Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 3;68(Pt 12):o3277. doi: 10.1107/S1600536812044911

4-Meth­oxy­benzamidinium acetate

Simona Irrera a, Gustavo Portalone a,*
PMCID: PMC3588825  PMID: 23468790

Abstract

The title compound, C8H11N2O+·CH3CO2 , was synthesized by a reaction between 4-meth­oxy­benzamidine (4-amidino­anisole) and acetic acid. In the cation, the amidinium group forms a dihedral angle of 11.65 (17)° with the mean plane of the benzene ring. The ionic components are associated in the crystal via N—H+⋯O hydrogen bonds, resulting in a one-dimensional structure consisting of dimers and catemers and orientated approximately along the c axis.

Related literature  

For the biological and pharmacological relevance of benzamidine, see: Powers & Harper (1999). For structural analysis of proton-transfer adducts containing mol­ecules of biological inter­est, see: Portalone, (2011a ); Portalone & Irrera (2011). For the supra­molecular association in proton-transfer adducts containing benzamidinium cations, see; Portalone (2010, 2011b , 2012); Irrera & Portalone (2012a ,b ); Irrera et al. (2012). For hydrogen-bond motifs, see Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o3277-scheme1.jpg

Experimental  

Crystal data  

  • C8H11N2O+·C2H3O2

  • M r = 210.23

  • Monoclinic, Inline graphic

  • a = 8.7591 (14) Å

  • b = 6.5478 (8) Å

  • c = 19.456 (3) Å

  • β = 102.580 (14)°

  • V = 1089.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.980, T max = 0.986

  • 14433 measured reflections

  • 2365 independent reflections

  • 1834 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.141

  • S = 1.08

  • 2365 reflections

  • 156 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044911/tk5166sup1.cif

e-68-o3277-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044911/tk5166Isup2.hkl

e-68-o3277-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 (3) 1.94 (3) 2.847 (2) 175 (2)
N1—H1B⋯O1i 0.91 (2) 1.98 (2) 2.832 (2) 155 (2)
N2—H2A⋯O2 0.94 (3) 1.83 (3) 2.776 (2) 176 (2)
N2—H2B⋯O2ii 0.88 (2) 1.95 (2) 2.817 (2) 168 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The present work is part of a general structural analysis of proton-transfer adducts containing molecules of biological interest (Portalone, 2011a; Portalone & Irrera, 2011). In this context, benzamidine derivatives, which have shown strong biological and pharmacological activity (Powers & Harper, 1999), are being used in our group as bricks for supramolecular construction (Portalone, 2010, 2011b, 2012). Indeed, the bidentate hydrogen-bonding interaction between the amidinium and the carboxylate functional groups can be a powerful organizing force in solution and in the solid-state.

We report here the single-crystal structure of the title molecular salt, 4-methoxybenzamidinium acetate, (I), which was obtained by a reaction between 4-methoxybenzamidine (4-amidinoanisole) and acetic acid.

The asymmetric unit of (I) comprises one non-planar 4-methoxybenzamidinium cation and one acetate anion (Fig. 1).

In the cation the amidinium group forms dihedral angle of 11.65 (17)° with the mean plane of the phenyl ring, which agrees with the values observed in protonated benzamidinium ions (14.4 (1) - 32.7 (1)°, Portalone, 2010, 2012; Irrera et al., 2012). The lack of planarity in all these systems is obviously caused by steric hindrances between the H atoms of the aromatic ring and the amidine moiety. This conformation is rather common in benzamidinium-containing small-molecule crystal structures, with the only exception of benzamidinium diliturate, where the benzamidinium cation is planar (Portalone, 2010). The pattern of bond lengths and bond angles of the 4-methoxybenzamidinium cation agrees with that reported in previous structural investigations (Irrera et al., 2012; Portalone, 2010, 2012; Irrera & Portalone, 2012a, 2012b). In particular the amidinium group, true to one's expectations, features C—N bonds within experimental error [1.312 (2) and 1.306 (2) Å], evidencing the delocalization of the π electrons and double-bond character.

In the acetate moiety the C—O bond lengths indicate delocalization of the negative charge on both O atoms, since the C—O bond lengths [1.250 (2) and 1.249 (2) Å] are intermediate between single Csp2—O and double Csp2═O, and correlate well with values for carboxylate anions [1.247 - 1.262 Å, Allen et al., 1987].

Analysis of the crystal packing of (I), (Fig. 2), shows that each amidinium unit is bound to three acetate anions by four distinct N—H+···O- strong intermolecular hydrogen bonds (N+···O- = 2.776 (2) - 2.847 (2) Å, Table 1) into a one-dimensional structure. The ion pairs of the asymmetric unit are joined by two N+—H···O- (±) hydrogen bonds to form ionic dimers with graph-set motif R22(8) (Bernstein et al., 1995). These subunits are then joined as catemers into linear chains approximately along the crystallographic c axis through the remaining N+—H···O- hydrogen bonds to adjacent anti-parallel dimers.

Experimental

4-Methoxybenzamidine (0.1 mmol, Fluka at 96% purity) was dissolved without further purification in 8 ml of a 20% solution of acetic acid and heated under reflux for 3 h. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after one week.

Refinement

All H atoms were identified in difference Fourier maps, but for refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.93 Å (phenyl) and 0.89 - 1.01 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C, phenyl). and to 1.5Ueq(C, methyl). Positional and displacement parameters of H atoms of the amidinium group were refined, giving N—H distances in the range 0.88 (2) - 0.94 (3) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level. The asymmetric unit was selected so that the two ions are linked by N+.—H···O- hydrogen bonds. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines.

Fig. 2.

Fig. 2.

Crystal packing diagram for (I), viewed approximately down b. Displacements ellipsoids are at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

Crystal data

C8H11N2O+·C2H3O2 F(000) = 448
Mr = 210.23 Dx = 1.282 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3220 reflections
a = 8.7591 (14) Å θ = 2.8–28.9°
b = 6.5478 (8) Å µ = 0.10 mm1
c = 19.456 (3) Å T = 298 K
β = 102.580 (14)° Tablets, colourless
V = 1089.0 (3) Å3 0.21 × 0.18 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer 2365 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1834 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 16.0696 pixels mm-1 θmax = 27.0°, θmin = 3.3°
ω and φ scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −8→8
Tmin = 0.980, Tmax = 0.986 l = −24→24
14433 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.3698P] where P = (Fo2 + 2Fc2)/3
2365 reflections (Δ/σ)max < 0.001
156 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.2977 (2) 1.0070 (2) 0.35136 (8) 0.0624 (5)
N1 −0.0153 (2) 0.1780 (3) 0.42774 (8) 0.0453 (4)
H1A −0.074 (3) 0.064 (4) 0.4296 (12) 0.063 (7)*
H1B 0.054 (3) 0.217 (4) 0.4677 (13) 0.063 (7)*
N2 −0.1170 (2) 0.2005 (3) 0.31128 (9) 0.0468 (4)
H2A −0.175 (3) 0.081 (4) 0.3149 (12) 0.070 (7)*
H2B −0.133 (3) 0.261 (3) 0.2696 (13) 0.055 (6)*
C1 0.0643 (2) 0.4636 (3) 0.36478 (9) 0.0343 (4)
C2 0.1370 (2) 0.5636 (3) 0.42564 (10) 0.0449 (5)
H2 0.1318 0.5077 0.4690 0.054*
C3 0.2173 (2) 0.7446 (3) 0.42381 (10) 0.0472 (5)
H3 0.2659 0.8088 0.4655 0.057*
C4 0.2248 (2) 0.8294 (3) 0.35969 (10) 0.0429 (5)
C5 0.1539 (3) 0.7298 (4) 0.29855 (10) 0.0584 (6)
H5 0.1594 0.7856 0.2552 0.070*
C6 0.0756 (3) 0.5502 (3) 0.30090 (10) 0.0510 (5)
H6 0.0293 0.4849 0.2591 0.061*
C7 −0.0247 (2) 0.2737 (3) 0.36775 (9) 0.0356 (4)
C8 0.3954 (3) 1.0997 (4) 0.41088 (13) 0.0624 (6)
H8A 0.3323 (10) 1.130 (2) 0.4474 (7) 0.094*
H8B 0.4395 (17) 1.231 (2) 0.3962 (3) 0.094*
H8C 0.4838 (17) 1.0040 (17) 0.4315 (6) 0.094*
O1 −0.20216 (18) −0.1693 (2) 0.44118 (7) 0.0548 (4)
O2 −0.29092 (18) −0.1444 (2) 0.32662 (7) 0.0550 (4)
C9 −0.2818 (2) −0.2339 (3) 0.38404 (9) 0.0390 (4)
C10 −0.3743 (3) −0.4258 (3) 0.38417 (12) 0.0606 (6)
H10A −0.3120 (10) −0.5337 (17) 0.3841 (9) 0.091*
H10B −0.4519 (17) −0.4292 (13) 0.3458 (7) 0.091*
H10C −0.4143 (17) −0.4291 (12) 0.4226 (7) 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0827 (11) 0.0586 (9) 0.0449 (9) −0.0302 (8) 0.0113 (8) 0.0040 (7)
N1 0.0564 (11) 0.0443 (10) 0.0298 (8) −0.0120 (8) −0.0020 (7) 0.0052 (7)
N2 0.0613 (11) 0.0439 (10) 0.0293 (9) −0.0095 (8) −0.0034 (8) 0.0040 (7)
C1 0.0389 (10) 0.0354 (9) 0.0271 (9) 0.0018 (7) 0.0039 (7) 0.0009 (7)
C2 0.0616 (13) 0.0460 (11) 0.0263 (9) −0.0063 (9) 0.0076 (8) 0.0021 (8)
C3 0.0616 (13) 0.0474 (11) 0.0302 (10) −0.0119 (9) 0.0049 (9) −0.0056 (8)
C4 0.0485 (11) 0.0423 (10) 0.0379 (10) −0.0043 (8) 0.0092 (8) 0.0012 (8)
C5 0.0798 (16) 0.0647 (14) 0.0292 (10) −0.0221 (12) 0.0083 (10) 0.0075 (9)
C6 0.0686 (14) 0.0545 (12) 0.0270 (10) −0.0158 (10) 0.0037 (9) −0.0019 (8)
C7 0.0411 (10) 0.0358 (9) 0.0279 (9) 0.0021 (7) 0.0030 (7) 0.0007 (7)
C8 0.0673 (15) 0.0587 (14) 0.0587 (14) −0.0234 (11) 0.0086 (12) −0.0064 (11)
O1 0.0657 (10) 0.0627 (9) 0.0293 (7) −0.0192 (7) −0.0045 (6) 0.0027 (6)
O2 0.0742 (10) 0.0551 (9) 0.0281 (7) −0.0154 (7) −0.0053 (7) 0.0019 (6)
C9 0.0376 (10) 0.0436 (10) 0.0330 (10) −0.0009 (8) 0.0014 (8) −0.0003 (8)
C10 0.0608 (14) 0.0558 (13) 0.0603 (15) −0.0123 (11) 0.0023 (12) 0.0026 (11)

Geometric parameters (Å, º)

O3—C4 1.353 (2) C3—H3 0.9300
O3—C8 1.418 (3) C4—C5 1.380 (3)
N1—C7 1.312 (2) C5—C6 1.367 (3)
N1—H1A 0.91 (3) C5—H5 0.9300
N1—H1B 0.91 (2) C6—H6 0.9300
N2—C7 1.306 (2) C8—H8A 1.0093
N2—H2A 0.94 (3) C8—H8B 1.0093
N2—H2B 0.88 (2) C8—H8C 1.0093
C1—C2 1.381 (2) O1—C9 1.250 (2)
C1—C6 1.389 (3) O2—C9 1.249 (2)
C1—C7 1.475 (2) C9—C10 1.495 (3)
C2—C3 1.383 (3) C10—H10A 0.8930
C2—H2 0.9300 C10—H10B 0.8930
C3—C4 1.380 (3) C10—H10C 0.8930
C4—O3—C8 119.11 (16) C5—C6—C1 121.01 (18)
C7—N1—H1A 120.0 (14) C5—C6—H6 119.5
C7—N1—H1B 121.9 (15) C1—C6—H6 119.5
H1A—N1—H1B 118 (2) N2—C7—N1 118.69 (18)
C7—N2—H2A 119.1 (14) N2—C7—C1 120.84 (16)
C7—N2—H2B 123.6 (14) N1—C7—C1 120.45 (16)
H2A—N2—H2B 117 (2) O3—C8—H8A 109.5
C2—C1—C6 117.64 (17) O3—C8—H8B 109.5
C2—C1—C7 120.99 (16) H8A—C8—H8B 109.5
C6—C1—C7 121.36 (16) O3—C8—H8C 109.5
C1—C2—C3 121.77 (17) H8A—C8—H8C 109.5
C1—C2—H2 119.1 H8B—C8—H8C 109.5
C3—C2—H2 119.1 O2—C9—O1 123.45 (18)
C4—C3—C2 119.52 (17) O2—C9—C10 117.82 (16)
C4—C3—H3 120.2 O1—C9—C10 118.71 (17)
C2—C3—H3 120.2 C9—C10—H10A 109.5
O3—C4—C5 116.00 (17) C9—C10—H10B 109.5
O3—C4—C3 124.78 (17) H10A—C10—H10B 109.5
C5—C4—C3 119.22 (18) C9—C10—H10C 109.5
C6—C5—C4 120.83 (18) H10A—C10—H10C 109.5
C6—C5—H5 119.6 H10B—C10—H10C 109.5
C4—C5—H5 119.6
C6—C1—C2—C3 0.6 (3) C3—C4—C5—C6 0.6 (4)
C7—C1—C2—C3 −178.24 (18) C4—C5—C6—C1 0.5 (4)
C1—C2—C3—C4 0.4 (3) C2—C1—C6—C5 −1.1 (3)
C8—O3—C4—C5 −169.3 (2) C7—C1—C6—C5 177.8 (2)
C8—O3—C4—C3 10.9 (3) C2—C1—C7—N2 167.00 (19)
C2—C3—C4—O3 178.89 (19) C6—C1—C7—N2 −11.9 (3)
C2—C3—C4—C5 −1.0 (3) C2—C1—C7—N1 −11.3 (3)
O3—C4—C5—C6 −179.3 (2) C6—C1—C7—N1 169.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.91 (3) 1.94 (3) 2.847 (2) 175 (2)
N1—H1B···O1i 0.91 (2) 1.98 (2) 2.832 (2) 155 (2)
N2—H2A···O2 0.94 (3) 1.83 (3) 2.776 (2) 176 (2)
N2—H2B···O2ii 0.88 (2) 1.95 (2) 2.817 (2) 168 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x−1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5166).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Irrera, S., Ortaggi, G. & Portalone, G. (2012). Acta Cryst. C68, o447–o451. [DOI] [PubMed]
  8. Irrera, S. & Portalone, G. (2012a). Acta Cryst. E68, o3083. [DOI] [PMC free article] [PubMed]
  9. Irrera, S. & Portalone, G. (2012b). Acta Cryst. E68, o3244. [DOI] [PMC free article] [PubMed]
  10. Portalone, G. (2010). Acta Cryst. C66, o295–o301. [DOI] [PubMed]
  11. Portalone, G. (2011a). Chem. Centr. J. 5, 51. [DOI] [PMC free article] [PubMed]
  12. Portalone, G. (2011b). Acta Cryst. E67, o3394–o3395. [DOI] [PMC free article] [PubMed]
  13. Portalone, G. (2012). Acta Cryst. E68, o268–o269. [DOI] [PMC free article] [PubMed]
  14. Portalone, G. & Irrera, S. (2011). J. Mol. Struct. 991, 92–96.
  15. Powers, J. C. & Harper, J. W. (1999). Proteinase inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55–152. Elsevier: Amsterdam.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044911/tk5166sup1.cif

e-68-o3277-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044911/tk5166Isup2.hkl

e-68-o3277-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES