Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 30;68(Pt 12):m1567. doi: 10.1107/S1600536812048143

Bis{2-[(phenyl­imino)­meth­yl]-1H-pyrrol-1-ido}palladium(II)

Wolfgang Imhof a,*
PMCID: PMC3588802  PMID: 23468767

Abstract

In the title complex, [Pd(C11H9N2)2], the PdII atom is located on an inversion centre and has a square-planar coordination geometry. The phenyl substituents at the imine N atoms make a dihedral angle of 75.0 (6)° with respect to the PdN4 plane.

Related literature  

For structure analyses of the free ligand N-[(1H-pyrrol-2-yl)methyl­ene]aniline, see: Gomes et al. (2010); Crestani et al. (2011). For the structure of a related nickel complex of the same imine ligand and an additional bipyridine ligand, see: Castro et al. (1992). For the structure of a related palladium complex with a different aromatic substituent, see: Liang et al. (2004).graphic file with name e-68-m1567-scheme1.jpg

Experimental  

Crystal data  

  • [Pd(C11H9N2)2]

  • M r = 444.80

  • Monoclinic, Inline graphic

  • a = 10.5634 (4) Å

  • b = 10.6480 (6) Å

  • c = 8.0560 (7) Å

  • β = 93.044 (2)°

  • V = 904.85 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 183 K

  • 0.60 × 0.10 × 0.02 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 3903 measured reflections

  • 2018 independent reflections

  • 1464 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.078

  • S = 1.00

  • 2018 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812048143/su2533sup1.cif

e-68-m1567-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048143/su2533Isup2.hkl

e-68-m1567-Isup2.hkl (99.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the course of a project related to the supramolecular structures of square planar nickel and palladium complexes of pyrrole-2-carbaldehyde based Schiff base ligands in comparison with the structures of the free ligands the molecular structure of the title compound was determined. The free ligands form inversion dimers via N—H···N hydrogen bonds between the pyrrole NH function and the imine nitrogen atom of a neighbouring molecule (Crestani et al., 2011; Gomes et al. 2010).

The molecular structure of the title compound is presented in Fig. 1. The central palladium atom is located on a crystallographic inversion center. The phenyl substituents at the imine nitrogen atoms show a dihedral angle of 75.0 (6)° with respect to the PdN4 plane. As is expected the bond lengths in the NCCN backbone of the ligand change upon coordination to palladium. The C4–N1 bond in the pyrrole subunit is slightly elongated to 1.389 (3) Å. In addition, C4–C5 bond is shortened to 1.400 (4) Å whereas the imine double bond C5–N2 is elongated to 1.310 (4) Å.

Experimental

N-((1H-Pyrrol-2-yl)methylene)aniline (170 mg, 1 mmol) and [Pd(PPh3)4] (580 mg, 0.5 mmol) were dissolved in 20 ml anhydrous toluene under an argon atmosphere. After the solution is stirred at room temperature for 2 h it was filtered through a short bed of celite. Afterwards the solution was concentrated to ca. 10 ml in vacuo. Yellow plate-like crystals of the title compound were obtained from this solution after 1 week at 253 K (Yield: 169 mg, 76%).

Refinement

Hydrogen atoms were included into calculated positions and treated as riding: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level (symmetry code: (i) = -x+1, -y+1, -z).

Crystal data

[Pd(C11H9N2)2] F(000) = 448
Mr = 444.80 Dx = 1.633 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3903 reflections
a = 10.5634 (4) Å θ = 2.7–27.5°
b = 10.6480 (6) Å µ = 1.04 mm1
c = 8.0560 (7) Å T = 183 K
β = 93.044 (2)° Plate, yellow
V = 904.85 (10) Å3 0.6 × 0.1 × 0.02 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
Graphite monochromator θmax = 27.5°, θmin = 2.7°
phi–scan, ω–scan h = −13→13
3903 measured reflections k = −13→13
2018 independent reflections l = 0→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2 + ] where P = (Fo2 + 2Fc2)/3
2018 reflections (Δ/σ)max < 0.001
124 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.75 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5000 0.5000 0.0000 0.02321 (12)
N1 0.6789 (2) 0.5646 (2) 0.0414 (3) 0.0262 (6)
C1 0.7967 (3) 0.5447 (3) −0.0074 (4) 0.0312 (7)
H1 0.8188 0.4863 −0.0902 0.037*
C2 0.8824 (3) 0.6229 (3) 0.0821 (4) 0.0315 (7)
H2 0.9714 0.6268 0.0707 0.038*
C3 0.8136 (3) 0.6933 (3) 0.1901 (4) 0.0321 (7)
H3 0.8457 0.7552 0.2662 0.038*
C4 0.6880 (3) 0.6555 (3) 0.1652 (3) 0.0285 (7)
C5 0.5768 (3) 0.6762 (3) 0.2483 (3) 0.0299 (7)
H5 0.5744 0.7365 0.3349 0.036*
N2 0.4762 (2) 0.6101 (2) 0.2034 (3) 0.0270 (6)
C6 0.3624 (3) 0.6222 (3) 0.2888 (3) 0.0280 (7)
C7 0.3223 (3) 0.5215 (3) 0.3841 (4) 0.0339 (8)
H7 0.3735 0.4486 0.3975 0.041*
C8 0.2079 (4) 0.5286 (3) 0.4586 (4) 0.0385 (8)
H8 0.1811 0.4606 0.5245 0.046*
C9 0.1314 (3) 0.6348 (3) 0.4379 (4) 0.0395 (8)
H9 0.0511 0.6382 0.4858 0.047*
C10 0.1739 (3) 0.7353 (3) 0.3466 (4) 0.0363 (8)
H10 0.1232 0.8088 0.3350 0.044*
C11 0.2885 (3) 0.7303 (3) 0.2724 (3) 0.0300 (7)
H11 0.3168 0.8000 0.2107 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02423 (19) 0.02118 (18) 0.02387 (18) −0.00028 (14) −0.00192 (12) −0.00276 (13)
N1 0.0275 (14) 0.0234 (14) 0.0274 (12) −0.0012 (11) −0.0018 (11) 0.0008 (10)
C1 0.0302 (18) 0.0304 (15) 0.0328 (16) 0.0010 (14) −0.0002 (14) 0.0008 (13)
C2 0.0240 (16) 0.0340 (17) 0.0361 (16) −0.0078 (14) −0.0021 (14) 0.0057 (13)
C3 0.0318 (18) 0.0316 (18) 0.0319 (16) −0.0076 (14) −0.0064 (14) −0.0004 (13)
C4 0.0356 (18) 0.0226 (15) 0.0268 (14) −0.0029 (13) −0.0027 (14) −0.0022 (12)
C5 0.0338 (18) 0.0272 (16) 0.0283 (15) −0.0008 (13) −0.0029 (14) −0.0042 (12)
N2 0.0290 (14) 0.0246 (13) 0.0271 (13) 0.0011 (11) −0.0009 (11) −0.0037 (10)
C6 0.0286 (16) 0.0311 (17) 0.0238 (14) −0.0030 (13) −0.0024 (13) −0.0076 (12)
C7 0.0372 (19) 0.035 (2) 0.0297 (16) 0.0033 (14) 0.0008 (14) 0.0003 (12)
C8 0.045 (2) 0.039 (2) 0.0308 (17) −0.0062 (15) 0.0028 (16) 0.0030 (13)
C9 0.0298 (18) 0.055 (2) 0.0340 (16) −0.0047 (16) 0.0056 (14) −0.0123 (15)
C10 0.0348 (19) 0.039 (2) 0.0351 (17) 0.0095 (15) −0.0014 (15) −0.0080 (14)
C11 0.0339 (18) 0.0276 (17) 0.0281 (15) 0.0026 (14) −0.0020 (14) −0.0035 (12)

Geometric parameters (Å, º)

Pd1—N1 2.022 (2) C5—H5 0.9500
Pd1—N1i 2.022 (2) N2—C6 1.422 (4)
Pd1—N2 2.041 (2) C6—C11 1.393 (4)
Pd1—N2i 2.041 (2) C6—C7 1.398 (4)
N1—C1 1.342 (4) C7—C8 1.379 (5)
N1—C4 1.389 (3) C7—H7 0.9500
C1—C2 1.401 (4) C8—C9 1.395 (5)
C1—H1 0.9500 C8—H8 0.9500
C2—C3 1.384 (4) C9—C10 1.387 (5)
C2—H2 0.9500 C9—H9 0.9500
C3—C4 1.391 (4) C10—C11 1.379 (4)
C3—H3 0.9500 C10—H10 0.9500
C4—C5 1.400 (4) C11—H11 0.9500
C5—N2 1.310 (4)
N1—Pd1—N1i 180.0 C4—C5—H5 120.9
N1—Pd1—N2 80.00 (9) C5—N2—C6 120.8 (2)
N1i—Pd1—N2 100.00 (9) C5—N2—Pd1 113.4 (2)
N1—Pd1—N2i 100.00 (9) C6—N2—Pd1 125.75 (18)
N1i—Pd1—N2i 80.00 (9) C11—C6—C7 120.1 (3)
N2—Pd1—N2i 180.0 C11—C6—N2 120.9 (3)
C1—N1—C4 106.9 (3) C7—C6—N2 119.0 (3)
C1—N1—Pd1 140.5 (2) C8—C7—C6 119.7 (3)
C4—N1—Pd1 112.6 (2) C8—C7—H7 120.1
N1—C1—C2 109.8 (3) C6—C7—H7 120.1
N1—C1—H1 125.1 C9—C8—C7 120.5 (3)
C2—C1—H1 125.1 C9—C8—H8 119.7
C3—C2—C1 107.4 (3) C7—C8—H8 119.7
C3—C2—H2 126.3 C10—C9—C8 119.1 (3)
C1—C2—H2 126.3 C10—C9—H9 120.4
C2—C3—C4 106.3 (3) C8—C9—H9 120.4
C2—C3—H3 126.8 C9—C10—C11 121.1 (3)
C4—C3—H3 126.8 C9—C10—H10 119.4
N1—C4—C3 109.5 (3) C11—C10—H10 119.4
N1—C4—C5 115.2 (3) C6—C11—C10 119.4 (3)
C3—C4—C5 134.7 (3) C6—C11—H11 120.3
N2—C5—C4 118.2 (3) C10—C11—H11 120.3
N2—C5—H5 120.9

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2533).

References

  1. Castro, J. A., Vilasanchez, J. E., Romero, J., Garcia-Vazquez, J. A., Duran, M. L., Sousa, A., Castellano, E. E. & Zukermann-Schpector, J. (1992). Z. Anorg. Allg. Chem. 612, 83–88.
  2. Crestani, M. G., Manbeck, G. F., Brennessel, W. W., McCormick, T. M. & Eisenberg, R. (2011). Inorg. Chem. 50, 7172–7188. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gomes, C. S. B., Suresh, D., Gomes, P. T., Veiros, L. F., Duarte, M. T., Nunes, T. G. & Oliveira, M. C. (2010). Dalton Trans. 39, 736–748. [DOI] [PubMed]
  5. Liang, H., Liu, J., Li, X. & Li, Y. (2004). Polyhedron, 23, 1619–1627.
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326, New York, Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812048143/su2533sup1.cif

e-68-m1567-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048143/su2533Isup2.hkl

e-68-m1567-Isup2.hkl (99.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES