Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 7;68(Pt 12):o3288. doi: 10.1107/S1600536812044789

5-Meth­oxy-2-benzofuran-1(3H)-one

Drielly A Paixão a, Silvana Guilardi a,*, Jorge L Pereira b, Róbson R Teixeira b,*, Júnior F Arantes b
PMCID: PMC3588834  PMID: 23468799

Abstract

In the title compound, C9H8O3, the mol­ecular skeleton is almost planar, with an r.m.s. deviation of 0.010 (2) Å. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules into a two-dimensional network parallel to the ac plane.

Related literature  

For the biological activity of isobenzofuran-1(3H)-one, see: Ma et al. (2012); Huang et al. (2012); Zhao et al. (2012); Arnone et al. (2002). For the synthesis, see: Zhang et al. (2009). For related structures, see: Sun et al. (2009); Mendenhall et al. (2003); Pereira et al. (2012).graphic file with name e-68-o3288-scheme1.jpg

Experimental  

Crystal data  

  • C9H8O3

  • M r = 164.15

  • Monoclinic, Inline graphic

  • a = 8.1819 (9) Å

  • b = 10.4285 (18) Å

  • c = 9.2965 (9) Å

  • β = 99.962 (8)°

  • V = 781.26 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.18 × 0.16 mm

Data collection  

  • Enraf–Nonius KappaCCD diffractometer

  • 14100 measured reflections

  • 1587 independent reflections

  • 1101 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.147

  • S = 1.06

  • 1587 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044789/zs2239sup1.cif

e-68-o3288-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044789/zs2239Isup2.hkl

e-68-o3288-Isup2.hkl (78.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044789/zs2239Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.54 3.419 (2) 157
C8—H8A⋯O2ii 0.97 2.52 3.372 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by CAPES, CNPq, FUNARBE and FAPEMIG. This work is also a collaboration research project of members of the Rede Mineira de Química (RQ - MG) also supported by FAPEMIG.

supplementary crystallographic information

Comment

Isobenzofuran-1(3H)-ones (phthalides) are a class of heterocyclic compounds which occur in several natural products and have been investigated for several biological properties, such as antiplatelet (Ma et al., 2012) and antioxidant activities (Huang et al., 2012), inhibition of glutamate induced cytotoxicity in PC12 cells (Zhao et al., 2012) and phytotoxicity (Arnone et al., 2002). The title compound, C9H8O3 was obtained as an intermediate in a synthetic route in the preparation of compounds endowed with phytotoxic activity and we report the crystal structure of it in a continuation of our work on the synthesis of phthalides (Pereira et al., 2012).

The title molecule (Fig. 1) is essentially planar with a mean deviation of 0.010 (2) Å from the least squares plane traced by 12 non-H atoms. All bond distances and angles agree well with those reported in the related compounds (Sun et al., 2009; Mendenhall et al., 2003; Pereira et al., 2012). In the crystal, molecules are linked via weak C6—H6···O1 hydrogen bonds (Table 1) forming chains along the ac plane. These layers are extended by C8—H8A···O2 hydrogen bonds into a two-dimensional network structure (Fig. 2).

Experimental

Starting materials were commercially available from Sigma Aldrich (USA) and were used without further purification. 5-Methoxyisobenzofuran-1(3H)-one was prepared as follows (Zhang et al., 2009). A tube of 40 ml equipped with a magnetic stir bar was charged with palladium(II) acetate (67.3 mg, 0.30 mmol), potassium bicarbonate (750 mg, 7.50 mmol), 4-methoxybenzoic acid (456 mg, 3.00 mmol) and dibromomethane (12 ml). The tube was sealed with a teflon cap and the reaction mixture was stirred at 140 °C for 18 h. After this time, the mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography eluted with hexane: ethyl acetate (2:1 v/v) to afford 5-methoxyisobenzofuran-1(3H)-one in 33% yield (164 mg, 1.00 mmol). The crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation from acetone solution at room temperature as a yellow solid; m.p. 113.4–114.7 °C. IR (selected bands, cm-1): 3032, 2922, 2852, 1736, 1601, 1489, 1452, 1361, 1333, 1261, 1146, 1036, 986, 773. 1H NMR (300 MHz, CDCl3): δ 3.89 (s, 3H, H9), 5.25 (s, 2H, H8), 6.91 (d, 1H, J = 0.6 Hz, H6), 7.02 (dd, 1H, J = 8.4, 0.6 Hz, H4), 7.80 (d, 1H, J = 8.4 Hz, H3). 13C NMR (75 MHz, CDCl3): δ 56.1 (C9), 69.3 (C8), 106.2 (C6), 116.7 (C4), 118.2 (C2), 127.4 (C3), 149.6 (C7), 164.9 (C5), 171.1 (C1). HREIMS m/z (M+H+): Calcd for C9H8O3, 165.0552; found: 165.0606.

Refinement

Hydrogen atoms were included in the refinement at calculated positions (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C)(aromatic and methylene) or 1.5Ueq(C)(methyl), using a riding-model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labeling and displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H8O3 Dx = 1.396 Mg m3
Mr = 164.15 Melting point = 386.4–386.7 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.1819 (9) Å Cell parameters from 1685 reflections
b = 10.4285 (18) Å θ = 3.2–26.4°
c = 9.2965 (9) Å µ = 0.11 mm1
β = 99.962 (8)° T = 293 K
V = 781.26 (18) Å3 Prism, yellow
Z = 4 0.30 × 0.18 × 0.16 mm
F(000) = 344

Data collection

Enraf–Nonius KappaCCD diffractometer 1101 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 X-ray source Rint = 0.049
Graphite monochromator θmax = 26.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1 h = 0→10
CCD rotation images, thick slices scans k = 0→13
14100 measured reflections l = −11→11
1587 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.0576P] where P = (Fo2 + 2Fc2)/3
1587 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.37522 (15) −0.24147 (11) 0.61307 (13) 0.0781 (4)
O1 0.05757 (18) 0.21719 (13) 0.30246 (15) 0.0903 (5)
C7 0.16866 (17) 0.02605 (15) 0.40441 (16) 0.0577 (4)
C5 0.32245 (19) −0.12294 (14) 0.56458 (16) 0.0591 (4)
C3 0.3507 (2) 0.10279 (17) 0.61788 (19) 0.0691 (5)
H3 0.3971 0.17 0.6769 0.083*
C6 0.20840 (18) −0.10008 (15) 0.43826 (16) 0.0578 (4)
H6 0.1609 −0.1669 0.3791 0.069*
O2 0.1929 (2) 0.35524 (13) 0.46580 (19) 0.1117 (6)
C4 0.39278 (19) −0.02130 (16) 0.65283 (17) 0.0662 (4)
H4 0.4694 −0.0388 0.7367 0.079*
C2 0.2366 (2) 0.12584 (14) 0.49162 (18) 0.0631 (4)
C8 0.0518 (2) 0.07991 (17) 0.27798 (19) 0.0757 (5)
H8A 0.0874 0.0587 0.1866 0.091*
H8B −0.0595 0.0471 0.2757 0.091*
C9 0.3066 (3) −0.34911 (17) 0.5294 (2) 0.0956 (7)
H9A 0.3534 −0.4266 0.5748 0.143*
H9B 0.3318 −0.3432 0.4325 0.143*
H9C 0.1884 −0.3501 0.5244 0.143*
C1 0.1678 (3) 0.24532 (17) 0.4269 (2) 0.0804 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0902 (8) 0.0618 (7) 0.0735 (7) 0.0057 (6) −0.0102 (6) 0.0080 (5)
O1 0.1053 (10) 0.0749 (9) 0.0911 (9) 0.0277 (7) 0.0182 (8) 0.0207 (7)
C7 0.0555 (8) 0.0608 (9) 0.0574 (8) 0.0033 (6) 0.0117 (6) 0.0053 (6)
C5 0.0602 (8) 0.0573 (10) 0.0576 (8) 0.0000 (6) 0.0046 (7) 0.0042 (6)
C3 0.0743 (10) 0.0658 (10) 0.0678 (10) −0.0129 (8) 0.0144 (8) −0.0104 (8)
C6 0.0582 (8) 0.0576 (9) 0.0555 (8) −0.0025 (6) 0.0038 (6) −0.0010 (6)
O2 0.1675 (16) 0.0565 (9) 0.1221 (12) 0.0114 (8) 0.0560 (12) 0.0022 (7)
C4 0.0636 (9) 0.0742 (11) 0.0575 (8) −0.0091 (7) 0.0008 (7) −0.0032 (7)
C2 0.0676 (9) 0.0564 (10) 0.0687 (10) −0.0011 (6) 0.0210 (8) −0.0008 (7)
C8 0.0778 (11) 0.0768 (12) 0.0706 (10) 0.0153 (9) 0.0074 (8) 0.0127 (8)
C9 0.1225 (17) 0.0552 (11) 0.0988 (14) 0.0070 (10) −0.0099 (12) −0.0016 (9)
C1 0.1003 (14) 0.0612 (11) 0.0877 (13) 0.0118 (9) 0.0391 (11) 0.0066 (9)

Geometric parameters (Å, º)

O3—C5 1.3603 (18) C3—H3 0.93
O3—C9 1.425 (2) C6—H6 0.93
O1—C1 1.370 (3) O2—C1 1.209 (2)
O1—C8 1.449 (2) C4—H4 0.93
C7—C2 1.376 (2) C2—C1 1.454 (2)
C7—C6 1.378 (2) C8—H8A 0.97
C7—C8 1.491 (2) C8—H8B 0.97
C5—C6 1.388 (2) C9—H9A 0.96
C5—C4 1.402 (2) C9—H9B 0.96
C3—C4 1.364 (2) C9—H9C 0.96
C3—C2 1.388 (2)
C5—O3—C9 117.55 (14) C7—C2—C1 108.43 (16)
C1—O1—C8 110.05 (13) C3—C2—C1 130.82 (16)
C2—C7—C6 122.13 (14) O1—C8—C7 104.45 (14)
C2—C7—C8 108.56 (14) O1—C8—H8A 110.9
C6—C7—C8 129.31 (14) C7—C8—H8A 110.9
O3—C5—C6 124.38 (14) O1—C8—H8B 110.9
O3—C5—C4 114.75 (14) C7—C8—H8B 110.9
C6—C5—C4 120.87 (15) H8A—C8—H8B 108.9
C4—C3—C2 118.08 (15) O3—C9—H9A 109.5
C4—C3—H3 121 O3—C9—H9B 109.5
C2—C3—H3 121 H9A—C9—H9B 109.5
C7—C6—C5 117.03 (14) O3—C9—H9C 109.5
C7—C6—H6 121.5 H9A—C9—H9C 109.5
C5—C6—H6 121.5 H9B—C9—H9C 109.5
C3—C4—C5 121.14 (15) O2—C1—O1 120.56 (18)
C3—C4—H4 119.4 O2—C1—C2 131.0 (2)
C5—C4—H4 119.4 O1—C1—C2 108.49 (15)
C7—C2—C3 120.75 (15)
C9—O3—C5—C6 −1.0 (2) C8—C7—C2—C1 0.17 (17)
C9—O3—C5—C4 179.11 (15) C4—C3—C2—C7 −0.2 (2)
C2—C7—C6—C5 −0.6 (2) C4—C3—C2—C1 179.72 (15)
C8—C7—C6—C5 −179.90 (15) C1—O1—C8—C7 1.42 (18)
O3—C5—C6—C7 −179.79 (13) C2—C7—C8—O1 −0.95 (16)
C4—C5—C6—C7 0.1 (2) C6—C7—C8—O1 178.38 (14)
C2—C3—C4—C5 −0.3 (2) C8—O1—C1—O2 178.93 (16)
O3—C5—C4—C3 −179.70 (13) C8—O1—C1—C2 −1.36 (19)
C6—C5—C4—C3 0.4 (2) C7—C2—C1—O2 −179.60 (18)
C6—C7—C2—C3 0.7 (2) C3—C2—C1—O2 0.5 (3)
C8—C7—C2—C3 −179.91 (15) C7—C2—C1—O1 0.73 (19)
C6—C7—C2—C1 −179.22 (13) C3—C2—C1—O1 −179.17 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.93 2.54 3.419 (2) 157
C8—H8A···O2ii 0.97 2.52 3.372 (2) 146

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2239).

References

  1. Arnone, A., Assante, G., Nasini, G., Strada, S. & Vercesi, A. (2002). J. Nat. Prod. 65, 48–50. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Huang, X.-Z., Zhu, Y., Guan, X.-L., Tian, K., Guo, J.-M., Wang, H.-B. & Fu, G.-M. (2012). Molecules, 17, 4219–4224. [DOI] [PMC free article] [PubMed]
  5. Ma, F., Gao, Y., Qiao, H., Hu, X. & Chang, J. (2012). J. Thromb. Thrombolysis, 33, 64–73. [DOI] [PubMed]
  6. Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.
  7. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Pereira, J. L., Teixeira, R. R., Guilardi, S. & Paixão, D. A. (2012). Acta Cryst. E68, o2995. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, M.-X., Li, X., Liu, W.-Y. & Xiao, K. (2009). Acta Cryst. E65, o2146. [DOI] [PMC free article] [PubMed]
  12. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. (2009). Angew. Chem. Int. Ed. 48, 6097–6100. [DOI] [PMC free article] [PubMed]
  13. Zhao, N., Ji, M.-X., Xu, L. & Ji, B.-S. (2012). Drug. Dev. Res. 73, 11–17.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044789/zs2239sup1.cif

e-68-o3288-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044789/zs2239Isup2.hkl

e-68-o3288-Isup2.hkl (78.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044789/zs2239Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES