Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 30;68(Pt 12):m1572–m1573. doi: 10.1107/S1600536812048210

Bis(μ-4,6-dimethyl­pyrimidine-2-thiol­ato)-κ3 N,S:S3 S:N,S-bis­[(triphenyl­phosphane-κP)silver(I)]

Yupa Wattanakanjana a,*, Chaveng Pakawatchai a, Sukanya Kowittheeraphong a, Ruthairat Nimthong a
PMCID: PMC3588805  PMID: 23468770

Abstract

The dinuclear title complex, [Ag2(C6H7N2S)2(C18H15P)2], comprises two inversion-related [Ag(C6H7N2S)(C18H15P)] units. The pyrimidine­thiol­ate anion acts both as a bridging and a chelating ligand. The AgI ions are linked via two μ 2-S donor atoms, which generate a strictly planar Ag2S2 core with an Ag⋯Ag separation of 2.9569 (4) Å. The AgI ion presents a distorted tetra­hedral coordination geometry. In the crystal, weak C—H⋯N and C—H⋯S hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (010).

Related literature  

For the structures of metal(I) coordination compounds and their potential applications, see: Aslanidis et al. (1997); McFarlane et al. (1998); Nawaz et al. (2011); Hameau et al. (2012); Nimthong et al. (2012); Pakawatchai et al. (2012). For relevant examples of discrete complexes, see: Cox et al. (2000); Lobana et al. (2008); Isab et al. (2010).graphic file with name e-68-m1572-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2(C6H7N2S)2(C18H15P)2]

  • M r = 1018.67

  • Monoclinic, Inline graphic

  • a = 11.7050 (5) Å

  • b = 15.3084 (7) Å

  • c = 12.5331 (6) Å

  • β = 97.483 (1)°

  • V = 2226.62 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.29 × 0.18 × 0.09 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.793, T max = 0.909

  • 26686 measured reflections

  • 5568 independent reflections

  • 4798 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.04

  • 5568 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812048210/bh2464sup1.cif

e-68-m1572-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048210/bh2464Isup2.hkl

e-68-m1572-Isup2.hkl (267.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1i 0.93 2.94 3.801 (3) 154
C14—H14⋯N2ii 0.93 2.69 3.471 (4) 143
C35—H35⋯N2iii 0.93 2.93 3.756 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the Department of Chemistry, and the Graduate School, Prince of Songkla University, for financial support of this work.

supplementary crystallographic information

Comment

In recent years, a large number of structural reports on metal(I) complexes containing heterocyclic thiones as ligands or mixed-ligands with triphenylphosphane have been studied (Aslanidis et al., 1997; McFarlane et al., 1998; Pakawatchai et al., 2012; Nimthong et al., 2012) because of not only their potential applications due to their antimicrobial activities (Nawaz et al., 2011), but also strongly luminescent properties (Hameau et al., 2012).

The structure of the title dinuclear mixed-ligand complex displays the distorted tetrahedral coordination of each AgI center, which exhibits a planar Ag2S2 moiety in which each of the doubly S-bridged AgI centers is surrounded by the one P atom of phosphane ligand and one N atom of the dmpymtH ligands (Fig. 1). The Ag—Ag distance of 2.9569 (4) Å in the four-membered Ag2S2 ring is shorter than in [Ag2X2(l-S-pySH)2(PPh3)2] (X = Cl and Br), 3.8425 (8) and 3.8211 (4) Å, respectively (Lobana et al., 2008) and also shorter than the sum of the covalent radii of two AgI centers (3.44 Å). Focusing on the comparison of bond distances and bond angles around the AgI ion, the Ag—S bond lengths [2.5492 (6)–2.7897 (6) Å] are in good agreement with values reported for other silver(I) complexes with heterocyclic thione ligands, such as 2.5548 (9) Å for [Ag(PPh3)(pymtH)Br]2 (Cox et al., 2000) and 2.537 (2) Å for [Ag(Ph3P)(Diaz)2]2(NO3)2 (Nawaz et al., 2011). The Ag1—P1 bond length of 2.4088 (6) Å is similar to that found in [Ag(PPh3)(thiourea)(NO3)]2.[Ag(PPh3)(thiourea)]2(NO3)2 [2.4029 (10)–2.4157 (10) Å] (Isab et al., 2010). The two S1–Ag1–P1 angles of 116.81 (2) and 123.56 (2)° are larger than the normal tetrahedral value of 109.5°. In the crystal, the intermolecular interactions C14(sp2)—H14···N2 [H14···N2 = 2.686 (4) Å, C14(sp2)···N2 = 3.471 (4) Å and C14(sp2)—H14···N2 = 142.52 (8)°] and C14(sp2)—H14···S1 [H14···S1 = 2.942 (3) Å, C14(sp2)···S1 = 3.801 (3) Å and C14(sp2)—H14···S1 = 154.18 (9)°] form chains (Fig. 2). Moreover, secondary interactions C35(sp2)—H35···N2 [H35···N2 = 2.928 (4) Å, C35(sp2)···N2 = 3.756 (4) Å and C35(sp2)—H35···N2 = 150.48 (7)°] are also observed, which form the two-dimensional layer network (Fig. 3).

Experimental

Triphenylphosphane (0.31 g, 1.18 mmol) was dissolved in 30 cm3 of ethanol at 335 K. Silver acetate (0.10 g, 0.60 mmol) was added and the mixture was stirred for 3 h. 4,6-Dimethylpyrimidine-2(1H)-thione (0.18 g, 0.46 mmol) was added and the new reaction mixture was refluxed for 2 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for several days, was filtered off and dried under reduced pressure.

Refinement

The H atoms bonded to C atoms were constrained to ride on their parent atoms with C—H bond lengths of 0.93 Å [aryl CH, Uiso(H) = 1.2Ueq(C)] and 0.96 Å [methyl CH3, Uiso(H) = 1.5Ueq(C)] except for H3, which was located in a difference map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure with C—H···N and C—H···S hydrogen bonds interactions showed as dashed lines.

Fig. 3.

Fig. 3.

The packing diagram viewed down the b axis. The dashed lines represent intermolecular C—H···N and C—H···S interactions.

Crystal data

[Ag2(C6H7N2S)2(C18H15P)2] F(000) = 1032
Mr = 1018.67 Dx = 1.519 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8845 reflections
a = 11.7050 (5) Å θ = 2.2–28.3°
b = 15.3084 (7) Å µ = 1.08 mm1
c = 12.5331 (6) Å T = 293 K
β = 97.483 (1)° Block, yellow
V = 2226.62 (18) Å3 0.29 × 0.18 × 0.09 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 5568 independent reflections
Radiation source: fine-focus sealed tube 4798 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −15→15
Tmin = 0.793, Tmax = 0.909 k = −20→20
26686 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8969P] where P = (Fo2 + 2Fc2)/3
5568 reflections (Δ/σ)max = 0.003
266 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.29 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.64391 (17) 0.09032 (14) −0.12789 (17) 0.0376 (4)
C2 0.6887 (2) 0.20334 (17) −0.2336 (2) 0.0512 (6)
C3 0.6524 (3) 0.26179 (17) −0.1622 (2) 0.0578 (7)
C4 0.6137 (2) 0.23054 (15) −0.07073 (19) 0.0457 (5)
C5 0.7338 (4) 0.2323 (2) −0.3350 (3) 0.0798 (10)
H5A 0.7548 0.1820 −0.3739 0.120*
H5B 0.8003 0.2687 −0.3168 0.120*
H5C 0.6752 0.2647 −0.3790 0.120*
C6 0.5799 (3) 0.28888 (19) 0.0155 (2) 0.0673 (8)
H6A 0.5556 0.2540 0.0721 0.101*
H6B 0.5177 0.3261 −0.0141 0.101*
H6C 0.6446 0.3241 0.0440 0.101*
C21 0.69001 (19) 0.17384 (14) 0.30847 (17) 0.0390 (4)
C22 0.5829 (2) 0.21344 (18) 0.3033 (2) 0.0525 (6)
H22 0.5174 0.1845 0.2712 0.063*
C23 0.5735 (3) 0.2965 (2) 0.3463 (2) 0.0662 (8)
H23 0.5015 0.3229 0.3427 0.079*
C24 0.6690 (3) 0.33977 (17) 0.3938 (2) 0.0654 (8)
H24 0.6618 0.3951 0.4230 0.079*
C25 0.7747 (3) 0.30172 (18) 0.3984 (2) 0.0620 (7)
H25 0.8396 0.3314 0.4304 0.074*
C26 0.7861 (2) 0.21889 (17) 0.3557 (2) 0.0533 (6)
H26 0.8587 0.1936 0.3588 0.064*
C31 0.66300 (17) −0.00663 (15) 0.36218 (17) 0.0384 (4)
C32 0.6224 (2) −0.08985 (19) 0.3347 (2) 0.0581 (6)
H32 0.6112 −0.1070 0.2630 0.070*
C33 0.5986 (3) −0.1472 (2) 0.4139 (3) 0.0799 (10)
H33 0.5735 −0.2035 0.3955 0.096*
C34 0.6118 (3) −0.1213 (3) 0.5202 (3) 0.0781 (10)
H34 0.5955 −0.1602 0.5732 0.094*
C35 0.6487 (3) −0.0385 (2) 0.5481 (2) 0.0698 (9)
H35 0.6559 −0.0207 0.6196 0.084*
C36 0.6751 (2) 0.0184 (2) 0.4697 (2) 0.0530 (6)
H36 0.7013 0.0743 0.4890 0.064*
N1 0.60828 (16) 0.14406 (12) −0.05384 (15) 0.0397 (4)
N2 0.68507 (17) 0.11646 (13) −0.21745 (15) 0.0452 (4)
H3 0.665 (3) 0.318 (2) −0.173 (2) 0.064 (8)*
C11 0.84851 (19) 0.04687 (14) 0.2463 (2) 0.0406 (5)
C12 0.8906 (3) 0.0742 (2) 0.1534 (2) 0.0591 (7)
H12 0.8425 0.1018 0.0987 0.071*
C13 1.0069 (3) 0.0597 (2) 0.1432 (3) 0.0782 (11)
H13 1.0360 0.0783 0.0815 0.094*
C14 1.0778 (3) 0.0188 (2) 0.2223 (4) 0.0801 (11)
H14 1.1547 0.0093 0.2143 0.096*
C15 1.0368 (2) −0.0081 (2) 0.3123 (3) 0.0726 (9)
H15 1.0858 −0.0362 0.3658 0.087*
C16 0.9221 (2) 0.00566 (18) 0.3264 (2) 0.0531 (6)
H16 0.8950 −0.0127 0.3892 0.064*
Ag1 0.570898 (16) 0.048363 (12) 0.086830 (13) 0.04660 (8)
P1 0.69618 (5) 0.06407 (4) 0.25410 (4) 0.03501 (12)
S1 0.35819 (5) 0.02130 (4) 0.09946 (5) 0.04512 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0319 (9) 0.0395 (11) 0.0411 (11) 0.0003 (8) 0.0034 (8) 0.0072 (9)
C2 0.0592 (15) 0.0507 (14) 0.0446 (12) −0.0067 (11) 0.0096 (11) 0.0118 (11)
C3 0.083 (2) 0.0362 (13) 0.0531 (15) −0.0049 (12) 0.0057 (13) 0.0099 (11)
C4 0.0538 (13) 0.0383 (11) 0.0436 (12) 0.0023 (10) 0.0012 (10) 0.0032 (9)
C5 0.113 (3) 0.070 (2) 0.0621 (18) −0.0094 (19) 0.0349 (18) 0.0209 (16)
C6 0.097 (2) 0.0480 (15) 0.0575 (16) 0.0074 (15) 0.0102 (16) −0.0049 (12)
C21 0.0473 (11) 0.0363 (10) 0.0345 (10) 0.0001 (9) 0.0090 (9) 0.0024 (8)
C22 0.0541 (14) 0.0543 (14) 0.0499 (13) 0.0089 (11) 0.0103 (11) 0.0040 (11)
C23 0.082 (2) 0.0571 (16) 0.0636 (17) 0.0293 (16) 0.0268 (16) 0.0113 (14)
C24 0.108 (2) 0.0344 (12) 0.0598 (16) 0.0041 (14) 0.0351 (17) 0.0037 (11)
C25 0.084 (2) 0.0435 (14) 0.0615 (16) −0.0152 (14) 0.0203 (15) −0.0097 (12)
C26 0.0585 (15) 0.0439 (13) 0.0584 (15) −0.0052 (11) 0.0108 (12) −0.0087 (11)
C31 0.0330 (10) 0.0453 (12) 0.0378 (10) 0.0022 (9) 0.0075 (8) 0.0037 (9)
C32 0.0635 (16) 0.0516 (15) 0.0603 (16) −0.0116 (13) 0.0116 (13) 0.0003 (12)
C33 0.083 (2) 0.0578 (18) 0.100 (3) −0.0168 (16) 0.019 (2) 0.0209 (18)
C34 0.0669 (19) 0.090 (2) 0.081 (2) 0.0028 (17) 0.0261 (17) 0.041 (2)
C35 0.0621 (17) 0.105 (3) 0.0443 (14) 0.0128 (17) 0.0149 (13) 0.0211 (15)
C36 0.0534 (14) 0.0641 (16) 0.0412 (12) 0.0022 (12) 0.0047 (11) 0.0015 (11)
N1 0.0436 (9) 0.0373 (9) 0.0383 (9) 0.0003 (8) 0.0061 (7) 0.0036 (7)
N2 0.0486 (10) 0.0472 (11) 0.0415 (10) −0.0010 (9) 0.0118 (8) 0.0043 (8)
C11 0.0376 (11) 0.0377 (11) 0.0481 (12) −0.0057 (8) 0.0120 (9) −0.0107 (9)
C12 0.0602 (16) 0.0659 (16) 0.0554 (15) −0.0148 (13) 0.0236 (13) −0.0094 (13)
C13 0.071 (2) 0.087 (2) 0.087 (2) −0.0274 (18) 0.047 (2) −0.0282 (19)
C14 0.0470 (15) 0.071 (2) 0.129 (3) −0.0104 (15) 0.036 (2) −0.039 (2)
C15 0.0417 (14) 0.0596 (18) 0.116 (3) 0.0051 (13) 0.0075 (16) −0.0152 (18)
C16 0.0423 (12) 0.0517 (14) 0.0653 (16) 0.0035 (11) 0.0071 (11) −0.0039 (12)
Ag1 0.05306 (12) 0.05106 (12) 0.03463 (10) −0.01141 (8) 0.00173 (8) 0.00047 (7)
P1 0.0351 (3) 0.0382 (3) 0.0317 (3) −0.0029 (2) 0.0043 (2) −0.0018 (2)
S1 0.0448 (3) 0.0354 (3) 0.0576 (3) 0.0031 (2) 0.0160 (3) 0.0063 (2)

Geometric parameters (Å, º)

C1—N2 1.339 (3) C31—P1 1.815 (2)
C1—N1 1.346 (3) C32—C33 1.380 (4)
C1—S1i 1.746 (2) C32—H32 0.9300
C2—N2 1.347 (3) C33—C34 1.379 (5)
C2—C3 1.372 (4) C33—H33 0.9300
C2—C5 1.505 (3) C34—C35 1.370 (5)
C3—C4 1.373 (3) C34—H34 0.9300
C3—H3 0.89 (3) C35—C36 1.377 (4)
C4—N1 1.343 (3) C35—H35 0.9300
C4—C6 1.495 (4) C36—H36 0.9300
C5—H5A 0.9600 N1—Ag1 2.3763 (18)
C5—H5B 0.9600 C11—C12 1.386 (3)
C5—H5C 0.9600 C11—C16 1.387 (4)
C6—H6A 0.9600 C11—P1 1.818 (2)
C6—H6B 0.9600 C12—C13 1.401 (4)
C6—H6C 0.9600 C12—H12 0.9300
C21—C26 1.385 (3) C13—C14 1.360 (6)
C21—C22 1.387 (3) C13—H13 0.9300
C21—P1 1.818 (2) C14—C15 1.346 (5)
C22—C23 1.391 (4) C14—H14 0.9300
C22—H22 0.9300 C15—C16 1.393 (4)
C23—C24 1.367 (5) C15—H15 0.9300
C23—H23 0.9300 C16—H16 0.9300
C24—C25 1.362 (5) Ag1—P1 2.4088 (6)
C24—H24 0.9300 Ag1—S1 2.5492 (6)
C25—C26 1.390 (4) Ag1—S1i 2.7897 (6)
C25—H25 0.9300 Ag1—Ag1i 2.9569 (4)
C26—H26 0.9300 S1—C1i 1.746 (2)
C31—C32 1.387 (4) S1—Ag1i 2.7897 (6)
C31—C36 1.390 (3)
N2—C1—N1 125.0 (2) C35—C34—C33 120.3 (3)
N2—C1—S1i 118.66 (17) C35—C34—H34 119.9
N1—C1—S1i 116.31 (15) C33—C34—H34 119.9
N2—C2—C3 121.8 (2) C34—C35—C36 119.7 (3)
N2—C2—C5 116.1 (3) C34—C35—H35 120.2
C3—C2—C5 122.1 (3) C36—C35—H35 120.2
C2—C3—C4 118.8 (2) C35—C36—C31 120.9 (3)
C2—C3—H3 117.6 (19) C35—C36—H36 119.6
C4—C3—H3 123 (2) C31—C36—H36 119.6
N1—C4—C3 120.1 (2) C4—N1—C1 117.93 (19)
N1—C4—C6 116.9 (2) C4—N1—Ag1 137.84 (16)
C3—C4—C6 122.9 (2) C1—N1—Ag1 103.78 (13)
C2—C5—H5A 109.5 C1—N2—C2 116.3 (2)
C2—C5—H5B 109.5 C12—C11—C16 119.3 (2)
H5A—C5—H5B 109.5 C12—C11—P1 117.4 (2)
C2—C5—H5C 109.5 C16—C11—P1 123.23 (18)
H5A—C5—H5C 109.5 C11—C12—C13 119.0 (3)
H5B—C5—H5C 109.5 C11—C12—H12 120.5
C4—C6—H6A 109.5 C13—C12—H12 120.5
C4—C6—H6B 109.5 C14—C13—C12 120.9 (3)
H6A—C6—H6B 109.5 C14—C13—H13 119.5
C4—C6—H6C 109.5 C12—C13—H13 119.5
H6A—C6—H6C 109.5 C15—C14—C13 120.1 (3)
H6B—C6—H6C 109.5 C15—C14—H14 120.0
C26—C21—C22 118.8 (2) C13—C14—H14 120.0
C26—C21—P1 123.42 (18) C14—C15—C16 121.0 (3)
C22—C21—P1 117.80 (19) C14—C15—H15 119.5
C21—C22—C23 119.9 (3) C16—C15—H15 119.5
C21—C22—H22 120.1 C11—C16—C15 119.7 (3)
C23—C22—H22 120.1 C11—C16—H16 120.2
C24—C23—C22 120.7 (3) C15—C16—H16 120.2
C24—C23—H23 119.7 N1—Ag1—P1 115.73 (5)
C22—C23—H23 119.7 N1—Ag1—S1 114.96 (5)
C25—C24—C23 119.8 (3) P1—Ag1—S1 116.81 (2)
C25—C24—H24 120.1 N1—Ag1—S1i 60.73 (5)
C23—C24—H24 120.1 P1—Ag1—S1i 123.56 (2)
C24—C25—C26 120.4 (3) S1—Ag1—S1i 112.912 (15)
C24—C25—H25 119.8 N1—Ag1—Ag1i 84.41 (5)
C26—C25—H25 119.8 P1—Ag1—Ag1i 155.550 (17)
C21—C26—C25 120.4 (3) S1—Ag1—Ag1i 60.342 (16)
C21—C26—H26 119.8 S1i—Ag1—Ag1i 52.570 (14)
C25—C26—H26 119.8 C31—P1—C11 105.11 (10)
C32—C31—C36 118.8 (2) C31—P1—C21 104.39 (10)
C32—C31—P1 117.53 (18) C11—P1—C21 103.96 (10)
C36—C31—P1 123.68 (19) C31—P1—Ag1 115.14 (7)
C33—C32—C31 120.0 (3) C11—P1—Ag1 115.39 (8)
C33—C32—H32 120.0 C21—P1—Ag1 111.66 (7)
C31—C32—H32 120.0 C1i—S1—Ag1 102.21 (7)
C34—C33—C32 120.3 (3) C1i—S1—Ag1i 79.07 (7)
C34—C33—H33 119.9 Ag1—S1—Ag1i 67.088 (15)
C32—C33—H33 119.9

Symmetry code: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···S1ii 0.93 2.94 3.801 (3) 154
C14—H14···N2iii 0.93 2.69 3.471 (4) 143
C35—H35···N2iv 0.93 2.93 3.756 (4) 151

Symmetry codes: (ii) x+1, y, z; (iii) −x+2, −y, −z; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2464).

References

  1. Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277–284.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620.
  5. Hameau, A., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2012). Inorg. Chim. Acta, 388, 60–70.
  6. Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251–1256.
  7. Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.
  10. Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.
  11. Nimthong, R., Pakawatchai, C. & Wattanakanjana, Y. (2012). Acta Cryst. E68, m645. [DOI] [PMC free article] [PubMed]
  12. Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773–m774. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812048210/bh2464sup1.cif

e-68-m1572-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812048210/bh2464Isup2.hkl

e-68-m1572-Isup2.hkl (267.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES