13—C14—H14 117.6 H36A—C36—H36B 109.5
C12—N11—C16 121.6 (3) N31—C36—H36C 109.5
C12—N11—C15 120.2 (2) H36A—C36—H36C 109.5
C16—N11—C15 118.2 (2) H36B—C36—H36C 109.5
N11—C15—H15A 109.5 C40—N40—C44 120.7 (3)
N11—C15—H15B 109.5 C40—N40—H40A 119.7
H15A—C15—H15B 109.5 C44—N40—H40A 119.7
N11—C15—H15C 109.5 C41—C40—N40 121.3 (3)
H15A—C15—H15C 109.5 C41—C40—H40 119.4
H15B—C15—H15C 109.5 N40—C40—H40 119.4
N11—C16—H16A 109.5 C40—C41—C42 120.1 (2)
N11—C16—H16B 109.5 C40—C41—H41 120.0
H16A—C16—H16B 109.5 C42—C41—H41 120.0
N11—C16—H16C 109.5 N41—C42—C41 121.6 (2)
H16A—C16—H16C 109.5 N41—C42—C43 122.07 (19)
H16B—C16—H16C 109.5 C41—C42—C43 116.3 (2)
C24—N20—C20 115.08 (16) C44—C43—C42 120.5 (2)
C24—N20—Mn1 124.47 (13) C44—C43—H43 119.7
C20—N20—Mn1 120.43 (13) C42—C43—H43 119.7
N20—C20—C21 124.96 (18) C43—C44—N40 121.1 (3)
N20—C20—H20 117.5 C43—C44—H44 119.4
C21—C20—H20 117.5 N40—C44—H44 119.4
C20—C21—C22 119.79 (18) C42—N41—C45 121.17 (18)
C20—C21—H21 120.1 C42—N41—C46 121.77 (19)
C22—C21—H21 120.1 C45—N41—C46 117.0 (2)
N21—C22—C23 123.08 (18) N41—C45—H45A 109.5
N21—C22—C21 121.45 (18) N41—C45—H45B 109.5
C23—C22—C21 115.47 (17) H45A—C45—H45B 109.5
C24—C23—C22 119.75 (18) N41—C45—H45C 109.5
C24—C23—H23 120.1 H45A—C45—H45C 109.5
C22—C23—H23 120.1 H45B—C45—H45C 109.5
N20—C24—C23 124.95 (18) N41—C46—H46A 109.5
N20—C24—H24 117.5 N41—C46—H46B 109.5
C23—C24—H24 117.5 H46A—C46—H46B 109.5
C22—N21—C26 121.37 (19) N41—C46—H46C 109.5
C22—N21—C25 120.15 (18) H46A—C46—H46C 109.5
C26—N21—C25 118.46 (18) H46B—C46—H46C 109.5
N21—C25—H25A 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N30—H30···S4 0.88 2.36 3.217 (2) 165
N40—H40A···S3i 0.88 2.35 3.213 (3) 166

Symmetry code: (i) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2182).

References

  1. Boeckmann, J. & Näther, C. (2011). Dalton Trans. 39, 11019–11026. [DOI] [PubMed]
  2. Boeckmann, J. & Näther, C. (2012). Polyhedron, 31 587–595.
  3. Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047678/vm2182sup1.cif

e-68-m1528-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047678/vm2182Isup2.hkl

e-68-m1528-Isup2.hkl (456.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES