Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 30;68(Pt 12):m1570–m1571. doi: 10.1107/S1600536812048428

Tris(1,10-phenanthroline-κ2 N,N′)ruthenium(II) bis­(perchlorate)

Mariana Kozlowska a, Pawel Rodziewicz a, Diana Malgorzata Brus a, Justyna Czyrko a, Krzysztof Brzezinski a,*
PMCID: PMC3588804  PMID: 23468769

Abstract

The asymmetric unit of the title compound, [Ru(C12H8N2)3](ClO4)2, contains one octahedrally coordinated RuII cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions: two, denoted A and B, are located on the twofold axis while another, denoted C, is positioned in the proximity of the twofold screw axis. Perchlorate anions B and C are severely disordered. The occupancies of the two major conformers of anion B refined to 0.302 (6) and 0.198 (6). Perchlorate ion C was modeled in two alternate conformations which refined to occupancies of 0.552 (10) and 0.448 (10).

Related literature  

For the preparation of phenanthroline complexes with transition metals, see: Burstall & Nyholm (1952). For the structures of salts of complexes of ruthenium with phenanthroline, see: Breu & Stoll (1996); Maloney & MacDonnell (1997); Otsuka et al. (2001); Wu et al. (2001); Ghazzali et al. (2008). For background to the properties and applications of phenanthroline complexes, see: Juris et al. (1988); D’Angelantonio et al. (1991); Balzani et al. (1996); Mills & Williams (1997); Yang et al. (1997); Miyasaka et al. (2001); Plonska et al. (2002); Winkler et al. (2006).graphic file with name e-68-m1570-scheme1.jpg

Experimental  

Crystal data  

  • [Ru(C12H8N2)3](ClO4)2

  • M r = 840.57

  • Monoclinic, Inline graphic

  • a = 35.408 (7) Å

  • b = 16.106 (3) Å

  • c = 12.056 (2) Å

  • β = 102.22 (3)°

  • V = 6720 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.22 × 0.19 × 0.10 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.859, T max = 1.000

  • 28067 measured reflections

  • 6867 independent reflections

  • 5365 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.218

  • S = 1.04

  • 6867 reflections

  • 545 parameters

  • 181 restraints

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812048428/bx2430sup1.cif

e-68-m1570-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048428/bx2430Isup2.hkl

e-68-m1570-Isup2.hkl (336.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR). The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project: POPW.01.03.00–20–034/09–00.

supplementary crystallographic information

Comment

1,10-Phenanthroline (phen), forms complexes with most of transition metals. The polyimine complexes of divalent transition metal cations, such as [RuII(phen)3](ClO4)2 or [RuII(bpy)3](ClO4)2 (bpy-2,2'-bipyridine), are well known potent photosensitizers (Juris et al., 1988). These compounds reveal also other interesting properties due to their redox (Plonska et al., 2002; Winkler et al., 2006) and magnetic properties (Miyasaka et al., 2001), excited-state reactivity (D'Angelantonio et al., 1991), and emission and lifetime characteristics (Juris et al., 1988; Balzani et al., 1996). A high photostability, long excited-state lifetimes and high quantum yields of luminescence, enabled to use them as oxygen optical sensors (Mills et al., 1997). A binding of these complexes to calf thymus DNA has been also investigated (Yang et al., 1997).

The asymmetric unit contains one divalent cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions (Fig. 1). The half-ion of perchlorate A is located on the twofold axis and the complete anion is generated by the symmetry operation. Perchlorate anions, B and C are disordered and each one of them is modeled in two alternative conformations. The occupancy of two major conformers is refined to 0.302 (6) and 0.198 (6) or 0.552 (10) and 0.448 (10) for anion B or C, respectively. Conformers of perchlorate ion B are located on the twofold axis.

Experimental

The transition metal complex salt, [RuII(phen)3](ClO4)2 was prepared according to the procedure described by Burstall et al., 1952 and was recrystallized from methanol.

Refinement

The solvent/anion region is highly disordered and the final difference minimum and maximum (-1.15 and 2.62 e Å-3) indicate an its imperfect modeling. The highest difference peak corresponds to solvent accessible void in the crystal lattice. The disordered perchlorate anion B and C are modeled in two alternative conformations with geometric restraints (DFIX and SADI instructions). Additionally, displacement parameter restraints (DELU and ISOR instructions) are applied for anion B. Due to a serious disorder of perchlorate anion C, its oxygen atoms are refined isotropically. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. For clarity, labels for atoms in the disordered perchlorate anions B and C are omitted.

Crystal data

[Ru(C12H8N2)3](ClO4)2 F(000) = 3392
Mr = 840.57 Dx = 1.662 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 28661 reflections
a = 35.408 (7) Å θ = 2.6–26.3°
b = 16.106 (3) Å µ = 0.69 mm1
c = 12.056 (2) Å T = 100 K
β = 102.22 (3)° Plate, red
V = 6720 (2) Å3 0.22 × 0.19 × 0.10 mm
Z = 8

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 6867 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 5365 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.039
Detector resolution: 10.4052 pixels mm-1 θmax = 26.4°, θmin = 2.8°
ω scans h = −44→44
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −20→20
Tmin = 0.859, Tmax = 1.000 l = −14→15
28067 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P] where P = (Fo2 + 2Fc2)/3
6867 reflections (Δ/σ)max = 0.001
545 parameters Δρmax = 2.55 e Å3
181 restraints Δρmin = −1.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
ClA 0.5000 0.08518 (12) 1.2500 0.0409 (4)
O1A 0.4920 (2) 0.0360 (6) 1.1532 (7) 0.137 (4)
O2A 0.53245 (17) 0.1346 (4) 1.2483 (7) 0.098 (2)
ClBA 0.49125 (14) 0.4508 (3) 0.7332 (5) 0.0377 (19) 0.302 (6)
O1BA 0.45000 (16) 0.4625 (5) 0.7094 (9) 0.048 (3) 0.302 (6)
O2BA 0.5065 (3) 0.4809 (5) 0.6390 (9) 0.062 (5) 0.302 (6)
O3BA 0.5000 0.3639 (3) 0.7500 0.060 (3) 0.605 (13)
O4BA 0.5085 (3) 0.4961 (5) 0.8342 (8) 0.064 (5) 0.302 (6)
ClBB 0.5000 0.4583 (5) 0.7500 0.032 (2) 0.395 (13)
O1BB 0.5200 (4) 0.5161 (10) 0.8333 (10) 0.046 (4) 0.198 (6)
O2BB 0.4835 (3) 0.3927 (7) 0.8057 (11) 0.035 (4) 0.198 (6)
O3BB 0.5266 (3) 0.4238 (8) 0.6871 (10) 0.044 (4) 0.198 (6)
O4BB 0.4697 (3) 0.5022 (12) 0.6740 (12) 0.047 (4) 0.198 (6)
ClCA 0.26318 (8) 0.5086 (2) 0.4468 (2) 0.0435 (11) 0.552 (10)
O1CA 0.2538 (2) 0.5648 (4) 0.3520 (5) 0.064 (3)* 0.552 (10)
O2CA 0.23054 (19) 0.5010 (6) 0.4998 (7) 0.277 (19)* 0.552 (10)
O3CA 0.2726 (3) 0.4284 (3) 0.4073 (7) 0.091 (4)* 0.552 (10)
O4CA 0.29584 (19) 0.5403 (5) 0.5278 (6) 0.092 (4)* 0.552 (10)
ClCB 0.2615 (2) 0.5258 (6) 0.4462 (7) 0.166 (5) 0.448 (10)
O1CB 0.2576 (6) 0.6144 (5) 0.4546 (17) 0.149 (9)* 0.448 (10)
O2CB 0.2292 (2) 0.4858 (6) 0.4795 (8) 0.049 (3)* 0.448 (10)
O3CB 0.2619 (4) 0.5039 (12) 0.3306 (8) 0.212 (14)* 0.448 (10)
O4CB 0.2969 (2) 0.4984 (13) 0.5192 (13) 0.117 (6)* 0.448 (10)
Ru1 0.379433 (12) 0.21680 (3) 0.62688 (4) 0.03927 (19)
N8 0.42571 (13) 0.2140 (3) 0.7640 (4) 0.0407 (11)
N36 0.33253 (14) 0.2267 (3) 0.4936 (5) 0.0455 (12)
N29 0.40257 (13) 0.2905 (3) 0.5175 (4) 0.0404 (11)
N22 0.35194 (13) 0.1363 (4) 0.7156 (4) 0.0475 (12)
C26 0.33993 (17) −0.0117 (5) 0.7393 (6) 0.0522 (16)
N1 0.36793 (14) 0.3206 (4) 0.7139 (5) 0.0515 (13)
C31 0.44900 (18) 0.3752 (4) 0.4513 (6) 0.0509 (15)
H31 0.4740 0.3998 0.4661 0.061*
C25 0.31696 (19) 0.0092 (5) 0.8174 (6) 0.0602 (19)
H25 0.3044 −0.0332 0.8510 0.072*
C17 0.42222 (17) 0.0127 (4) 0.4478 (5) 0.0454 (13)
H17 0.4373 0.0055 0.3921 0.054*
C7 0.42374 (17) 0.2736 (4) 0.8443 (5) 0.0468 (15)
C16 0.41419 (14) 0.0922 (4) 0.4812 (4) 0.0360 (11)
H16 0.4239 0.1385 0.4470 0.043*
N15 0.39328 (12) 0.1058 (3) 0.5599 (4) 0.0367 (10)
C35 0.33975 (18) 0.2702 (4) 0.4047 (6) 0.0510 (16)
C30 0.43730 (16) 0.3264 (3) 0.5347 (5) 0.0403 (12)
H30 0.4547 0.3187 0.6056 0.048*
C27 0.3471 (2) −0.0933 (5) 0.7063 (6) 0.0586 (18)
H27 0.3358 −0.1384 0.7386 0.070*
C11 0.4786 (2) 0.2177 (4) 0.9732 (5) 0.0539 (17)
H11 0.4967 0.2179 1.0437 0.065*
C37 0.29761 (16) 0.1926 (4) 0.4833 (7) 0.0560 (17)
H37 0.2924 0.1608 0.5448 0.067*
C39 0.2751 (2) 0.2466 (6) 0.2965 (8) 0.077 (2)
H39 0.2554 0.2533 0.2301 0.093*
C12 0.4499 (2) 0.2781 (4) 0.9494 (6) 0.0521 (17)
C40 0.3120 (2) 0.2835 (5) 0.3033 (7) 0.066 (2)
C21 0.35678 (15) 0.0539 (4) 0.6894 (5) 0.0441 (13)
C41 0.3230 (3) 0.3303 (6) 0.2160 (8) 0.084 (3)
H41 0.3045 0.3397 0.1476 0.101*
C18 0.40855 (18) −0.0547 (4) 0.4948 (6) 0.0501 (15)
H18 0.4141 −0.1092 0.4724 0.060*
C14 0.4168 (2) 0.4011 (5) 0.9966 (7) 0.067 (2)
H14 0.4150 0.4452 1.0476 0.080*
C2 0.33910 (19) 0.3754 (5) 0.6835 (8) 0.063 (2)
H2 0.3223 0.3709 0.6111 0.076*
C4 0.3582 (2) 0.4498 (5) 0.8596 (8) 0.071 (2)
H4 0.3542 0.4937 0.9083 0.086*
C9 0.45398 (16) 0.1585 (4) 0.7900 (5) 0.0444 (13)
H9 0.4562 0.1173 0.7354 0.053*
C13 0.4454 (2) 0.3449 (5) 1.0251 (6) 0.063 (2)
H13 0.4628 0.3493 1.0964 0.075*
C6 0.39295 (17) 0.3319 (4) 0.8162 (6) 0.0493 (15)
C19 0.38602 (16) −0.0429 (4) 0.5768 (5) 0.0451 (14)
C20 0.37928 (14) 0.0384 (4) 0.6065 (5) 0.0380 (12)
C38 0.26831 (19) 0.2015 (5) 0.3861 (8) 0.067 (2)
H38 0.2438 0.1764 0.3825 0.081*
C24 0.31276 (18) 0.0892 (5) 0.8445 (6) 0.0612 (19)
H24 0.2978 0.1032 0.8985 0.073*
C42 0.3588 (3) 0.3619 (6) 0.2264 (8) 0.079 (2)
H42 0.3651 0.3920 0.1649 0.095*
C33 0.3874 (2) 0.3510 (4) 0.3275 (6) 0.0586 (17)
C23 0.33056 (17) 0.1525 (5) 0.7930 (6) 0.0581 (18)
H23 0.3273 0.2085 0.8137 0.070*
C28 0.3692 (2) −0.1095 (4) 0.6305 (6) 0.0595 (18)
H28 0.3738 −0.1655 0.6123 0.071*
C5 0.3892 (2) 0.3961 (5) 0.8918 (6) 0.0566 (17)
C10 0.48045 (17) 0.1579 (4) 0.8934 (5) 0.0486 (15)
H10 0.4998 0.1161 0.9087 0.058*
C32 0.4242 (2) 0.3874 (4) 0.3480 (7) 0.0584 (17)
H32 0.4319 0.4201 0.2911 0.070*
C34 0.37750 (17) 0.3047 (4) 0.4163 (6) 0.0481 (14)
C3 0.3336 (2) 0.4388 (5) 0.7571 (8) 0.074 (2)
H3 0.3122 0.4752 0.7354 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
ClA 0.0410 (10) 0.0385 (10) 0.0390 (10) 0.000 −0.0006 (8) 0.000
O1A 0.106 (5) 0.182 (9) 0.104 (5) 0.037 (6) −0.021 (4) −0.086 (6)
O2A 0.059 (3) 0.079 (4) 0.161 (7) −0.008 (3) 0.035 (4) 0.029 (4)
ClBA 0.045 (3) 0.035 (3) 0.029 (3) −0.007 (2) −0.002 (3) 0.001 (2)
O1BA 0.040 (5) 0.052 (7) 0.055 (7) 0.002 (5) 0.012 (5) −0.014 (6)
O2BA 0.053 (7) 0.079 (8) 0.060 (7) −0.014 (7) 0.027 (6) 0.010 (6)
O3BA 0.068 (6) 0.043 (4) 0.055 (6) 0.000 −0.017 (5) 0.000
O4BA 0.053 (8) 0.074 (8) 0.066 (7) −0.010 (7) 0.012 (6) −0.033 (7)
ClBB 0.050 (4) 0.026 (3) 0.016 (3) 0.000 −0.004 (3) 0.000
O1BB 0.050 (6) 0.043 (6) 0.043 (5) −0.009 (4) 0.008 (4) −0.007 (4)
O2BB 0.033 (6) 0.035 (5) 0.036 (6) 0.002 (4) 0.008 (4) 0.002 (4)
O3BB 0.043 (6) 0.046 (6) 0.045 (6) −0.007 (4) 0.015 (4) −0.007 (4)
O4BB 0.051 (6) 0.045 (6) 0.043 (5) 0.007 (4) 0.005 (4) 0.006 (4)
ClCA 0.0446 (18) 0.0573 (19) 0.0324 (15) −0.0289 (13) 0.0166 (12) −0.0096 (11)
ClCB 0.112 (7) 0.231 (10) 0.155 (8) −0.029 (7) 0.029 (6) −0.011 (7)
Ru1 0.0236 (3) 0.0438 (3) 0.0511 (3) −0.00316 (17) 0.00957 (19) −0.0083 (2)
N8 0.029 (2) 0.052 (3) 0.044 (3) −0.011 (2) 0.0141 (19) −0.007 (2)
N36 0.027 (2) 0.046 (3) 0.062 (3) 0.0037 (19) 0.006 (2) −0.009 (2)
N29 0.031 (2) 0.036 (2) 0.055 (3) 0.0039 (18) 0.011 (2) −0.005 (2)
N22 0.027 (2) 0.062 (3) 0.054 (3) −0.011 (2) 0.011 (2) −0.008 (3)
C26 0.033 (3) 0.069 (4) 0.052 (4) −0.009 (3) 0.005 (3) 0.012 (3)
N1 0.033 (2) 0.054 (3) 0.072 (4) −0.006 (2) 0.022 (2) −0.015 (3)
C31 0.044 (3) 0.036 (3) 0.076 (4) 0.002 (2) 0.020 (3) −0.001 (3)
C25 0.041 (3) 0.083 (5) 0.056 (4) −0.019 (3) 0.010 (3) 0.008 (4)
C17 0.039 (3) 0.049 (3) 0.047 (3) 0.009 (3) 0.008 (2) 0.002 (3)
C7 0.036 (3) 0.057 (4) 0.053 (3) −0.020 (3) 0.021 (3) −0.013 (3)
C16 0.029 (2) 0.039 (3) 0.038 (3) 0.001 (2) 0.003 (2) −0.001 (2)
N15 0.026 (2) 0.041 (2) 0.042 (2) 0.0037 (18) 0.0020 (18) 0.001 (2)
C35 0.033 (3) 0.045 (3) 0.070 (4) 0.010 (2) 0.001 (3) −0.008 (3)
C30 0.035 (3) 0.033 (3) 0.054 (3) 0.001 (2) 0.011 (2) −0.006 (2)
C27 0.048 (4) 0.059 (4) 0.067 (4) −0.008 (3) 0.008 (3) 0.021 (3)
C11 0.053 (4) 0.074 (5) 0.037 (3) −0.026 (3) 0.014 (3) 0.002 (3)
C37 0.025 (3) 0.053 (4) 0.085 (5) 0.003 (3) 0.002 (3) −0.018 (3)
C39 0.041 (4) 0.076 (5) 0.098 (6) 0.019 (4) −0.021 (4) −0.015 (4)
C12 0.053 (4) 0.063 (4) 0.045 (3) −0.030 (3) 0.023 (3) −0.009 (3)
C40 0.044 (4) 0.062 (5) 0.080 (5) 0.011 (3) −0.010 (4) 0.012 (4)
C21 0.028 (3) 0.054 (4) 0.049 (3) −0.006 (2) 0.004 (2) 0.001 (3)
C41 0.071 (5) 0.087 (6) 0.079 (6) 0.010 (5) −0.022 (4) 0.013 (5)
C18 0.043 (3) 0.043 (3) 0.063 (4) 0.011 (3) 0.006 (3) 0.005 (3)
C14 0.080 (5) 0.068 (5) 0.065 (5) −0.034 (4) 0.044 (4) −0.024 (4)
C2 0.039 (3) 0.058 (4) 0.098 (6) −0.005 (3) 0.026 (3) −0.023 (4)
C4 0.063 (5) 0.065 (5) 0.097 (6) −0.023 (4) 0.043 (4) −0.035 (4)
C9 0.034 (3) 0.055 (4) 0.046 (3) −0.008 (3) 0.012 (2) 0.003 (3)
C13 0.067 (4) 0.076 (5) 0.052 (4) −0.028 (4) 0.025 (3) −0.021 (4)
C6 0.041 (3) 0.056 (4) 0.059 (4) −0.016 (3) 0.027 (3) −0.016 (3)
C19 0.036 (3) 0.042 (3) 0.053 (3) 0.006 (2) 0.001 (2) 0.010 (3)
C20 0.026 (2) 0.043 (3) 0.042 (3) −0.004 (2) 0.000 (2) 0.000 (2)
C38 0.031 (3) 0.062 (4) 0.101 (6) 0.011 (3) −0.005 (3) −0.018 (4)
C24 0.035 (3) 0.094 (6) 0.058 (4) −0.019 (3) 0.019 (3) −0.007 (4)
C42 0.081 (6) 0.078 (6) 0.071 (5) 0.015 (5) 0.002 (4) 0.022 (4)
C33 0.057 (4) 0.052 (4) 0.065 (4) 0.012 (3) 0.007 (3) 0.006 (3)
C23 0.032 (3) 0.079 (5) 0.066 (4) −0.014 (3) 0.018 (3) −0.020 (4)
C28 0.053 (4) 0.046 (4) 0.074 (5) 0.004 (3) 0.000 (3) 0.014 (3)
C5 0.051 (4) 0.060 (4) 0.069 (4) −0.017 (3) 0.038 (3) −0.018 (3)
C10 0.041 (3) 0.065 (4) 0.040 (3) −0.016 (3) 0.007 (2) 0.008 (3)
C32 0.060 (4) 0.047 (4) 0.072 (5) 0.002 (3) 0.022 (4) 0.008 (3)
C34 0.037 (3) 0.041 (3) 0.062 (4) 0.007 (2) 0.004 (3) 0.001 (3)
C3 0.049 (4) 0.059 (4) 0.123 (7) 0.001 (3) 0.040 (4) −0.027 (5)

Geometric parameters (Å, º)

ClA—O1A 1.389 (6) C16—N15 1.339 (7)
ClA—O1Ai 1.389 (6) C16—H16 0.9500
ClA—O2A 1.402 (6) N15—C20 1.363 (7)
ClA—O2Ai 1.402 (6) C35—C40 1.413 (10)
ClBA—O4BA 1.4398 (8) C35—C34 1.427 (9)
ClBA—O1BA 1.4399 (8) C30—H30 0.9500
ClBA—O3BA 1.4400 (8) C27—C28 1.350 (11)
ClBA—O2BA 1.4401 (8) C27—H27 0.9500
ClBB—O1BB 1.4399 (8) C11—C10 1.373 (10)
ClBB—O3BB 1.4399 (8) C11—C12 1.393 (11)
ClBB—O2BB 1.4401 (8) C11—H11 0.9500
ClBB—O4BB 1.4402 (11) C37—C38 1.399 (10)
ClCA—O2CA 1.4399 (8) C37—H37 0.9500
ClCA—O4CA 1.4402 (9) C39—C38 1.366 (13)
ClCA—O3CA 1.4405 (8) C39—C40 1.421 (12)
ClCA—O1CA 1.4407 (8) C39—H39 0.9500
ClCB—O4CB 1.4400 (11) C12—C13 1.440 (10)
ClCB—O1CB 1.4400 (8) C40—C41 1.415 (13)
ClCB—O2CB 1.4400 (8) C21—C20 1.426 (8)
ClCB—O3CB 1.4403 (8) C41—C42 1.347 (13)
Ru1—N22 2.053 (5) C41—H41 0.9500
Ru1—N36 2.058 (5) C18—C19 1.409 (9)
Ru1—N1 2.059 (5) C18—H18 0.9500
Ru1—N15 2.063 (5) C14—C13 1.347 (12)
Ru1—N8 2.067 (5) C14—C5 1.426 (11)
Ru1—N29 2.068 (5) C14—H14 0.9500
N8—C9 1.329 (8) C2—C3 1.393 (10)
N8—C7 1.376 (8) C2—H2 0.9500
N36—C37 1.334 (8) C4—C3 1.365 (12)
N36—C35 1.349 (9) C4—C5 1.387 (11)
N29—C30 1.335 (7) C4—H4 0.9500
N29—C34 1.368 (8) C9—C10 1.392 (8)
N22—C23 1.346 (8) C9—H9 0.9500
N22—C21 1.383 (8) C13—H13 0.9500
C26—C25 1.410 (10) C6—C5 1.403 (9)
C26—C21 1.410 (9) C19—C20 1.392 (8)
C26—C27 1.410 (11) C19—C28 1.444 (9)
N1—C2 1.340 (9) C38—H38 0.9500
N1—C6 1.370 (8) C24—C23 1.409 (10)
C31—C32 1.378 (10) C24—H24 0.9500
C31—C30 1.406 (9) C42—C33 1.421 (11)
C31—H31 0.9500 C42—H42 0.9500
C25—C24 1.346 (11) C33—C32 1.401 (10)
C25—H25 0.9500 C33—C34 1.409 (10)
C17—C18 1.361 (9) C23—H23 0.9500
C17—C16 1.388 (8) C28—H28 0.9500
C17—H17 0.9500 C10—H10 0.9500
C7—C12 1.405 (9) C32—H32 0.9500
C7—C6 1.424 (10) C3—H3 0.9500
O1A—ClA—O1Ai 110.5 (9) C31—C30—H30 118.9
O1A—ClA—O2A 109.5 (6) C28—C27—C26 122.4 (6)
O1Ai—ClA—O2A 108.3 (4) C28—C27—H27 118.8
O1A—ClA—O2Ai 108.3 (4) C26—C27—H27 118.8
O1Ai—ClA—O2Ai 109.5 (6) C10—C11—C12 119.2 (6)
O2A—ClA—O2Ai 110.8 (6) C10—C11—H11 120.4
O4BA—ClBA—O1BA 109.48 (6) C12—C11—H11 120.4
O4BA—ClBA—O3BA 109.49 (6) N36—C37—C38 122.9 (8)
O1BA—ClBA—O3BA 109.48 (6) N36—C37—H37 118.5
O4BA—ClBA—O2BA 109.48 (6) C38—C37—H37 118.5
O1BA—ClBA—O2BA 109.47 (6) C38—C39—C40 119.4 (7)
O3BA—ClBA—O2BA 109.44 (6) C38—C39—H39 120.3
O1BB—ClBB—O3BB 109.7 (2) C40—C39—H39 120.3
O1BB—ClBB—O2BB 109.7 (2) C11—C12—C7 117.5 (6)
O3BB—ClBB—O2BB 109.7 (2) C11—C12—C13 124.4 (7)
O1BB—ClBB—O4BB 108.4 (12) C7—C12—C13 118.0 (7)
O3BB—ClBB—O4BB 109.7 (2) C35—C40—C41 118.4 (7)
O2BB—ClBB—O4BB 109.7 (3) C35—C40—C39 116.7 (8)
O2CA—ClCA—O4CA 109.52 (6) C41—C40—C39 125.0 (8)
O2CA—ClCA—O3CA 109.50 (6) N22—C21—C26 122.5 (6)
O4CA—ClCA—O3CA 109.46 (6) N22—C21—C20 116.3 (5)
O2CA—ClCA—O1CA 109.49 (6) C26—C21—C20 121.1 (6)
O4CA—ClCA—O1CA 109.44 (6) C42—C41—C40 122.2 (7)
O3CA—ClCA—O1CA 109.43 (6) C42—C41—H41 118.9
O4CB—ClCB—O1CB 110.1 (15) C40—C41—H41 118.9
O4CB—ClCB—O2CB 109.4 (3) C17—C18—C19 119.2 (6)
O1CB—ClCB—O2CB 109.4 (3) C17—C18—H18 120.4
O4CB—ClCB—O3CB 109.3 (3) C19—C18—H18 120.4
O1CB—ClCB—O3CB 109.3 (3) C13—C14—C5 121.6 (7)
O2CB—ClCB—O3CB 109.3 (3) C13—C14—H14 119.2
N22—Ru1—N36 93.6 (2) C5—C14—H14 119.2
N22—Ru1—N1 94.6 (2) N1—C2—C3 120.6 (8)
N36—Ru1—N1 96.9 (2) N1—C2—H2 119.7
N22—Ru1—N15 80.5 (2) C3—C2—H2 119.7
N36—Ru1—N15 88.90 (18) C3—C4—C5 119.2 (7)
N1—Ru1—N15 172.6 (2) C3—C4—H4 120.4
N22—Ru1—N8 87.27 (19) C5—C4—H4 120.4
N36—Ru1—N8 176.5 (2) N8—C9—C10 123.2 (6)
N1—Ru1—N8 79.6 (2) N8—C9—H9 118.4
N15—Ru1—N8 94.60 (18) C10—C9—H9 118.4
N22—Ru1—N29 172.08 (19) C14—C13—C12 121.3 (7)
N36—Ru1—N29 79.7 (2) C14—C13—H13 119.4
N1—Ru1—N29 90.4 (2) C12—C13—H13 119.4
N15—Ru1—N29 95.09 (18) N1—C6—C5 123.4 (6)
N8—Ru1—N29 99.70 (19) N1—C6—C7 116.3 (5)
C9—N8—C7 116.8 (5) C5—C6—C7 120.3 (6)
C9—N8—Ru1 129.3 (4) C20—C19—C18 117.4 (6)
C7—N8—Ru1 113.4 (4) C20—C19—C28 118.3 (6)
C37—N36—C35 117.9 (6) C18—C19—C28 124.3 (6)
C37—N36—Ru1 128.2 (5) N15—C20—C19 123.1 (5)
C35—N36—Ru1 113.8 (4) N15—C20—C21 117.1 (5)
C30—N29—C34 117.9 (5) C19—C20—C21 119.8 (5)
C30—N29—Ru1 128.8 (4) C39—C38—C37 119.6 (7)
C34—N29—Ru1 113.3 (4) C39—C38—H38 120.2
C23—N22—C21 117.3 (6) C37—C38—H38 120.2
C23—N22—Ru1 129.6 (5) C25—C24—C23 120.2 (7)
C21—N22—Ru1 113.0 (4) C25—C24—H24 119.9
C25—C26—C21 117.5 (7) C23—C24—H24 119.9
C25—C26—C27 125.0 (7) C41—C42—C33 121.3 (8)
C21—C26—C27 117.5 (6) C41—C42—H42 119.4
C2—N1—C6 117.9 (6) C33—C42—H42 119.4
C2—N1—Ru1 128.1 (5) C32—C33—C34 117.3 (6)
C6—N1—Ru1 114.0 (4) C32—C33—C42 124.5 (8)
C32—C31—C30 119.8 (6) C34—C33—C42 118.1 (7)
C32—C31—H31 120.1 N22—C23—C24 122.4 (7)
C30—C31—H31 120.1 N22—C23—H23 118.8
C24—C25—C26 120.0 (7) C24—C23—H23 118.8
C24—C25—H25 120.0 C27—C28—C19 120.9 (7)
C26—C25—H25 120.0 C27—C28—H28 119.6
C18—C17—C16 120.2 (6) C19—C28—H28 119.6
C18—C17—H17 119.9 C4—C5—C6 117.1 (7)
C16—C17—H17 119.9 C4—C5—C14 124.4 (7)
N8—C7—C12 123.3 (6) C6—C5—C14 118.5 (7)
N8—C7—C6 116.3 (6) C11—C10—C9 119.9 (7)
C12—C7—C6 120.4 (6) C11—C10—H10 120.0
N15—C16—C17 122.3 (5) C9—C10—H10 120.0
N15—C16—H16 118.9 C31—C32—C33 119.4 (7)
C17—C16—H16 118.9 C31—C32—H32 120.3
C16—N15—C20 117.7 (5) C33—C32—H32 120.3
C16—N15—Ru1 129.2 (4) N29—C34—C33 123.2 (6)
C20—N15—Ru1 113.1 (4) N29—C34—C35 116.1 (6)
N36—C35—C40 123.5 (6) C33—C34—C35 120.7 (6)
N36—C35—C34 117.1 (6) C4—C3—C2 121.5 (8)
C40—C35—C34 119.4 (7) C4—C3—H3 119.2
N29—C30—C31 122.2 (6) C2—C3—H3 119.2
N29—C30—H30 118.9

Symmetry code: (i) −x+1, y, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2430).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–772. [DOI] [PubMed]
  3. Breu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174–1177.
  4. Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570–3579.
  5. D’Angelantonio, M., Mulazzani, Q. G., Venturi, M., Ciano, M. & Hoffman, M. Z. (1991). J. Phys. Chem. 95, 5121–5129.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Ghazzali, M., Öhrström, L., Lincoln, P. & Langer, V. (2008). Acta Cryst. C64, m243–m245. [DOI] [PubMed]
  8. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zalewsky, A. (1988). Coord. Chem. Rev. 84, 85–99.
  9. Maloney, D. J. & MacDonnell, F. M. (1997). Acta Cryst. C53, 705–707.
  10. Mills, A. & Williams, F. C. (1997). Thin Solid Films, 306, 163–170.
  11. Miyasaka, H., Clearc, R., Campos-Fernandez, C. S. & Dunbar, K. R. (2001). Inorg. Chem. 40, 1663–1669. [DOI] [PubMed]
  12. Otsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. & Kaizu, Y. (2001). Inorg. Chem. 40, 3406–3412. [DOI] [PubMed]
  13. Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77–84.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544–4553.
  16. Wu, J. Z., Zhou, Z.-Y. & Ji, L. N. (2001). Cryst. Res. Technol. 36, 101–105.
  17. Yang, G., Wu, J. Z., Wang, L., Ji, L. N. & Tian, X. (1997). J. Inorg. Biochem. 66, 141–144. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812048428/bx2430sup1.cif

e-68-m1570-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048428/bx2430Isup2.hkl

e-68-m1570-Isup2.hkl (336.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES