Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 3;68(Pt 12):o3271. doi: 10.1107/S1600536812044662

4-Meth­oxy-4-methyl-6-phenyl-1,3-diazinane-2-thione

Seranthimata Samshuddin a, Badiadka Narayana a, Hemmige S Yathirajan b, Thomas Gerber c, Eric Hosten c, Richard Betz c,*
PMCID: PMC3588820  PMID: 23468785

Abstract

In the title pyrimidine derivative, C12H16N2OS, the tetra­hydro­pyrimidine ring adopts an envelope conformation with the C atom of the methyl­ene –CH2– group as the flap. In the crystal, N—H⋯O and N—H⋯S hydrogen bonds connect mol­ecules into undulating sheets perpendicular to the a axis.

Related literature  

For the pharmacological importance of pyrimidines, see: Selvam et al. (2012); Gupta et al. (2010); Lagoja (2005). For the crystal structures of related compounds, see: Kant et al. (2012); Fun et al. (2012); Betz et al. (2012). For puckering analysis of six-membered rings, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-68-o3271-scheme1.jpg

Experimental  

Crystal data  

  • C12H16N2OS

  • M r = 236.33

  • Monoclinic, Inline graphic

  • a = 10.1894 (3) Å

  • b = 14.6889 (4) Å

  • c = 9.2026 (2) Å

  • β = 111.719 (1)°

  • V = 1279.58 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.47 × 0.41 × 0.33 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.898, T max = 0.926

  • 12126 measured reflections

  • 3173 independent reflections

  • 2876 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.07

  • 3173 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044662/lh5545sup1.cif

e-68-o3271-sup1.cif (20.5KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812044662/lh5545Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044662/lh5545Isup3.hkl

e-68-o3271-Isup3.hkl (155.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044662/lh5545Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.862 (15) 2.503 (16) 3.3527 (9) 168.8 (12)
N2—H2⋯O1ii 0.841 (15) 2.076 (16) 2.8863 (12) 161.7 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. HSY thanks Mysore University for the research facilities.

supplementary crystallographic information

Comment

Pyrimidine and its derivatives exhibit remarkable pharmacological activities including anticonvulsant, antiinflammatory, antibacterial, antifungal, antiviral and anticancer properties (Selvam et al., 2012; Gupta et al., 2010). They constitute important building blocks of natural biologically active compounds like nucleic acids, several vitamins, coenzymes, purines and some marine microorganisms (Lagoja, 2005). Pyrimidine and its derivatives form a component in a number of marketed drugs including flucytosine (antimycotic), floxuridine (antimetabolite), ambrisentan (endothelin receptor antagonist), fluorouracil (antimetabolite), pyrimethamine (antimalarial), piribedil (antiparkinsonian), minoxidil (antihypertensive), carmofur (antineoplastic), bosentan (endothelin receptor antagonist) and many more. The crystal structures of some pyrimidine derivatives such as 2-[3,5-bis(4-methoxyphenyl)-4,5- dihydro-1H-pyrazol-1-yl]-4,6-bis(4-methoxyphenyl)pyrimidine (Kant et al., 2012) and 2-[3,5-bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]- 4,6-bis(4-fluorophenyl)pyrimidine (Fun et al., 2012) have been reported. In view of the pharmacological importance of pyrimidine derivatives and in continuation of our work on synthesis of pyrimidine derivatives (Betz et al., 2012), we have determined the crystal structure of the title compound, 4-methoxy-4-methyl-6-phenyl-1,3-diazinane-2-thione.

According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the tetrahydropyrimidine ring adopts an 5E conformation with atom C4 as the flap (C(4)E). The aromatic substituent is found in a nearly perpendicular conformation with respect to the tetrahydropyrimidine ring with the least-squares planes defined by the intracyclic atoms of the phenyl group on the one hand and the five essentially planar atoms [C1/C2/C3/N1/N2] of the 1,3-diazacyclohexane ring on the other hand intersecting at an angle of 74.95 (7) ° (Fig. 1).

In the crystal, N–H···O and N–H···S hydrogen bonds connect molecules into undulating sheets perpendicular to the crystallographic a axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(6)R22(8) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems is 4.9991 (9) Å (Fig. 2).

Experimental

To a mixture of benzylidene acetone (1.46 g, 0.01 mol) and thiourea (1.1 g, 0.015 mol) in methanol (20 ml), sodium methoxide solution (1 ml) was added and the batch was refluxed for 8 h. The precipitate formed was collected by filtration and dried, yield: 82%. The single crystal was grown from a DMF solution of the title compound by slow evaporation at room temperature.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.98Å for methyl groups, C—H 0.99 Å for the methylene group and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bond motif (dashed lines), viewed along [0 1 0]. Symmetry operators: (i) x, -y + 1/2, z + 1/2; (ii) x, -y + 1/2, z - 1/2; (iii) -x + 2, -y, -z.

Crystal data

C12H16N2OS F(000) = 504
Mr = 236.33 Dx = 1.227 Mg m3
Monoclinic, P21/c Melting point: 538 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.1894 (3) Å Cell parameters from 8597 reflections
b = 14.6889 (4) Å θ = 2.8–28.3°
c = 9.2026 (2) Å µ = 0.24 mm1
β = 111.719 (1)° T = 200 K
V = 1279.58 (6) Å3 Block, yellow
Z = 4 0.47 × 0.41 × 0.33 mm

Data collection

Bruker APEXII CCD diffractometer 3173 independent reflections
Radiation source: fine-focus sealed tube 2876 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.898, Tmax = 0.926 k = −19→18
12126 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.045P)2 + 0.354P] where P = (Fo2 + 2Fc2)/3
3173 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.93913 (3) 0.10930 (2) −0.17540 (4) 0.03661 (10)
O1 0.83361 (8) 0.14192 (5) 0.27715 (9) 0.03043 (18)
N1 0.84364 (9) 0.06949 (6) 0.04949 (10) 0.02460 (18)
H1 0.9003 (15) 0.0236 (10) 0.0685 (16) 0.035 (3)*
N2 0.75092 (9) 0.19789 (6) −0.09623 (11) 0.02608 (18)
H2 0.7641 (14) 0.2391 (10) −0.1528 (17) 0.034 (3)*
C1 0.66034 (10) 0.21995 (7) −0.00883 (11) 0.02360 (19)
H1A 0.7138 0.2607 0.0806 0.028*
C2 0.83890 (10) 0.12684 (7) −0.06586 (11) 0.0237 (2)
C3 0.76328 (10) 0.08187 (7) 0.14971 (11) 0.02301 (19)
C4 0.62693 (10) 0.13127 (7) 0.05627 (12) 0.0250 (2)
H4A 0.5735 0.1445 0.1244 0.030*
H4B 0.5676 0.0921 −0.0308 0.030*
C5 0.73786 (12) −0.01063 (8) 0.20866 (14) 0.0331 (2)
H5A 0.6847 −0.0493 0.1195 0.050*
H5B 0.6837 −0.0029 0.2764 0.050*
H5C 0.8288 −0.0394 0.2681 0.050*
C7 0.97628 (15) 0.12213 (10) 0.37158 (17) 0.0499 (4)
H7A 1.0353 0.1282 0.3088 0.075*
H7B 0.9829 0.0597 0.4114 0.075*
H7C 1.0090 0.1648 0.4596 0.075*
C11 0.52944 (11) 0.26970 (8) −0.11439 (12) 0.0284 (2)
C12 0.43381 (12) 0.22891 (10) −0.24745 (15) 0.0396 (3)
H12 0.4503 0.1688 −0.2747 0.048*
C13 0.31340 (14) 0.27604 (13) −0.34123 (19) 0.0581 (4)
H13 0.2484 0.2479 −0.4325 0.070*
C14 0.28830 (16) 0.36287 (14) −0.3024 (2) 0.0655 (5)
H14 0.2053 0.3943 −0.3656 0.079*
C15 0.3827 (2) 0.40383 (13) −0.1729 (2) 0.0688 (5)
H15 0.3657 0.4641 −0.1467 0.083*
C16 0.50400 (17) 0.35781 (10) −0.07860 (18) 0.0479 (3)
H16 0.5696 0.3871 0.0108 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.04262 (18) 0.03902 (18) 0.03912 (17) 0.01582 (12) 0.02784 (14) 0.01265 (11)
O1 0.0299 (4) 0.0309 (4) 0.0259 (4) 0.0042 (3) 0.0050 (3) −0.0048 (3)
N1 0.0276 (4) 0.0221 (4) 0.0272 (4) 0.0053 (3) 0.0137 (3) 0.0038 (3)
N2 0.0264 (4) 0.0259 (4) 0.0299 (4) 0.0049 (3) 0.0150 (3) 0.0078 (3)
C1 0.0232 (4) 0.0244 (4) 0.0234 (4) 0.0032 (4) 0.0089 (4) 0.0013 (3)
C2 0.0229 (4) 0.0246 (5) 0.0238 (5) 0.0003 (3) 0.0090 (4) 0.0004 (3)
C3 0.0244 (4) 0.0228 (4) 0.0230 (4) 0.0003 (3) 0.0102 (4) 0.0008 (3)
C4 0.0220 (4) 0.0279 (5) 0.0260 (5) 0.0012 (4) 0.0099 (4) 0.0028 (4)
C5 0.0355 (5) 0.0280 (5) 0.0402 (6) 0.0011 (4) 0.0192 (5) 0.0092 (4)
C7 0.0379 (7) 0.0491 (8) 0.0437 (7) 0.0081 (6) −0.0070 (6) −0.0078 (6)
C11 0.0260 (5) 0.0318 (5) 0.0301 (5) 0.0062 (4) 0.0134 (4) 0.0082 (4)
C12 0.0298 (5) 0.0447 (7) 0.0385 (6) −0.0028 (5) 0.0059 (5) 0.0109 (5)
C13 0.0289 (6) 0.0783 (11) 0.0543 (8) −0.0064 (7) 0.0005 (6) 0.0294 (8)
C14 0.0392 (7) 0.0798 (12) 0.0785 (12) 0.0273 (8) 0.0227 (8) 0.0470 (10)
C15 0.0746 (12) 0.0558 (10) 0.0820 (12) 0.0406 (9) 0.0359 (10) 0.0253 (9)
C16 0.0579 (8) 0.0387 (7) 0.0479 (7) 0.0200 (6) 0.0205 (7) 0.0063 (6)

Geometric parameters (Å, º)

S1—C2 1.6994 (10) C5—H5B 0.9800
O1—C7 1.4206 (14) C5—H5C 0.9800
O1—C3 1.4301 (12) C7—H7A 0.9800
N1—C2 1.3420 (13) C7—H7B 0.9800
N1—C3 1.4536 (12) C7—H7C 0.9800
N1—H1 0.862 (15) C11—C16 1.3835 (17)
N2—C2 1.3362 (13) C11—C12 1.3873 (17)
N2—C1 1.4674 (12) C12—C13 1.3949 (18)
N2—H2 0.841 (15) C12—H12 0.9500
C1—C11 1.5159 (13) C13—C14 1.374 (3)
C1—C4 1.5241 (14) C13—H13 0.9500
C1—H1A 1.0000 C14—C15 1.364 (3)
C3—C5 1.5203 (14) C14—H14 0.9500
C3—C4 1.5206 (13) C15—C16 1.394 (2)
C4—H4A 0.9900 C15—H15 0.9500
C4—H4B 0.9900 C16—H16 0.9500
C5—H5A 0.9800
C7—O1—C3 117.66 (9) C3—C5—H5B 109.5
C2—N1—C3 124.02 (8) H5A—C5—H5B 109.5
C2—N1—H1 118.5 (9) C3—C5—H5C 109.5
C3—N1—H1 117.4 (9) H5A—C5—H5C 109.5
C2—N2—C1 124.55 (8) H5B—C5—H5C 109.5
C2—N2—H2 116.4 (10) O1—C7—H7A 109.5
C1—N2—H2 117.2 (10) O1—C7—H7B 109.5
N2—C1—C11 109.75 (8) H7A—C7—H7B 109.5
N2—C1—C4 107.70 (8) O1—C7—H7C 109.5
C11—C1—C4 113.10 (8) H7A—C7—H7C 109.5
N2—C1—H1A 108.7 H7B—C7—H7C 109.5
C11—C1—H1A 108.7 C16—C11—C12 118.81 (11)
C4—C1—H1A 108.7 C16—C11—C1 119.76 (11)
N2—C2—N1 118.74 (9) C12—C11—C1 121.43 (10)
N2—C2—S1 119.89 (8) C11—C12—C13 120.09 (14)
N1—C2—S1 121.36 (8) C11—C12—H12 120.0
O1—C3—N1 111.63 (8) C13—C12—H12 120.0
O1—C3—C5 111.01 (8) C14—C13—C12 120.37 (16)
N1—C3—C5 108.97 (8) C14—C13—H13 119.8
O1—C3—C4 104.19 (8) C12—C13—H13 119.8
N1—C3—C4 108.19 (8) C15—C14—C13 119.86 (13)
C5—C3—C4 112.80 (8) C15—C14—H14 120.1
C3—C4—C1 109.87 (8) C13—C14—H14 120.1
C3—C4—H4A 109.7 C14—C15—C16 120.42 (16)
C1—C4—H4A 109.7 C14—C15—H15 119.8
C3—C4—H4B 109.7 C16—C15—H15 119.8
C1—C4—H4B 109.7 C11—C16—C15 120.43 (15)
H4A—C4—H4B 108.2 C11—C16—H16 119.8
C3—C5—H5A 109.5 C15—C16—H16 119.8
C2—N2—C1—C11 −151.62 (10) N2—C1—C4—C3 53.96 (10)
C2—N2—C1—C4 −28.10 (13) C11—C1—C4—C3 175.41 (8)
C1—N2—C2—N1 1.84 (15) N2—C1—C11—C16 −117.76 (12)
C1—N2—C2—S1 −179.57 (8) C4—C1—C11—C16 121.95 (12)
C3—N1—C2—N2 −2.99 (15) N2—C1—C11—C12 62.03 (13)
C3—N1—C2—S1 178.44 (7) C4—C1—C11—C12 −58.26 (13)
C7—O1—C3—N1 −52.81 (13) C16—C11—C12—C13 −0.99 (18)
C7—O1—C3—C5 68.98 (13) C1—C11—C12—C13 179.21 (11)
C7—O1—C3—C4 −169.33 (11) C11—C12—C13—C14 −0.3 (2)
C2—N1—C3—O1 −83.72 (11) C12—C13—C14—C15 1.1 (2)
C2—N1—C3—C5 153.33 (10) C13—C14—C15—C16 −0.7 (3)
C2—N1—C3—C4 30.35 (13) C12—C11—C16—C15 1.4 (2)
O1—C3—C4—C1 63.61 (10) C1—C11—C16—C15 −178.77 (14)
N1—C3—C4—C1 −55.28 (10) C14—C15—C16—C11 −0.6 (3)
C5—C3—C4—C1 −175.90 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.862 (15) 2.503 (16) 3.3527 (9) 168.8 (12)
N2—H2···O1ii 0.841 (15) 2.076 (16) 2.8863 (12) 161.7 (13)

Symmetry codes: (i) −x+2, −y, −z; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5545).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o476–o477. [DOI] [PMC free article] [PubMed]
  3. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  4. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  5. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o807–o808. [DOI] [PMC free article] [PubMed]
  10. Gupta, J. K., Chaudhary, A., Dudhe, R., Varuna, K., Sharma, P. K. & Verma, P. K. (2010). Int. J. Pharm. Sci. Res. 1, 34–49.
  11. Kant, R., Gupta, V. K., Kapoor, K., Samshuddin, S. & Narayana, B. (2012). Acta Cryst. E68, o2398. [DOI] [PMC free article] [PubMed]
  12. Lagoja, I. M. (2005). Chem. Biodivers. 2, 1–50. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Selvam, T. P., James, C. R., Dniandev, P. V. & Valzita, S. K. (2012). Res. Pharm. 2, 1–9.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044662/lh5545sup1.cif

e-68-o3271-sup1.cif (20.5KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812044662/lh5545Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044662/lh5545Isup3.hkl

e-68-o3271-Isup3.hkl (155.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044662/lh5545Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES