Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 3;68(Pt 12):o3281. doi: 10.1107/S1600536812044443

(2E)-1-Phenyl-2-[1-(2-phenyl­prop-2-en-1-yl)pyrrolidin-2-yl­idene]ethanone

Lee G Madeley a, Garreth L Morgans a, Andreas Lemmerer a, Joseph P Michael a,*
PMCID: PMC3588828  PMID: 23468793

Abstract

The title compound, C21H21NO, is a vinyl­ogous amide (enaminone) produced by reaction of 1-(2-phenyl­prop-2-en-1-yl)pyrrolidine-2-thione with phenacyl bromide. In the mol­ecule, the phenyl rings are twisted from the mean plane of the pyrrolidine ring by 11.2 (1) and 67.3 (1)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules related by translation along the b axis into chains.

Related literature  

For details of the synthesis of enamino­nes, see: Roth et al. (1971). For applications of enamino­nes in alkaloid synthesis, see: Michael et al. (1999). For a related enaminone structure, see: Lemmerer et al. (2007).graphic file with name e-68-o3281-scheme1.jpg

Experimental  

Crystal data  

  • C21H21NO

  • M r = 303.39

  • Triclinic, Inline graphic

  • a = 5.7806 (6) Å

  • b = 7.9407 (7) Å

  • c = 9.6089 (9) Å

  • α = 82.579 (7)°

  • β = 76.793 (7)°

  • γ = 83.510 (7)°

  • V = 424.21 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.4 × 0.2 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • 5222 measured reflections

  • 1563 independent reflections

  • 970 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 0.98

  • 1563 reflections

  • 208 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044443/cv5350sup1.cif

e-68-o3281-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044443/cv5350Isup2.hkl

e-68-o3281-Isup2.hkl (75.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044443/cv5350Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812044443/cv5350Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.45 3.368 (5) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the University of the Witwatersrand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work.

supplementary crystallographic information

Comment

The title compound, (2E)-1-phenyl-2-[1-(2-phenylprop-2-en-1-yl)pyrrolidin-2-ylidene] ethanone, (I), was prepared as part of an ongoing project dealing with the use of enaminones as intermediates for alkaloid synthesis (Michael et al., 1999).

In (I) (Fig. 1), two phenyl rings are twisted from the mean plane of the central pyrrolidine ring by 11.2 (1) and 67.3 (1)°, respectively. The (E) configuration and s-cis conformation of the exocyclic C═C bond of the enaminone are similar to those found in a related enaminone (Lemmerer et al., 2007). In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation along the b axis into chains (Fig. 2).

Experimental

The synthesis employed followed the Eschenmoser procedure (Roth et al., 1971). A solution of phenacyl bromide (4.30 g, 21.6 mmol) and 1-(2-phenylprop-2-en-1-yl)pyrrolidine-2-thione (4.27 g, 19.6 mmol) in dry acetonitrile (20 ml) was stirred at room temperature under an argon atmosphere until precipitation of the adduct as a gum was complete. The mixture was briefly warmed to solubilize the precipitate, after which a solution of triphenylphosphine (5.66 g, 21.6 mmol) and triethylamine (3.31 ml, 23.6 mmol) in dry MeCN (20 ml) was added dropwise to induce extrusion of sulfur, and stirring was maintained for 18 h. The solvent was evaporated and the residue was taken up into ethyl acetate (200 ml) and washed with water (3 × 100 ml) and brine (50 ml). The organic phase was dried over MgSO4, filtered and evaporated to give an orange gum. Column chromatography on silica gel with hexane:ethyl acetate (3:2 v/v) afforded the title compound (5.42 g, 91%) as very pale yellow needles, m.p. 325—326 K.

Refinement

The C-bound H atoms were geometrically positioned [C—H = 0.93 Å (alkenyl- and aromatic-H) and 0.97 Å (methylene-H)] and refined as riding with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scatterers in the molecule, 1562 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing C—H···O hydrogen bonds as dashed red lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C21H21NO Z = 1
Mr = 303.39 F(000) = 162
Triclinic, P1 Dx = 1.188 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7806 (6) Å Cell parameters from 1287 reflections
b = 7.9407 (7) Å θ = 2.2–24.8°
c = 9.6089 (9) Å µ = 0.07 mm1
α = 82.579 (7)° T = 293 K
β = 76.793 (7)° Prism, colourless
γ = 83.510 (7)° 0.4 × 0.2 × 0.19 mm
V = 424.21 (7) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer Rint = 0.040
ω scans θmax = 25.5°, θmin = 2.2°
5222 measured reflections h = −6→6
1563 independent reflections k = −9→9
970 reflections with I > 2σ(I) l = −11→11

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119 (Δ/σ)max < 0.001
S = 0.98 Δρmax = 0.11 e Å3
1563 reflections Δρmin = −0.13 e Å3
208 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6399 (6) 0.8328 (4) 1.0527 (4) 0.0522 (9)
C2 0.5691 (7) 1.0058 (4) 1.0341 (4) 0.0653 (11)
H2 0.446 1.0433 0.9869 0.078*
C3 0.6799 (8) 1.1226 (5) 1.0850 (5) 0.0752 (12)
H3 0.6316 1.2382 1.0718 0.09*
C4 0.8608 (8) 1.0687 (6) 1.1548 (5) 0.0785 (13)
H4 0.9371 1.1472 1.1881 0.094*
C5 0.9283 (7) 0.8981 (6) 1.1751 (5) 0.0789 (13)
H5 1.0501 0.8604 1.2233 0.095*
C6 0.8181 (7) 0.7835 (5) 1.1250 (4) 0.0659 (11)
H6 0.8656 0.668 1.1406 0.079*
C7 0.5255 (7) 0.6979 (4) 1.0017 (4) 0.0636 (11)
C8 0.3853 (7) 0.7440 (4) 0.8977 (4) 0.0585 (10)
H8 0.3737 0.8574 0.8591 0.07*
C9 0.2666 (7) 0.6322 (5) 0.8508 (4) 0.0636 (11)
C10 0.2782 (9) 0.4424 (5) 0.8878 (5) 0.0838 (13)
H10A 0.2124 0.4137 0.9893 0.101*
H10B 0.4419 0.3929 0.8653 0.101*
C11 0.1326 (11) 0.3781 (7) 0.7980 (7) 0.1127 (19)
H11A 0.2347 0.3109 0.7267 0.135*
H11B 0.0148 0.3068 0.8582 0.135*
C12 0.0139 (10) 0.5276 (7) 0.7269 (6) 0.1016 (17)
H12A −0.1575 0.5333 0.7633 0.122*
H12B 0.0477 0.5234 0.6238 0.122*
C13 0.0360 (8) 0.8452 (6) 0.7109 (4) 0.0773 (12)
H13A 0.0421 0.9211 0.7811 0.093*
H13B −0.1294 0.8469 0.7046 0.093*
C14 0.1767 (8) 0.9137 (6) 0.5674 (4) 0.0778 (12)
C15 0.0892 (8) 1.0875 (6) 0.5101 (4) 0.0751 (12)
C16 −0.1450 (9) 1.1520 (6) 0.5513 (6) 0.0909 (14)
H16 −0.2506 1.0866 0.6185 0.109*
C17 −0.2279 (11) 1.3117 (8) 0.4954 (7) 0.1099 (17)
H17 −0.3873 1.3518 0.5237 0.132*
C18 −0.0743 (16) 1.4078 (8) 0.3995 (7) 0.1170 (19)
H18 −0.1294 1.5144 0.3614 0.14*
C19 0.1563 (17) 1.3526 (10) 0.3579 (6) 0.121 (2)
H19 0.2612 1.422 0.2942 0.145*
C20 0.2381 (9) 1.1892 (8) 0.4114 (5) 0.1007 (17)
H20 0.3965 1.1492 0.3792 0.121*
C21 0.3663 (10) 0.8275 (8) 0.4994 (6) 0.1161 (19)
H21A 0.4527 0.8741 0.4117 0.139*
H21B 0.4147 0.7197 0.5389 0.139*
O1 0.5650 (7) 0.5495 (3) 1.0546 (4) 0.0998 (11)
N1 0.1148 (6) 0.6753 (4) 0.7626 (3) 0.0725 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.067 (2) 0.0394 (18) 0.049 (2) −0.0063 (17) −0.0088 (18) −0.0052 (16)
C2 0.081 (3) 0.041 (2) 0.076 (3) −0.004 (2) −0.019 (2) −0.0123 (18)
C3 0.094 (3) 0.048 (2) 0.086 (3) −0.011 (2) −0.016 (3) −0.018 (2)
C4 0.086 (3) 0.078 (3) 0.077 (3) −0.024 (3) −0.012 (3) −0.027 (2)
C5 0.074 (3) 0.089 (3) 0.079 (3) −0.004 (3) −0.022 (2) −0.019 (3)
C6 0.080 (3) 0.052 (2) 0.065 (3) −0.003 (2) −0.015 (2) −0.0099 (19)
C7 0.089 (3) 0.044 (2) 0.058 (3) −0.007 (2) −0.012 (2) −0.0082 (19)
C8 0.074 (2) 0.044 (2) 0.057 (2) −0.0108 (19) −0.009 (2) −0.0080 (18)
C9 0.074 (3) 0.063 (2) 0.054 (2) −0.017 (2) −0.002 (2) −0.017 (2)
C10 0.111 (3) 0.058 (2) 0.088 (3) −0.024 (2) −0.015 (3) −0.023 (2)
C11 0.135 (5) 0.097 (4) 0.118 (5) −0.047 (4) −0.020 (4) −0.034 (4)
C12 0.107 (4) 0.113 (4) 0.097 (4) −0.035 (3) −0.019 (3) −0.043 (3)
C13 0.069 (3) 0.101 (3) 0.065 (3) −0.009 (2) −0.015 (2) −0.017 (2)
C14 0.072 (3) 0.106 (3) 0.055 (2) −0.022 (2) −0.011 (2) −0.001 (2)
C15 0.077 (3) 0.108 (3) 0.048 (2) −0.032 (3) −0.015 (2) −0.014 (2)
C16 0.091 (4) 0.091 (3) 0.094 (3) −0.023 (3) −0.022 (3) −0.004 (3)
C17 0.125 (5) 0.108 (4) 0.112 (5) −0.010 (4) −0.052 (4) −0.021 (4)
C18 0.172 (7) 0.113 (5) 0.083 (4) −0.042 (5) −0.049 (4) −0.009 (4)
C19 0.179 (7) 0.126 (5) 0.064 (4) −0.078 (5) −0.019 (4) 0.010 (3)
C20 0.107 (4) 0.145 (5) 0.055 (3) −0.051 (4) −0.005 (3) −0.015 (3)
C21 0.108 (4) 0.129 (4) 0.085 (3) 0.000 (3) 0.025 (3) −0.007 (3)
O1 0.165 (3) 0.0361 (15) 0.114 (3) −0.0150 (15) −0.065 (2) 0.0006 (14)
N1 0.082 (2) 0.075 (2) 0.067 (2) −0.0187 (19) −0.018 (2) −0.0181 (18)

Geometric parameters (Å, º)

C1—C6 1.365 (5) C11—H11B 0.97
C1—C2 1.389 (4) C12—N1 1.478 (6)
C1—C7 1.507 (5) C12—H12A 0.97
C2—C3 1.380 (5) C12—H12B 0.97
C2—H2 0.93 C13—N1 1.437 (5)
C3—C4 1.368 (6) C13—C14 1.501 (6)
C3—H3 0.93 C13—H13A 0.97
C4—C5 1.368 (6) C13—H13B 0.97
C4—H4 0.93 C14—C21 1.309 (6)
C5—C6 1.360 (6) C14—C15 1.495 (6)
C5—H5 0.93 C15—C20 1.371 (6)
C6—H6 0.93 C15—C16 1.379 (6)
C7—O1 1.239 (4) C16—C17 1.390 (7)
C7—C8 1.413 (5) C16—H16 0.93
C8—C9 1.358 (5) C17—C18 1.348 (8)
C8—H8 0.93 C17—H17 0.93
C9—N1 1.342 (5) C18—C19 1.341 (8)
C9—C10 1.500 (5) C18—H18 0.93
C10—C11 1.503 (7) C19—C20 1.404 (8)
C10—H10A 0.97 C19—H19 0.93
C10—H10B 0.97 C20—H20 0.93
C11—C12 1.472 (7) C21—H21A 0.93
C11—H11A 0.97 C21—H21B 0.93
C6—C1—C2 117.7 (3) C11—C12—N1 104.6 (4)
C6—C1—C7 118.8 (3) C11—C12—H12A 110.8
C2—C1—C7 123.5 (3) N1—C12—H12A 110.8
C3—C2—C1 120.5 (4) C11—C12—H12B 110.8
C3—C2—H2 119.7 N1—C12—H12B 110.8
C1—C2—H2 119.7 H12A—C12—H12B 108.9
C4—C3—C2 120.2 (4) N1—C13—C14 115.3 (4)
C4—C3—H3 119.9 N1—C13—H13A 108.5
C2—C3—H3 119.9 C14—C13—H13A 108.5
C3—C4—C5 119.4 (4) N1—C13—H13B 108.5
C3—C4—H4 120.3 C14—C13—H13B 108.5
C5—C4—H4 120.3 H13A—C13—H13B 107.5
C6—C5—C4 120.2 (4) C21—C14—C15 122.8 (4)
C6—C5—H5 119.9 C21—C14—C13 121.7 (5)
C4—C5—H5 119.9 C15—C14—C13 115.5 (4)
C5—C6—C1 122.0 (4) C20—C15—C16 116.7 (5)
C5—C6—H6 119 C20—C15—C14 121.3 (4)
C1—C6—H6 119 C16—C15—C14 122.0 (4)
O1—C7—C8 123.9 (3) C15—C16—C17 122.0 (5)
O1—C7—C1 116.2 (4) C15—C16—H16 119
C8—C7—C1 119.9 (3) C17—C16—H16 119
C9—C8—C7 123.8 (3) C18—C17—C16 119.1 (6)
C9—C8—H8 118.1 C18—C17—H17 120.5
C7—C8—H8 118.1 C16—C17—H17 120.5
N1—C9—C8 124.8 (3) C19—C18—C17 121.3 (6)
N1—C9—C10 108.2 (3) C19—C18—H18 119.3
C8—C9—C10 127.0 (4) C17—C18—H18 119.3
C9—C10—C11 105.7 (4) C18—C19—C20 119.5 (6)
C9—C10—H10A 110.6 C18—C19—H19 120.3
C11—C10—H10A 110.6 C20—C19—H19 120.3
C9—C10—H10B 110.6 C15—C20—C19 121.3 (6)
C11—C10—H10B 110.6 C15—C20—H20 119.4
H10A—C10—H10B 108.7 C19—C20—H20 119.4
C12—C11—C10 107.5 (4) C14—C21—H21A 120
C12—C11—H11A 110.2 C14—C21—H21B 120
C10—C11—H11A 110.2 H21A—C21—H21B 120
C12—C11—H11B 110.2 C9—N1—C13 126.6 (3)
C10—C11—H11B 110.2 C9—N1—C12 113.4 (4)
H11A—C11—H11B 108.5 C13—N1—C12 119.8 (4)
C6—C1—C2—C3 1.3 (5) N1—C13—C14—C15 177.5 (3)
C7—C1—C2—C3 179.2 (4) C21—C14—C15—C20 −21.8 (7)
C1—C2—C3—C4 −0.2 (6) C13—C14—C15—C20 156.6 (4)
C2—C3—C4—C5 −0.8 (6) C21—C14—C15—C16 156.8 (5)
C3—C4—C5—C6 0.6 (7) C13—C14—C15—C16 −24.7 (5)
C4—C5—C6—C1 0.5 (6) C20—C15—C16—C17 0.4 (6)
C2—C1—C6—C5 −1.5 (6) C14—C15—C16—C17 −178.3 (4)
C7—C1—C6—C5 −179.5 (4) C15—C16—C17—C18 −1.0 (7)
C6—C1—C7—O1 14.8 (5) C16—C17—C18—C19 −0.4 (8)
C2—C1—C7—O1 −163.2 (4) C17—C18—C19—C20 2.2 (8)
C6—C1—C7—C8 −164.4 (4) C16—C15—C20—C19 1.5 (6)
C2—C1—C7—C8 17.7 (5) C14—C15—C20—C19 −179.8 (4)
O1—C7—C8—C9 4.2 (6) C18—C19—C20—C15 −2.8 (8)
C1—C7—C8—C9 −176.7 (3) C8—C9—N1—C13 −5.1 (6)
C7—C8—C9—N1 173.4 (4) C10—C9—N1—C13 174.4 (4)
C7—C8—C9—C10 −6.0 (6) C8—C9—N1—C12 179.0 (4)
N1—C9—C10—C11 5.6 (5) C10—C9—N1—C12 −1.5 (5)
C8—C9—C10—C11 −174.9 (4) C14—C13—N1—C9 94.1 (4)
C9—C10—C11—C12 −7.5 (5) C14—C13—N1—C12 −90.3 (5)
C10—C11—C12—N1 6.6 (5) C11—C12—N1—C9 −3.3 (5)
N1—C13—C14—C21 −4.0 (6) C11—C12—N1—C13 −179.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.93 2.45 3.368 (5) 170

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5350).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Lemmerer, A., Michael, J. P., Pienaar, D. P. & Sannasy, D. (2007). Acta Cryst. E63, o98–o99.
  7. Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979–988.
  8. Roth, M., Dubs, P., Götschi, E. & Eschenmoser, A. (1971). Helv. Chim. Acta, 54, 710–734.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044443/cv5350sup1.cif

e-68-o3281-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044443/cv5350Isup2.hkl

e-68-o3281-Isup2.hkl (75.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044443/cv5350Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812044443/cv5350Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES