Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 7;68(Pt 12):o3293–o3294. doi: 10.1107/S1600536812045151

17-Hy­droxy-1,8-dimethyl-17-aza­penta­cyclo­[6.6.5.02,7.09,14.015,19]nona­deca-2,4,6,9(14),10,12-hexa­ene-16,18-dione

Barbara Miroslaw a,*, Anna E Koziol a, Magdalena Pakosinska-Parys b, Marta Struga b
PMCID: PMC3588838  PMID: 23468803

Abstract

In the title compound, C20H17NO3 (alternative name: N-hy­droxy-9,10-dimethyl-9,10-ethano­anthracene-11,12-dicarboximide), the rigid ethano­anthracene-dicarboximide moiety has a roof-shaped geometry, the inter­planar angle between the two terminal phenyl rings being 124.9 (6)°. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. C—H⋯O and C—H⋯π inter­actions link adjacent chains, leading to the formation of a three-dimensional structure.

Related literature  

For the synthesis of the title compound, see: Kossakowski & Jarocka (2000). For the biological activity of related compounds, see: Bova et al. (2009). For related structures, see: Atherton & Jones (2002); Smet et al. (2000); Su et al. (2011), Guo et al. (2010); Adams et al. (2006); He & Ng (2007); Weber et al. (1991, 1994); Yang & Swager (1998). The rigid ethano­anthracenedicarboximide moiety of the title compound shows the typical roof-shaped geometry (Weber et al., 1991; Csöregh et al., 2003). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-68-o3293-scheme1.jpg

Experimental  

Crystal data  

  • C20H17NO3

  • M r = 319.36

  • Monoclinic, Inline graphic

  • a = 13.904 (1) Å

  • b = 8.104 (1) Å

  • c = 13.946 (1) Å

  • β = 97.39 (1)°

  • V = 1558.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • 5321 measured reflections

  • 2827 independent reflections

  • 2467 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.04

  • 2827 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045151/bg2475sup1.cif

e-68-o3293-sup1.cif (17.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045151/bg2475Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045151/bg2475Isup3.hkl

e-68-o3293-Isup3.hkl (136KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045151/bg2475Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C6–C11 ring. Cg2 refers to the mid-point of the C15—C16 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.96 (2) 1.69 (2) 2.630 (1) 167 (2)
C8—H8⋯O1ii 0.95 2.54 3.408 (2) 152
C15—H15⋯O3iii 0.95 2.46 3.273 (2) 143
C17—H17⋯O2iv 0.95 2.54 3.457 (2) 163
C4—H4⋯Cg1v 1.00 2.66 3.518 (3) 144
C10—H10⋯Cg2vi 0.95 2.77 3.668 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

Roof-shaped aromatic hydrocarbon derivatives have been used for inclusion of neutral compounds (Weber et al., 1991; 1994) and as porous polymer films and sensors for dinitrotoluene with possible application as a land mine detectors (Yang & Swager, 1998). The N-substitution is the most common way of modification of these molecules (Weber et al., 1994; Smet et al., 2000). Some experiments were also conducted on the substitution in the aryl moiety (Atherton & Jones, 2002; Adams et al., 2006; He & Ng, 2007). The search of the CSD (CSD v5.33 and updates; Allen, 2002) revealed 67 crystal structures of compounds with the rigid pentacyclic 9,10-ethanoanthracenedicarboximide skeleton. However, none of these derivatives has N-hydroxy substituent and only two molecules are symmetrically substituted at bridgehead C atoms (here C5, C12; see Fig. 1). In these crystals the polycyclic skeletons are combined with voluminous macrocyclic fragments. (Su et al., 2011; Guo et al., 2010). The rigid ethanoanthracenedicarboximide moiety of the title compound (Fig. 1) shows the typical roof-shaped geometry (Weber et al., 1991; Csöregh et al., 2003); the interplanar angle between the two terminal phenyl rings is 124.9 °. The hydroxyl O atom interacts through the O3–H···O1 hydrogen bond (Fig. 2). Molecules form chains along the 21 screw axis. Between adjacent chains many C–H···O and C–H···π interactions are observed (Figs. 2–4, Table 1).

Experimental

The title compound, UPAC name: 17-hydroxy-1,8-dimethyl-17-azapentacyclo[6.6.5.02,7.09,14.015,19]nonadeca-2,4,6,9(14),10,12-hexaene-16,18-dione, was synthesized in the search of compounds with potential anxiolytic activity, as described previously (Kossakowski & Jarocka, 2000).

Refinement

All C-bonded H atoms were positioned geometrically and allowed to ride on the attached atom with the C—H bond lengths of 0.95 Å for aromatic atoms, 1.00 Å for methine and 0.98 Å for methyl groups. Uiso(H) values were fixed to 1.2Ueq(C) and 1.5Ueq(Cmethyl). The hydroxyl H atom was located in the difference electron density map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

Ortep view of the title compound with atom numbering scheme. Ellipsoids for non-hydrogen atoms were drawn at the 50 % probability level.

Fig. 2.

Fig. 2.

Linear association of molecules in crystal of 1 through the O–H···O hydrogen bonds and C–H···π interactions between adjacent chains. The Cg2 refers to the center of gravity between atoms C15/C16. Symmetry codes: (i) –x+1/2, y–1/2, –z+3/2; (vi) –x+1/2, y–1/2, –z+1/2.

Fig. 3.

Fig. 3.

C–H···O and C–H···π interactions in crystal of 1 with short C15···C15iii intermolecular contact (3.386 (2) Å). The Cg2 is the centroid of the C15/C16 bond. Symmetry codes: (iii) –x+1, –y+1, –z+1; (vi) –x+1/2, y–1/2, –z+1/2.

Fig. 4.

Fig. 4.

C–H···O hydrogen bonds and C–H···π interactions in crystal of 1. The Cg1 refers to the centroid of the C6–C11 ring. Symmetry codes: (iv) x, y+1, z; (v) –x, –y+1, –z+1.

Crystal data

C20H17NO3 F(000) = 672
Mr = 319.36 Dx = 1.361 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3666 reflections
a = 13.904 (1) Å θ = 2.9–29.8°
b = 8.104 (1) Å µ = 0.09 mm1
c = 13.946 (1) Å T = 100 K
β = 97.39 (1)° Prism, colourless
V = 1558.4 (3) Å3 0.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur (Sapphire2) diffractometer 2467 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.023
Graphite monochromator θmax = 25.2°, θmin = 2.9°
Detector resolution: 8.4221 pixels mm-1 h = −16→16
ω scans k = −9→6
5321 measured reflections l = −9→16
2827 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4721P] where P = (Fo2 + 2Fc2)/3
2827 reflections (Δ/σ)max = 0.009
223 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.28230 (8) 0.37858 (13) 0.63969 (8) 0.0154 (3)
O1 0.23524 (7) 0.61166 (12) 0.71225 (6) 0.0201 (2)
O2 0.30265 (7) 0.15262 (11) 0.54480 (7) 0.0217 (2)
O3 0.36001 (7) 0.34569 (12) 0.70937 (7) 0.0194 (2)
H3A 0.3338 (15) 0.258 (3) 0.7443 (15) 0.049 (6)*
C1 0.22513 (9) 0.51497 (16) 0.64443 (9) 0.0148 (3)
C2 0.25875 (10) 0.27735 (16) 0.55890 (9) 0.0161 (3)
C3 0.17056 (9) 0.35563 (16) 0.49956 (9) 0.0151 (3)
H3 0.1129 0.2818 0.4999 0.018*
C4 0.15350 (9) 0.51968 (15) 0.55294 (9) 0.0147 (3)
H4 0.0859 0.5217 0.5702 0.018*
C5 0.16945 (10) 0.67321 (16) 0.48659 (9) 0.0157 (3)
C6 0.09511 (9) 0.64834 (16) 0.39688 (9) 0.0161 (3)
C7 0.02301 (10) 0.76017 (17) 0.36135 (10) 0.0199 (3)
H7 0.0172 0.8623 0.3936 0.024*
C8 −0.04079 (10) 0.72243 (19) 0.27836 (11) 0.0242 (3)
H8 −0.0894 0.7994 0.2538 0.029*
C9 −0.03310 (10) 0.5725 (2) 0.23190 (10) 0.0252 (3)
H9 −0.0771 0.5464 0.1761 0.030*
C10 0.03931 (10) 0.45948 (19) 0.26700 (10) 0.0216 (3)
H10 0.0442 0.3568 0.2351 0.026*
C11 0.10405 (9) 0.49792 (17) 0.34867 (9) 0.0172 (3)
C12 0.18898 (10) 0.38987 (16) 0.39219 (9) 0.0167 (3)
C13 0.27923 (10) 0.49978 (16) 0.40301 (9) 0.0159 (3)
C14 0.36774 (10) 0.45997 (18) 0.37202 (10) 0.0206 (3)
H14 0.3746 0.3601 0.3379 0.025*
C15 0.44605 (10) 0.56721 (19) 0.39128 (10) 0.0253 (3)
H15 0.5065 0.5400 0.3704 0.030*
C16 0.43639 (10) 0.71368 (19) 0.44081 (10) 0.0239 (3)
H16 0.4903 0.7861 0.4534 0.029*
C17 0.34813 (10) 0.75541 (17) 0.47223 (10) 0.0195 (3)
H17 0.3417 0.8559 0.5059 0.023*
C18 0.26956 (10) 0.64801 (16) 0.45364 (9) 0.0159 (3)
C19 0.15742 (11) 0.83661 (16) 0.53834 (10) 0.0207 (3)
H19A 0.0939 0.8391 0.5618 0.031*
H19B 0.1619 0.9282 0.4932 0.031*
H19C 0.2087 0.8474 0.5932 0.031*
C20 0.19871 (11) 0.22982 (17) 0.33594 (10) 0.0230 (3)
H20A 0.2102 0.2562 0.2698 0.034*
H20B 0.1389 0.1654 0.3342 0.034*
H20C 0.2533 0.1654 0.3678 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0145 (6) 0.0179 (6) 0.0133 (5) −0.0008 (4) 0.0005 (4) 0.0025 (4)
O1 0.0195 (5) 0.0236 (5) 0.0173 (5) −0.0011 (4) 0.0024 (4) −0.0065 (4)
O2 0.0259 (6) 0.0150 (5) 0.0245 (5) 0.0039 (4) 0.0045 (4) 0.0008 (4)
O3 0.0143 (5) 0.0250 (5) 0.0176 (5) −0.0010 (4) −0.0024 (4) 0.0058 (4)
C1 0.0129 (6) 0.0164 (7) 0.0159 (7) −0.0034 (5) 0.0058 (5) 0.0010 (5)
C2 0.0182 (7) 0.0144 (7) 0.0167 (7) −0.0036 (5) 0.0062 (5) 0.0021 (5)
C3 0.0149 (6) 0.0152 (7) 0.0154 (7) −0.0028 (5) 0.0032 (5) −0.0006 (5)
C4 0.0130 (6) 0.0160 (6) 0.0155 (7) −0.0015 (5) 0.0031 (5) −0.0010 (5)
C5 0.0154 (7) 0.0153 (7) 0.0166 (7) −0.0006 (5) 0.0026 (5) 0.0010 (5)
C6 0.0141 (7) 0.0190 (7) 0.0158 (7) −0.0024 (5) 0.0049 (5) 0.0024 (5)
C7 0.0173 (7) 0.0193 (7) 0.0242 (8) 0.0006 (5) 0.0067 (6) 0.0055 (6)
C8 0.0158 (7) 0.0310 (8) 0.0261 (8) 0.0008 (6) 0.0034 (6) 0.0126 (6)
C9 0.0193 (7) 0.0376 (9) 0.0177 (7) −0.0065 (6) −0.0011 (6) 0.0059 (6)
C10 0.0202 (7) 0.0280 (8) 0.0168 (7) −0.0038 (6) 0.0026 (5) −0.0007 (6)
C11 0.0167 (7) 0.0207 (7) 0.0149 (7) −0.0026 (5) 0.0048 (5) 0.0019 (5)
C12 0.0187 (7) 0.0187 (7) 0.0130 (6) −0.0008 (5) 0.0028 (5) −0.0005 (5)
C13 0.0172 (7) 0.0194 (7) 0.0110 (6) 0.0013 (5) 0.0015 (5) 0.0048 (5)
C14 0.0218 (7) 0.0233 (7) 0.0179 (7) 0.0056 (6) 0.0072 (6) 0.0054 (6)
C15 0.0170 (7) 0.0350 (9) 0.0251 (8) 0.0061 (6) 0.0079 (6) 0.0138 (7)
C16 0.0159 (7) 0.0310 (8) 0.0242 (8) −0.0048 (6) 0.0005 (6) 0.0118 (6)
C17 0.0198 (7) 0.0206 (7) 0.0175 (7) −0.0030 (6) −0.0003 (5) 0.0055 (6)
C18 0.0158 (7) 0.0189 (7) 0.0127 (6) 0.0011 (5) 0.0012 (5) 0.0051 (5)
C19 0.0229 (7) 0.0174 (7) 0.0223 (7) 0.0001 (6) 0.0046 (6) −0.0011 (6)
C20 0.0292 (8) 0.0219 (7) 0.0181 (7) 0.0003 (6) 0.0039 (6) −0.0034 (6)

Geometric parameters (Å, º)

N1—C1 1.3679 (17) C9—H9 0.9500
N1—O3 1.3831 (14) C10—C11 1.3933 (19)
N1—C2 1.3981 (17) C10—H10 0.9500
O1—C1 1.2223 (16) C11—C12 1.5314 (19)
O2—C2 1.2099 (16) C12—C13 1.5304 (19)
O3—H3A 0.96 (2) C12—C20 1.5308 (19)
C1—C4 1.5149 (18) C13—C14 1.3936 (19)
C2—C3 1.5264 (18) C13—C18 1.4085 (18)
C3—C4 1.5567 (17) C14—C15 1.392 (2)
C3—C12 1.5758 (18) C14—H14 0.9500
C3—H3 1.0000 C15—C16 1.388 (2)
C4—C5 1.5831 (18) C15—H15 0.9500
C4—H4 1.0000 C16—C17 1.397 (2)
C5—C19 1.5275 (18) C16—H16 0.9500
C5—C6 1.5303 (18) C17—C18 1.3948 (19)
C5—C18 1.5345 (18) C17—H17 0.9500
C6—C7 1.3944 (19) C19—H19A 0.9800
C6—C11 1.4053 (19) C19—H19B 0.9800
C7—C8 1.399 (2) C19—H19C 0.9800
C7—H7 0.9500 C20—H20A 0.9800
C8—C9 1.387 (2) C20—H20B 0.9800
C8—H8 0.9500 C20—H20C 0.9800
C9—C10 1.402 (2)
C1—N1—O3 121.87 (10) C11—C10—H10 120.0
C1—N1—C2 115.83 (11) C9—C10—H10 120.0
O3—N1—C2 122.27 (11) C10—C11—C6 119.83 (12)
N1—O3—H3A 100.7 (12) C10—C11—C12 125.48 (12)
O1—C1—N1 123.07 (12) C6—C11—C12 114.68 (11)
O1—C1—C4 129.30 (12) C13—C12—C20 114.73 (11)
N1—C1—C4 107.62 (11) C13—C12—C11 106.67 (11)
O2—C2—N1 123.39 (12) C20—C12—C11 113.32 (11)
O2—C2—C3 130.24 (12) C13—C12—C3 103.89 (10)
N1—C2—C3 106.36 (11) C20—C12—C3 111.94 (11)
C2—C3—C4 104.88 (10) C11—C12—C3 105.43 (10)
C2—C3—C12 111.78 (11) C14—C13—C18 119.86 (13)
C4—C3—C12 110.94 (10) C14—C13—C12 125.47 (12)
C2—C3—H3 109.7 C18—C13—C12 114.58 (11)
C4—C3—H3 109.7 C15—C14—C13 119.71 (13)
C12—C3—H3 109.7 C15—C14—H14 120.1
C1—C4—C3 104.90 (10) C13—C14—H14 120.1
C1—C4—C5 112.69 (10) C16—C15—C14 120.43 (13)
C3—C4—C5 110.51 (10) C16—C15—H15 119.8
C1—C4—H4 109.5 C14—C15—H15 119.8
C3—C4—H4 109.5 C15—C16—C17 120.54 (13)
C5—C4—H4 109.5 C15—C16—H16 119.7
C19—C5—C6 113.39 (11) C17—C16—H16 119.7
C19—C5—C18 114.55 (11) C18—C17—C16 119.30 (13)
C6—C5—C18 106.32 (10) C18—C17—H17 120.3
C19—C5—C4 111.91 (10) C16—C17—H17 120.3
C6—C5—C4 104.10 (10) C17—C18—C13 120.16 (12)
C18—C5—C4 105.72 (10) C17—C18—C5 125.47 (12)
C7—C6—C11 119.84 (12) C13—C18—C5 114.35 (11)
C7—C6—C5 125.74 (12) C5—C19—H19A 109.5
C11—C6—C5 114.42 (11) C5—C19—H19B 109.5
C6—C7—C8 120.17 (13) H19A—C19—H19B 109.5
C6—C7—H7 119.9 C5—C19—H19C 109.5
C8—C7—H7 119.9 H19A—C19—H19C 109.5
C9—C8—C7 119.95 (13) H19B—C19—H19C 109.5
C9—C8—H8 120.0 C12—C20—H20A 109.5
C7—C8—H8 120.0 C12—C20—H20B 109.5
C8—C9—C10 120.27 (13) H20A—C20—H20B 109.5
C8—C9—H9 119.9 C12—C20—H20C 109.5
C10—C9—H9 119.9 H20A—C20—H20C 109.5
C11—C10—C9 119.92 (14) H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C6–C11 ring. Cg2 refers to the mid-point of the C15—C16 bond.

D—H···A D—H H···A D···A D—H···A
O3—H3A···O1i 0.96 (2) 1.69 (2) 2.630 (1) 167 (2)
C8—H8···O1ii 0.95 2.54 3.408 (2) 152
C15—H15···O3iii 0.95 2.46 3.273 (2) 143
C17—H17···O2iv 0.95 2.54 3.457 (2) 163
C4—H4···Cg1v 1.00 2.66 3.518 (3) 144
C10—H10···Cg2vi 0.95 2.77 3.668 (3) 158

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z; (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2475).

References

  1. Adams, H., Bawa, R. A. & Jones, S. (2006). Org. Biomol. Chem. 4, 4206–4213. [DOI] [PubMed]
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Atherton, J. C. C. & Jones, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2166–2173.
  4. Bova, S., Saponara, S., Rampa, A., Gobbi, S., Cima, L., Fusi, F., Sgaragli, G., Cavalli, M., de los Rios, C., Striessnig, J. & Bisi, A. (2009). J. Med. Chem. 52, 1259–1262. [DOI] [PubMed]
  5. Csöregh, I., Finge, S. & Weber, E. (2003). Struct. Chem. 14, 241–246.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Guo, J.-B., Xiang, J.-F. & Chen, C.-F. (2010). Eur. J. Org. Chem. pp. 5056–5062.
  8. He, L. & Ng, S. W. (2007). Acta Cryst. E63, o602–o603.
  9. Kossakowski, J. & Jarocka, M. (2000). Acta Pol. Pharm. 57, 60–62. [PubMed]
  10. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Smet, M., Corens, D., Van Meervelt, L. & Dehaen, W. (2000). Molecules, 5, 179–188.
  13. Su, Y.-S., Liu, J.-W., Jiang, Y. & Chen, C.-F. (2011). Chem. Eur. J. 17, 2435–2441. [DOI] [PubMed]
  14. Weber, E., Finge, S. & Csöregh, I. (1991). J. Org. Chem. 56, 7281–7288.
  15. Weber, E., Reutel, C., Foces-Foces, C. & Llamas-Saiz, A. L. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1455–1461.
  16. Yang, J.-S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864–11873.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045151/bg2475sup1.cif

e-68-o3293-sup1.cif (17.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045151/bg2475Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045151/bg2475Isup3.hkl

e-68-o3293-Isup3.hkl (136KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045151/bg2475Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES