Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 30;68(Pt 12):m1563–m1564. doi: 10.1107/S1600536812048556

trans-Di-μ-chlorido-bis­{chlorido[tris­(3,5-dimethyl­phen­yl)phosphane-κP]palla­dium(II)} dichloro­methane monosolvate

Wade L Davis a, Alfred Muller a,*
PMCID: PMC3588800  PMID: 23468765

Abstract

In the dimeric title compound, [Pd2Cl4{P(C8H9)3}2]·CH2Cl2, the metal complex molecule is situated about an inversion centre and is accompanied by a dichloro­methane solvent mol­ecule situated on a twofold rotation axis. The PdII atom has a slightly distorted square-planar coordination sphere. The effective cone angle for the tris­(3,5-dimethyl­phen­yl)phos­phane ligand was calculated to be 169°. In the crystal, the metal complex and solvent mol­ecules are linked via C—H⋯Cl inter­actions, generating chains along [10-2]. There are also C—H⋯π and weak π–π inter­actions present [centroid–centroid distance = 3.990 (2) Å, plane–plane distance = 3.6352 (15) Å and ring slippage = 1.644 Å], forming of a three-dimensional structure.

Related literature  

For background on catalysis of palladium compounds, see: Bedford et al. (2004). For the synthesis of the starting materials, see: Drew & Doyle (1990). For a description of the Cambridge Structural Database, see: Allen (2002). For background on cone angles, see: Tolman (1977); Otto (2001).graphic file with name e-68-m1563-scheme1.jpg

Experimental  

Crystal data  

  • [Pd2Cl4(C24H27P)2]·CH2Cl2

  • M r = 1132.38

  • Monoclinic, Inline graphic

  • a = 14.747 (2) Å

  • b = 9.1038 (13) Å

  • c = 21.376 (3) Å

  • β = 117.576 (8)°

  • V = 2543.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.19 × 0.16 × 0.13 mm

Data collection  

  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.816, T max = 0.868

  • 30952 measured reflections

  • 6349 independent reflections

  • 4776 reflections with I > 2σ(I)

  • R int = 0.071

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.098

  • S = 1.03

  • 6349 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812048556/su2534sup1.cif

e-68-m1563-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048556/su2534Isup2.hkl

e-68-m1563-Isup2.hkl (304.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C17–C19/C21/C22/C24 and C9–C11/C13/C14/C16, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯Cl2 0.99 2.82 3.733 (4) 154
C21—H21⋯Cl1i 0.95 2.85 3.693 (4) 148
C5—H5⋯Cg1ii 0.95 2.95 3.847 (5) 159
C15—H15ACg2iii 0.99 2.79 3.620 (5) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged. Mrs Z. Phasha is thanked for the data collection.

supplementary crystallographic information

Comment

Complexes involving palladium metal centres are among some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions, e.g. the Heck, Stille and Suzuki reactions (Bedford et al., 2004). [PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound is the product of the reaction of [PdCl2(COD)] with tris(3,5-dimethylphenyl)phosphane as ligand, which shows dimerization of the square-planar PdII monomer. The crystal structure reported on herein is, to the best of our knowledge, the first Pd complex containing this phosphane ligand.

In the title compound, Fig. 1, the dimeric PdII complex is situated about an inversion centre and crystallizes with a dichloromethane solvate molecule that is located on a 2-fold rotation axis. Each equivalent pair of terminal bonded ligands is in a mutually trans orientation, with only slight distortions in the P1—Pd1—Cl1 and Cl2—Pd1—Cl1 angles of 173.90 (3) and 173.20 (3)°, respectively. The distortion of the square-planar metal coordination is further exemplified by the displacement of the PdII metal centre by 0.1122 (4) Å from the plane formed by the coordinating atoms Cl2/P1/Cl1/Cl1i (symmetry code: (i) = -x+1, -y+1, -z+1; r.m.s. deviation of mean plane = 0.0085 Å).

To describe the steric demand of the phosphane ligand the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Pd—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 169°. A search of the Cambridge Structural Database (CSD, V5.33, last update Aug. 2012; Allen, 2002) gave only three hits for structures containing the tris(3,5-dimethylphenyl)phosphane moiety. Cone angle calculations for these structures gave values ranging from 160 to 180°, with the value obtained for the title compound (169°) fitting well in this range.

In the crystal, weak C—H···Cl interactions between the dichloromethane solvate and the dimeric metal complex generate chains along the [1 0 -2] direction (Fig. 2 and Table 1). Additionally, several C—H···π (Fig. 3 and Table 1) and π-π stacking interactions (centroid-to-centroid distance = 3.990 (2) Å, plane-to plane separation 3.6352 (15) Å, ring slippage = 1.644 Å) are observed (Fig. 4), leading to the formation of a three-dimensional structure.

Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Tris(3,5-dimethylphenyl)phosphane (12.1 mg, 0.035 mmol) was dissolved in CH2Cl2 (5 cm3). A solution of [Pd(COD)Cl2] (5.0 mg, 0.017 mmol) in CH2Cl2 (5 cm3) was added to the phosphane solution. The mixture was stirred for 2hr at room temperature, after which the solution was left to slowly evaporate. Dark red crystals of the title compound suitable for a single-crystal X-ray study were obtained. Spectroscopic data for the title compound are available in the archived CIF.

Refinement

The H atoms were placed in calculated positions and allowed to ride on their parent atoms: C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. Methyl torsion angles were refined from electron density. The deepest residual electron-density hole (-1.12 eÅ3) is located at 0.71 Å from Cl3 and the highest peak (0.9 eÅ3) 0.86 Å from Pd1.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title complex, showing the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code (i) = -x+1, -y+1, -z+1; H atoms have been omitted for clarity].

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound, showing the C—H···Cl interactions (red dashed lines) between the metal complex and the dichloromethane solvate. H atoms not involved in H-bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

A view of the crystal packing of the title compound, showing the C—H···π interactions (red dashed lines). H atoms not involved in H-bonding have been omitted for clarity.

Fig. 4.

Fig. 4.

A view of the crystal packing of the title compound, showing the π···π interactions (red dashed lines). H atoms have been omitted for clarity.

Crystal data

[Pd2Cl4(C24H27P)2]·CH2Cl2 F(000) = 1148
Mr = 1132.38 Dx = 1.478 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 4452 reflections
a = 14.747 (2) Å θ = 2.2–27.5°
b = 9.1038 (13) Å µ = 1.12 mm1
c = 21.376 (3) Å T = 100 K
β = 117.576 (8)° Cube, orange
V = 2543.8 (6) Å3 0.19 × 0.16 × 0.13 mm
Z = 2

Data collection

Bruker APEX DUO 4K-CCD diffractometer 6349 independent reflections
Radiation source: sealed tube 4776 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
Detector resolution: 8.4 pixels mm-1 θmax = 28.4°, θmin = 1.6°
φ and ω scans h = −19→19
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −12→12
Tmin = 0.816, Tmax = 0.868 l = −28→28
30952 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.7351P] where P = (Fo2 + 2Fc2)/3
6349 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.90 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Experimental. Spectroscopic data for the title compund: 31P NMR (CDCl3, 162.0 MHz): δ (p.p.m.) 33.54 (s, 1P). 1H NMR (CDCl3, 400 MHz): δ (p.p.m.) 2.34 (m, 36H), 7.11 (m, 4H), 7.34 (m, 4H), 7.36 (m, 2H) 7.66 (m, 6H), 7.32 (m, 4H).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1 0.627522 (18) 0.56103 (3) 0.537254 (13) 0.01368 (8)
Cl1 0.49039 (6) 0.53788 (9) 0.42440 (4) 0.01841 (17)
Cl2 0.74975 (6) 0.60182 (10) 0.65077 (4) 0.02141 (19)
P1 0.72374 (6) 0.67044 (10) 0.49592 (4) 0.01491 (18)
C1 0.8616 (2) 0.6459 (4) 0.53793 (17) 0.0175 (7)
C2 0.9098 (3) 0.5328 (4) 0.58601 (18) 0.0214 (7)
H2 0.8715 0.472 0.6012 0.026*
C3 1.0148 (3) 0.5092 (4) 0.6118 (2) 0.0258 (8)
C4 1.0691 (3) 0.3890 (5) 0.6654 (2) 0.0391 (11)
H4A 1.0903 0.311 0.6434 0.059*
H4B 1.0226 0.3482 0.682 0.059*
H4C 1.1295 0.43 0.7055 0.059*
C5 1.0682 (3) 0.6006 (4) 0.5881 (2) 0.0268 (9)
H5 1.1393 0.5843 0.6051 0.032*
C6 1.0219 (3) 0.7144 (4) 0.54062 (19) 0.0245 (8)
C7 1.0833 (3) 0.8123 (5) 0.5172 (2) 0.0371 (10)
H7A 1.1272 0.7517 0.5045 0.056*
H7B 1.1258 0.8788 0.5558 0.056*
H7C 1.0367 0.87 0.4761 0.056*
C8 0.9174 (2) 0.7360 (4) 0.51530 (18) 0.0202 (7)
H8 0.8837 0.8125 0.4824 0.024*
C9 0.6976 (2) 0.8629 (4) 0.49952 (18) 0.0174 (7)
C10 0.7633 (2) 0.9478 (4) 0.55679 (18) 0.0187 (7)
H10 0.8275 0.909 0.5899 0.022*
C11 0.7352 (3) 1.0906 (4) 0.56585 (19) 0.0224 (8)
C12 0.8050 (3) 1.1774 (4) 0.6300 (2) 0.0315 (9)
H12A 0.8125 1.1266 0.6725 0.047*
H12B 0.7758 1.2752 0.6277 0.047*
H12C 0.8722 1.1871 0.6315 0.047*
C13 0.6423 (3) 1.1449 (4) 0.5154 (2) 0.0234 (8)
H13 0.6236 1.2422 0.5207 0.028*
C14 0.5749 (3) 1.0627 (4) 0.45713 (19) 0.0228 (8)
C15 0.4734 (3) 1.1257 (4) 0.4041 (2) 0.0280 (8)
H15A 0.4296 1.1409 0.4267 0.042*
H15B 0.4401 1.0573 0.3645 0.042*
H15C 0.4848 1.2198 0.3866 0.042*
C16 0.6032 (3) 0.9208 (4) 0.45022 (19) 0.0199 (7)
H16 0.5582 0.862 0.4116 0.024*
C17 0.6861 (2) 0.6207 (4) 0.40528 (17) 0.0196 (7)
C18 0.6758 (3) 0.7236 (4) 0.35443 (18) 0.0244 (8)
H18 0.6843 0.8251 0.3661 0.029*
C19 0.6527 (3) 0.6785 (5) 0.28588 (19) 0.0305 (9)
C20 0.6411 (4) 0.7934 (6) 0.2318 (2) 0.0491 (13)
H20A 0.5764 0.8459 0.217 0.074*
H20B 0.6413 0.7457 0.1907 0.074*
H20C 0.6981 0.863 0.2525 0.074*
C21 0.6429 (3) 0.5291 (5) 0.2705 (2) 0.0338 (10)
H21 0.6283 0.4982 0.2243 0.041*
C22 0.6539 (3) 0.4227 (5) 0.3208 (2) 0.0286 (9)
C23 0.6476 (3) 0.2622 (5) 0.3036 (2) 0.0421 (11)
H23A 0.6304 0.2069 0.336 0.063*
H23B 0.7137 0.2285 0.3085 0.063*
H23C 0.5946 0.2462 0.2549 0.063*
C24 0.6751 (2) 0.4700 (4) 0.38800 (19) 0.0228 (8)
H24 0.6822 0.3997 0.4229 0.027*
Cl3 0.94842 (13) 0.9023 (2) 0.79374 (9) 0.0900 (6)
C25 1 0.7942 (9) 0.75 0.075 (3)
H25A 0.9457 0.7302 0.7153 0.09* 0.5
H25B 1.0543 0.7302 0.7847 0.09* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.01213 (12) 0.01374 (13) 0.01494 (13) 0.00036 (10) 0.00608 (9) −0.00087 (10)
Cl1 0.0153 (4) 0.0246 (4) 0.0149 (4) −0.0037 (3) 0.0066 (3) −0.0005 (3)
Cl2 0.0167 (4) 0.0287 (5) 0.0168 (4) −0.0024 (3) 0.0061 (3) −0.0026 (3)
P1 0.0136 (4) 0.0145 (4) 0.0174 (4) 0.0015 (3) 0.0077 (3) −0.0005 (3)
C1 0.0139 (15) 0.0186 (18) 0.0211 (17) 0.0003 (13) 0.0089 (14) −0.0036 (14)
C2 0.0171 (16) 0.0199 (19) 0.0270 (18) −0.0014 (13) 0.0101 (15) −0.0013 (15)
C3 0.0186 (17) 0.024 (2) 0.032 (2) 0.0030 (15) 0.0097 (16) −0.0002 (17)
C4 0.0206 (19) 0.042 (3) 0.049 (3) 0.0067 (18) 0.0111 (19) 0.010 (2)
C5 0.0147 (16) 0.029 (2) 0.037 (2) 0.0013 (14) 0.0121 (16) −0.0086 (17)
C6 0.0190 (17) 0.025 (2) 0.031 (2) −0.0029 (14) 0.0133 (16) −0.0064 (16)
C7 0.025 (2) 0.033 (2) 0.062 (3) −0.0014 (17) 0.027 (2) −0.001 (2)
C8 0.0187 (17) 0.0180 (18) 0.0257 (18) 0.0014 (13) 0.0119 (15) −0.0018 (15)
C9 0.0187 (16) 0.0142 (17) 0.0248 (17) 0.0012 (13) 0.0147 (14) 0.0018 (14)
C10 0.0170 (15) 0.0184 (17) 0.0245 (17) 0.0022 (14) 0.0129 (14) 0.0022 (15)
C11 0.0299 (19) 0.0149 (18) 0.0302 (19) −0.0010 (14) 0.0206 (17) −0.0012 (14)
C12 0.040 (2) 0.017 (2) 0.038 (2) −0.0007 (17) 0.0180 (19) −0.0064 (17)
C13 0.0294 (19) 0.0130 (17) 0.035 (2) 0.0037 (14) 0.0212 (17) 0.0038 (15)
C14 0.0248 (18) 0.0220 (18) 0.0297 (19) 0.0069 (15) 0.0194 (16) 0.0087 (16)
C15 0.029 (2) 0.022 (2) 0.034 (2) 0.0102 (16) 0.0150 (17) 0.0080 (17)
C16 0.0183 (16) 0.0172 (18) 0.0272 (18) 0.0019 (13) 0.0131 (15) 0.0026 (15)
C17 0.0122 (15) 0.028 (2) 0.0191 (17) 0.0012 (14) 0.0078 (14) −0.0027 (15)
C18 0.0187 (17) 0.033 (2) 0.0215 (18) 0.0006 (15) 0.0097 (15) 0.0018 (16)
C19 0.0182 (18) 0.054 (3) 0.0200 (18) 0.0020 (17) 0.0095 (15) 0.0014 (19)
C20 0.051 (3) 0.071 (4) 0.024 (2) 0.002 (3) 0.016 (2) 0.010 (2)
C21 0.0173 (18) 0.064 (3) 0.0196 (18) −0.0011 (18) 0.0084 (15) −0.012 (2)
C22 0.0131 (16) 0.045 (3) 0.0268 (19) 0.0006 (16) 0.0085 (15) −0.0130 (18)
C23 0.035 (2) 0.051 (3) 0.037 (2) −0.003 (2) 0.014 (2) −0.023 (2)
C24 0.0164 (16) 0.028 (2) 0.0242 (18) 0.0018 (14) 0.0098 (15) −0.0050 (15)
Cl3 0.0711 (11) 0.1022 (14) 0.0712 (10) −0.0143 (10) 0.0113 (9) 0.0306 (10)
C25 0.061 (5) 0.052 (5) 0.070 (5) 0 −0.006 (4) 0

Geometric parameters (Å, º)

Pd1—P1 2.2241 (9) C12—H12B 0.98
Pd1—Cl2 2.2859 (9) C12—H12C 0.98
Pd1—Cl1 2.3317 (9) C13—C14 1.399 (5)
Pd1—Cl1i 2.4138 (8) C13—H13 0.95
Cl1—Pd1i 2.4138 (8) C14—C16 1.387 (5)
P1—C9 1.803 (4) C14—C15 1.511 (5)
P1—C17 1.809 (3) C15—H15A 0.98
P1—C1 1.816 (3) C15—H15B 0.98
C1—C2 1.395 (5) C15—H15C 0.98
C1—C8 1.397 (5) C16—H16 0.95
C2—C3 1.398 (5) C17—C18 1.389 (5)
C2—H2 0.95 C17—C24 1.410 (5)
C3—C5 1.392 (5) C18—C19 1.404 (5)
C3—C4 1.519 (5) C18—H18 0.95
C4—H4A 0.98 C19—C21 1.391 (6)
C4—H4B 0.98 C19—C20 1.509 (6)
C4—H4C 0.98 C20—H20A 0.98
C5—C6 1.388 (5) C20—H20B 0.98
C5—H5 0.95 C20—H20C 0.98
C6—C8 1.391 (5) C21—C22 1.401 (6)
C6—C7 1.512 (5) C21—H21 0.95
C7—H7A 0.98 C22—C24 1.389 (5)
C7—H7B 0.98 C22—C23 1.500 (6)
C7—H7C 0.98 C23—H23A 0.98
C8—H8 0.95 C23—H23B 0.98
C9—C10 1.392 (5) C23—H23C 0.98
C9—C16 1.402 (5) C24—H24 0.95
C10—C11 1.405 (5) Cl3—C25 1.755 (5)
C10—H10 0.95 C25—Cl3ii 1.755 (5)
C11—C13 1.384 (5) C25—H25A 0.99
C11—C12 1.502 (5) C25—H25B 0.99
C12—H12A 0.98
P1—Pd1—Cl2 90.82 (3) C11—C12—H12C 109.5
P1—Pd1—Cl1 92.10 (3) H12A—C12—H12C 109.5
Cl2—Pd1—Cl1 173.20 (3) H12B—C12—H12C 109.5
P1—Pd1—Cl1i 173.90 (3) C11—C13—C14 122.8 (3)
Cl2—Pd1—Cl1i 92.18 (3) C11—C13—H13 118.6
Cl1—Pd1—Cl1i 84.35 (3) C14—C13—H13 118.6
Pd1—Cl1—Pd1i 95.65 (3) C16—C14—C13 117.9 (3)
C9—P1—C17 108.87 (16) C16—C14—C15 121.1 (3)
C9—P1—C1 108.11 (16) C13—C14—C15 121.0 (3)
C17—P1—C1 102.52 (15) C14—C15—H15A 109.5
C9—P1—Pd1 103.29 (11) C14—C15—H15B 109.5
C17—P1—Pd1 112.19 (12) H15A—C15—H15B 109.5
C1—P1—Pd1 121.50 (12) C14—C15—H15C 109.5
C2—C1—C8 120.5 (3) H15A—C15—H15C 109.5
C2—C1—P1 121.8 (3) H15B—C15—H15C 109.5
C8—C1—P1 117.4 (3) C14—C16—C9 120.9 (3)
C1—C2—C3 119.8 (3) C14—C16—H16 119.5
C1—C2—H2 120.1 C9—C16—H16 119.5
C3—C2—H2 120.1 C18—C17—C24 119.6 (3)
C5—C3—C2 118.3 (3) C18—C17—P1 122.5 (3)
C5—C3—C4 121.1 (3) C24—C17—P1 117.7 (3)
C2—C3—C4 120.6 (3) C17—C18—C19 120.3 (4)
C3—C4—H4A 109.5 C17—C18—H18 119.8
C3—C4—H4B 109.5 C19—C18—H18 119.8
H4A—C4—H4B 109.5 C21—C19—C18 118.8 (4)
C3—C4—H4C 109.5 C21—C19—C20 122.3 (4)
H4A—C4—H4C 109.5 C18—C19—C20 118.9 (4)
H4B—C4—H4C 109.5 C19—C20—H20A 109.5
C6—C5—C3 122.8 (3) C19—C20—H20B 109.5
C6—C5—H5 118.6 H20A—C20—H20B 109.5
C3—C5—H5 118.6 C19—C20—H20C 109.5
C5—C6—C8 118.1 (3) H20A—C20—H20C 109.5
C5—C6—C7 121.0 (3) H20B—C20—H20C 109.5
C8—C6—C7 120.9 (3) C19—C21—C22 122.1 (4)
C6—C7—H7A 109.5 C19—C21—H21 118.9
C6—C7—H7B 109.5 C22—C21—H21 118.9
H7A—C7—H7B 109.5 C24—C22—C21 118.1 (4)
C6—C7—H7C 109.5 C24—C22—C23 121.0 (4)
H7A—C7—H7C 109.5 C21—C22—C23 120.8 (4)
H7B—C7—H7C 109.5 C22—C23—H23A 109.5
C6—C8—C1 120.4 (3) C22—C23—H23B 109.5
C6—C8—H8 119.8 H23A—C23—H23B 109.5
C1—C8—H8 119.8 C22—C23—H23C 109.5
C10—C9—C16 119.8 (3) H23A—C23—H23C 109.5
C10—C9—P1 120.1 (3) H23B—C23—H23C 109.5
C16—C9—P1 119.4 (3) C22—C24—C17 121.0 (4)
C9—C10—C11 120.4 (3) C22—C24—H24 119.5
C9—C10—H10 119.8 C17—C24—H24 119.5
C11—C10—H10 119.8 Cl3—C25—Cl3ii 111.8 (5)
C13—C11—C10 118.2 (3) Cl3—C25—H25A 109.3
C13—C11—C12 122.4 (3) Cl3ii—C25—H25A 109.3
C10—C11—C12 119.5 (3) Cl3—C25—H25B 109.3
C11—C12—H12A 109.5 Cl3ii—C25—H25B 109.3
C11—C12—H12B 109.5 H25A—C25—H25B 107.9
H12A—C12—H12B 109.5
P1—Pd1—Cl1—Pd1i −175.03 (3) Pd1—P1—C9—C16 −73.6 (3)
Cl1i—Pd1—Cl1—Pd1i 0 C16—C9—C10—C11 0.6 (5)
Cl2—Pd1—P1—C9 −82.49 (12) P1—C9—C10—C11 −169.5 (3)
Cl1—Pd1—P1—C9 91.38 (12) C9—C10—C11—C13 −1.7 (5)
Cl2—Pd1—P1—C17 160.43 (13) C9—C10—C11—C12 177.0 (3)
Cl1—Pd1—P1—C17 −25.71 (13) C10—C11—C13—C14 1.4 (5)
Cl2—Pd1—P1—C1 38.80 (13) C12—C11—C13—C14 −177.2 (3)
Cl1—Pd1—P1—C1 −147.34 (13) C11—C13—C14—C16 0.0 (5)
C9—P1—C1—C2 134.7 (3) C11—C13—C14—C15 179.0 (3)
C17—P1—C1—C2 −110.4 (3) C13—C14—C16—C9 −1.2 (5)
Pd1—P1—C1—C2 15.8 (3) C15—C14—C16—C9 179.8 (3)
C9—P1—C1—C8 −51.4 (3) C10—C9—C16—C14 0.9 (5)
C17—P1—C1—C8 63.6 (3) P1—C9—C16—C14 171.1 (3)
Pd1—P1—C1—C8 −170.3 (2) C9—P1—C17—C18 21.2 (3)
C8—C1—C2—C3 0.0 (5) C1—P1—C17—C18 −93.2 (3)
P1—C1—C2—C3 173.7 (3) Pd1—P1—C17—C18 134.9 (3)
C1—C2—C3—C5 −0.1 (5) C9—P1—C17—C24 −163.9 (3)
C1—C2—C3—C4 178.6 (4) C1—P1—C17—C24 81.8 (3)
C2—C3—C5—C6 0.6 (6) Pd1—P1—C17—C24 −50.2 (3)
C4—C3—C5—C6 −178.1 (4) C24—C17—C18—C19 1.1 (5)
C3—C5—C6—C8 −0.8 (6) P1—C17—C18—C19 176.0 (3)
C3—C5—C6—C7 179.0 (4) C17—C18—C19—C21 −1.6 (5)
C5—C6—C8—C1 0.6 (5) C17—C18—C19—C20 179.5 (3)
C7—C6—C8—C1 −179.2 (3) C18—C19—C21—C22 1.0 (5)
C2—C1—C8—C6 −0.2 (5) C20—C19—C21—C22 179.9 (4)
P1—C1—C8—C6 −174.2 (3) C19—C21—C22—C24 0.1 (5)
C17—P1—C9—C10 −144.0 (3) C19—C21—C22—C23 −177.2 (3)
C1—P1—C9—C10 −33.4 (3) C21—C22—C24—C17 −0.5 (5)
Pd1—P1—C9—C10 96.6 (3) C23—C22—C24—C17 176.7 (3)
C17—P1—C9—C16 45.8 (3) C18—C17—C24—C22 −0.1 (5)
C1—P1—C9—C16 156.4 (3) P1—C17—C24—C22 −175.2 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C17-C19/C21/C22/C24 and C9-C11/C13/C14/C16, respectively.

D—H···A D—H H···A D···A D—H···A
C25—H25A···Cl2 0.99 2.82 3.733 (4) 154
C21—H21···Cl1iii 0.95 2.85 3.693 (4) 148
C5—H5···Cg1iv 0.95 2.95 3.847 (5) 159
C15—H15A···Cg2v 0.99 2.79 3.620 (5) 143

Symmetry codes: (iii) −x+1, y, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2534).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.
  4. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2008). SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812048556/su2534sup1.cif

e-68-m1563-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048556/su2534Isup2.hkl

e-68-m1563-Isup2.hkl (304.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES