Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 7;68(Pt 12):o3295. doi: 10.1107/S160053681204500X

N-(1,3-Thia­zol-2-yl)-N′-[(thio­phen-2-yl)carbon­yl]thio­urea hemihydrate

Durga Prasad Singh a, Seema Pratap a, Sema Öztürk Yildirim b, Ray J Butcher c,*
PMCID: PMC3588839  PMID: 23468804

Abstract

The title compound, C9H7N3OS3·0.5H2O, crystallizes with two independent but similar mol­ecules in the asymmetric unit, both of which are linked by a water mol­ecule through O—H⋯N hydrogen bonds. In addition the water O atom is further linked by N—H⋯O hydrogen bonds to two additional main mol­ecules, forming a tetra­meric unit. These tetra­meric units then form infinite ribbons parallel to the ac plane.The dihedral angle between the thio­phenoyl and thia­zolyl rings is 12.15 (10) and 21.69 (11)° in mol­ecules A and B, respectively. The central thio­urea core makes dihedral angles of 5.77 (11) and 8.61 (9)°, respectively, with the thio­­phen­oyl and thia­zolyl rings in mol­ecule A and 8.41 (10) and 13.43 (12)° in mol­ecule B. Each mol­ecule adopts a trans–cis geometry with respect to the position of thio­phenoyl and thia­zole groups relative to the S atom across the thio­urea C—N bonds. This geometry is stabilized by intra­molecular N—H⋯O hydrogen bonds.

Related literature  

For general background to aroyl­thio­urea and its derivatives, see: Aly et al. (2007). For related structures, see: Koch (2001); Pérez et al. (2008). For their biological activity, see: Saeed et al. (2008); Gu et al. (2007); Xu et al. (2004); Yan & Xue (2008). graphic file with name e-68-o3295-scheme1.jpg

Experimental  

Crystal data  

  • C9H7N3OS3·0.5H2O

  • M r = 278.37

  • Triclinic, Inline graphic

  • a = 7.4489 (4) Å

  • b = 11.1060 (6) Å

  • c = 14.7935 (7) Å

  • α = 93.559 (4)°

  • β = 99.813 (4)°

  • γ = 107.789 (5)°

  • V = 1139.74 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.86 mm−1

  • T = 123 K

  • 0.35 × 0.25 × 0.18 mm

Data collection  

  • Oxford Diffraction Xcalibur (Ruby, Gemini CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.441, T max = 1.000

  • 7828 measured reflections

  • 4566 independent reflections

  • 3906 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.110

  • S = 1.08

  • 4566 reflections

  • 304 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204500X/zs2240sup1.cif

e-68-o3295-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204500X/zs2240Isup2.hkl

e-68-o3295-Isup2.hkl (223.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204500X/zs2240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1W i 0.86 2.22 3.003 (3) 152
N1B—H1BA⋯O1W ii 0.86 2.14 2.973 (3) 163
N2A—H2AA⋯O1A 0.86 1.89 2.599 (3) 138
N2B—H2BA⋯O1B 0.86 1.90 2.588 (3) 136
O1W—H1W⋯N3B 0.82 (1) 2.06 (1) 2.852 (3) 163 (4)
O1W—H2W⋯N3A 0.82 (1) 2.09 (1) 2.892 (3) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF– MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Aroylthiourea and its derivatives are an important class of organic compounds in which the sulphur atom is a major ligand atom and plays an important role in coordination chemistry with transition metals. These compounds are found to be useful in heterocyclic synthesis and many of these substrates have interesting biological activities (Aly et al., 2007). Aroylthioureas and and its derivatives are also known to exhibit a wide range of biological activities, such as anticancer (Saeed et al., 2010), anti-fungal (Saeed et al., 2008), antibacterial, antiviral, anti-tubercular, insecticidal, organocatalyst (Gu et al., 2007) and as agrochemicals (Xu et al., 2004).

The title compound (Fig. 1), C9H7N3OS3.0.5H2O, crystallizes with two independent but similar molecules in the asymmetric unit both of which are linked by a water molecule through O—H···N hydrogen bonds. In addition the water O is further linked by N-H···O hydrogen bonds to two additional C9H7N3OS3 molecules, forming a tetrameric moiety. These tetrameric moieties then form infinite ribbons parallel to the ac plane (Fig.2).

The main bond lengths and angles are within the range obtained for similar compounds (Koch et al., 2001; Perez et al., 2008). The C6A-S2A [1.657 (2)Å], C6B-S2B [1.659 (2)Å] and C5A-O1A [1.233 (3)Å], C5B-O1B [1.232 (3)Å] bonds show typical double-bond character. However, the C-N bond lengths, C5A-N1A [1.388 (3)Å], C6A-N1A [1.395 (3)Å], C6A-N2A [1.345 (3)Å], C7A-N2A [1.383 (3)Å] and C5B-N1B [1.385 (3)Å], C6B-N1B [1.390 (3)Å], C6B-N2B [1.350 (3)Å], C7B-N2B [1.383 (3)Å] are shorter than the normal C-N single-bond length of about 1.48 Å (Allen, 2002). These results can be explained by the existence of resonance in this part of the molecule. In first molecule(A) the central thiourea fragment (N1A-C6A-S2A-N2A) makes the dihedral angle of 5.77(0.11)° and 8.61(0.09 )° with thiophenoyl (S1A/C4A-C1A) and thiazolyl ring (C7A-S3A-C9A-C8A-N3A). Where as in second molecule(B) the central thiourea fragment (N1B/C6B/S2B/N2B) makes the dihedral angle of 8.41(0.10)° with (S1B/C4B-C1B) group, and the thiazole ring (C7B-S3B-C9B-C8B-N3B) is 13.43(0.12)°, respectively. The dihedral angle between the thiophenoyl and thiazolyl rings is 12.15(0.10)° in molecule A and 21.69(0.11)° in molecule B. The trans-cis geometry in the thiourea moiety of both molecule is stabilized by the N-H···O and C-H···O hydrogen bonds (Fig.2 and Table 1).

Experimental

A solution of 2-thiophenecarbonyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added dropwise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was refluxed for 50 minutes. After cooling to room temperature, a solution of 4-chloroaniline (0.01 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The product was recrystallized from ethanol as colorless block crystals.

Refinement

Hydrogen atoms on the water molecule were located in a difference-Fourier map and both positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate the intramolecular N—H···O and inter-species O—H···N hydrogen bonds.

Fig. 2.

Fig. 2.

Crystal packing for the title compound viewed along the c axis. Dashed lines indicate an intermolecular N—H···O and O—H···N hydrogen bonds.

Crystal data

C9H7N3OS3·0.5H2O Z = 4
Mr = 278.37 F(000) = 572
Triclinic, P1 Dx = 1.622 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.4489 (4) Å Cell parameters from 3735 reflections
b = 11.1060 (6) Å θ = 3.1–75.6°
c = 14.7935 (7) Å µ = 5.86 mm1
α = 93.559 (4)° T = 123 K
β = 99.813 (4)° Block, colorless
γ = 107.789 (5)° 0.35 × 0.25 × 0.18 mm
V = 1139.74 (11) Å3

Data collection

Oxford Diffraction Xcalibur (Ruby, Gemini CCD) diffractometer 4566 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3906 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 10.5081 pixels mm-1 θmax = 75.8°, θmin = 3.1°
ω scans h = −9→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→13
Tmin = 0.441, Tmax = 1.000 l = −12→18
7828 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1264P] where P = (Fo2 + 2Fc2)/3
4566 reflections (Δ/σ)max = 0.001
304 parameters Δρmax = 0.43 e Å3
3 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.17373 (9) 0.25490 (5) 0.47025 (4) 0.02167 (15)
S1B 0.26874 (10) −0.44204 (6) 0.98233 (4) 0.02371 (15)
S2A 0.29573 (10) −0.30344 (6) 0.38262 (4) 0.02567 (16)
S2B 0.22859 (9) 0.13688 (5) 1.07688 (4) 0.01906 (14)
S3A 0.32482 (9) −0.42492 (5) 0.56122 (4) 0.02351 (15)
S3B 0.14624 (9) 0.23871 (5) 0.89130 (4) 0.02046 (15)
O1A 0.2481 (3) 0.03651 (16) 0.55080 (11) 0.0221 (4)
O1B 0.2523 (3) −0.20849 (16) 0.90756 (12) 0.0243 (4)
O1W 0.5774 (2) 0.02421 (15) 0.75431 (12) 0.0196 (4)
N1A 0.2661 (3) −0.07508 (18) 0.41864 (13) 0.0171 (4)
H1AA 0.2675 −0.0709 0.3609 0.021*
N1B 0.2789 (3) −0.08541 (17) 1.04263 (13) 0.0149 (4)
H1BA 0.3020 −0.0830 1.1018 0.018*
N2A 0.3233 (3) −0.17714 (18) 0.54658 (13) 0.0172 (4)
H2AA 0.3276 −0.1065 0.5757 0.021*
N2B 0.2633 (3) 0.02718 (18) 0.91718 (13) 0.0158 (4)
H2BA 0.2896 −0.0347 0.8907 0.019*
N3A 0.3823 (3) −0.24320 (18) 0.69077 (14) 0.0198 (4)
N3B 0.2608 (3) 0.10852 (18) 0.77715 (13) 0.0187 (4)
C1A 0.1092 (4) 0.3120 (2) 0.36934 (18) 0.0230 (5)
H1A 0.0858 0.3894 0.3665 0.028*
C1B 0.2768 (4) −0.5164 (2) 1.07967 (18) 0.0253 (5)
H1B 0.2776 −0.5999 1.0804 0.030*
C2A 0.0959 (4) 0.2312 (2) 0.29353 (18) 0.0235 (5)
H2A 0.0615 0.2470 0.2331 0.028*
C2B 0.2821 (4) −0.4394 (2) 1.15643 (17) 0.0228 (5)
H2B 0.2863 −0.4647 1.2153 0.027*
C3A 0.1405 (3) 0.1203 (2) 0.31700 (17) 0.0196 (5)
H3A 0.1388 0.0553 0.2738 0.024*
C3B 0.2803 (3) −0.3171 (2) 1.13637 (16) 0.0188 (5)
H3B 0.2834 −0.2528 1.1805 0.023*
C4A 0.1863 (3) 0.1199 (2) 0.41070 (16) 0.0163 (5)
C4B 0.2735 (3) −0.3040 (2) 1.04436 (16) 0.0164 (5)
C5A 0.2352 (3) 0.0259 (2) 0.46643 (16) 0.0161 (5)
C5B 0.2672 (3) −0.1975 (2) 0.99201 (16) 0.0161 (5)
C6A 0.2953 (3) −0.1828 (2) 0.45404 (16) 0.0170 (5)
C6B 0.2569 (3) 0.0239 (2) 1.00755 (16) 0.0152 (4)
C7A 0.3461 (3) −0.2706 (2) 0.60104 (17) 0.0167 (5)
C7B 0.2328 (3) 0.1179 (2) 0.86155 (16) 0.0149 (4)
C8A 0.3920 (4) −0.3491 (2) 0.73281 (18) 0.0226 (5)
H8A 0.4158 −0.3481 0.7967 0.027*
C8B 0.2079 (4) 0.2002 (2) 0.73046 (17) 0.0210 (5)
H8B 0.2173 0.2082 0.6691 0.025*
C9A 0.3645 (4) −0.4542 (2) 0.67459 (18) 0.0254 (6)
H9A 0.3667 −0.5323 0.6932 0.030*
C9B 0.1420 (4) 0.2768 (2) 0.77978 (17) 0.0219 (5)
H9B 0.0998 0.3417 0.7570 0.026*
H1W 0.486 (3) 0.052 (3) 0.750 (3) 0.050*
H2W 0.531 (4) −0.0536 (3) 0.744 (2) 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0280 (3) 0.0159 (3) 0.0215 (3) 0.0091 (2) 0.0033 (2) −0.0003 (2)
S1B 0.0384 (4) 0.0153 (3) 0.0203 (3) 0.0137 (3) 0.0053 (2) −0.0009 (2)
S2A 0.0424 (4) 0.0177 (3) 0.0177 (3) 0.0141 (3) 0.0017 (3) −0.0029 (2)
S2B 0.0280 (3) 0.0126 (3) 0.0167 (3) 0.0081 (2) 0.0033 (2) −0.0014 (2)
S3A 0.0336 (3) 0.0113 (3) 0.0234 (3) 0.0059 (2) 0.0030 (2) −0.0002 (2)
S3B 0.0286 (3) 0.0172 (3) 0.0218 (3) 0.0133 (2) 0.0095 (2) 0.0050 (2)
O1A 0.0312 (10) 0.0176 (8) 0.0176 (9) 0.0089 (7) 0.0043 (7) −0.0004 (6)
O1B 0.0396 (11) 0.0183 (8) 0.0183 (9) 0.0139 (8) 0.0064 (8) 0.0011 (7)
O1W 0.0232 (9) 0.0117 (8) 0.0228 (9) 0.0067 (7) 0.0012 (7) −0.0014 (7)
N1A 0.0231 (10) 0.0127 (9) 0.0151 (9) 0.0065 (8) 0.0015 (8) 0.0000 (7)
N1B 0.0183 (9) 0.0120 (9) 0.0145 (9) 0.0060 (7) 0.0019 (7) 0.0006 (7)
N2A 0.0217 (10) 0.0104 (9) 0.0175 (10) 0.0043 (7) 0.0018 (8) −0.0020 (7)
N2B 0.0189 (9) 0.0123 (9) 0.0181 (10) 0.0079 (7) 0.0046 (8) −0.0001 (7)
N3A 0.0210 (10) 0.0154 (10) 0.0204 (10) 0.0035 (8) 0.0015 (8) 0.0019 (8)
N3B 0.0229 (10) 0.0139 (9) 0.0192 (10) 0.0061 (8) 0.0042 (8) 0.0007 (8)
C1A 0.0238 (12) 0.0190 (12) 0.0285 (13) 0.0101 (10) 0.0045 (10) 0.0058 (10)
C1B 0.0376 (15) 0.0148 (11) 0.0254 (13) 0.0125 (10) 0.0030 (11) 0.0042 (10)
C2A 0.0228 (12) 0.0283 (13) 0.0220 (12) 0.0117 (10) 0.0037 (10) 0.0058 (10)
C2B 0.0313 (13) 0.0177 (12) 0.0184 (12) 0.0090 (10) 0.0006 (10) 0.0026 (9)
C3A 0.0189 (11) 0.0183 (11) 0.0220 (12) 0.0066 (9) 0.0043 (9) 0.0014 (9)
C3B 0.0210 (12) 0.0130 (11) 0.0202 (12) 0.0059 (9) −0.0009 (9) −0.0031 (9)
C4A 0.0141 (10) 0.0137 (10) 0.0195 (11) 0.0031 (8) 0.0023 (9) −0.0008 (9)
C4B 0.0153 (10) 0.0117 (10) 0.0218 (12) 0.0055 (8) 0.0020 (9) −0.0031 (9)
C5A 0.0139 (10) 0.0120 (10) 0.0199 (12) 0.0018 (8) 0.0022 (9) −0.0015 (9)
C5B 0.0139 (10) 0.0124 (10) 0.0212 (12) 0.0045 (8) 0.0024 (9) −0.0010 (9)
C6A 0.0164 (11) 0.0137 (10) 0.0182 (11) 0.0030 (8) 0.0002 (9) 0.0009 (8)
C6B 0.0132 (10) 0.0100 (10) 0.0201 (11) 0.0022 (8) 0.0009 (8) 0.0003 (8)
C7A 0.0150 (11) 0.0107 (10) 0.0219 (12) 0.0016 (8) 0.0026 (9) −0.0003 (8)
C7B 0.0137 (10) 0.0109 (10) 0.0194 (11) 0.0042 (8) 0.0015 (8) −0.0006 (8)
C8A 0.0228 (12) 0.0218 (12) 0.0217 (12) 0.0054 (10) 0.0026 (10) 0.0062 (10)
C8B 0.0245 (12) 0.0181 (11) 0.0196 (12) 0.0059 (10) 0.0029 (9) 0.0042 (9)
C9A 0.0304 (14) 0.0169 (12) 0.0269 (14) 0.0048 (10) 0.0036 (11) 0.0082 (10)
C9B 0.0268 (13) 0.0195 (12) 0.0219 (12) 0.0102 (10) 0.0042 (10) 0.0088 (10)

Geometric parameters (Å, º)

S1A—C1A 1.709 (3) N2B—H2BA 0.8600
S1A—C4A 1.727 (2) N3A—C7A 1.306 (3)
S1B—C1B 1.705 (3) N3A—C8A 1.379 (3)
S1B—C4B 1.725 (2) N3B—C7B 1.303 (3)
S2A—C6A 1.655 (2) N3B—C8B 1.382 (3)
S2B—C6B 1.657 (2) C1A—C2A 1.362 (4)
S3A—C9A 1.721 (3) C1A—H1A 0.9300
S3A—C7A 1.728 (2) C1B—C2B 1.366 (4)
S3B—C7B 1.721 (2) C1B—H1B 0.9300
S3B—C9B 1.726 (2) C2A—C3A 1.418 (3)
O1A—C5A 1.231 (3) C2A—H2A 0.9300
O1B—C5B 1.230 (3) C2B—C3B 1.411 (3)
O1W—H1W 0.8199 (10) C2B—H2B 0.9300
O1W—H2W 0.8199 (11) C3A—C4A 1.370 (3)
N1A—C5A 1.387 (3) C3A—H3A 0.9300
N1A—C6A 1.396 (3) C3B—C4B 1.372 (3)
N1A—H1AA 0.8600 C3B—H3B 0.9300
N1B—C5B 1.383 (3) C4A—C5A 1.463 (3)
N1B—C6B 1.393 (3) C4B—C5B 1.461 (3)
N1B—H1BA 0.8600 C8A—C9A 1.347 (4)
N2A—C6A 1.344 (3) C8A—H8A 0.9300
N2A—C7A 1.385 (3) C8B—C9B 1.340 (4)
N2A—H2AA 0.8600 C8B—H8B 0.9300
N2B—C6B 1.348 (3) C9A—H9A 0.9300
N2B—C7B 1.387 (3) C9B—H9B 0.9300
C1A—S1A—C4A 91.39 (12) C3A—C4A—C5A 131.8 (2)
C1B—S1B—C4B 91.37 (12) C3A—C4A—S1A 111.53 (18)
C9A—S3A—C7A 88.14 (12) C5A—C4A—S1A 116.61 (17)
C7B—S3B—C9B 88.16 (11) C3B—C4B—C5B 131.9 (2)
H1W—O1W—H2W 106 (2) C3B—C4B—S1B 111.50 (17)
C5A—N1A—C6A 127.1 (2) C5B—C4B—S1B 116.60 (18)
C5A—N1A—H1AA 116.4 O1A—C5A—N1A 122.3 (2)
C6A—N1A—H1AA 116.4 O1A—C5A—C4A 121.5 (2)
C5B—N1B—C6B 126.7 (2) N1A—C5A—C4A 116.1 (2)
C5B—N1B—H1BA 116.7 O1B—C5B—N1B 122.6 (2)
C6B—N1B—H1BA 116.7 O1B—C5B—C4B 121.1 (2)
C6A—N2A—C7A 128.3 (2) N1B—C5B—C4B 116.3 (2)
C6A—N2A—H2AA 115.9 N2A—C6A—N1A 114.9 (2)
C7A—N2A—H2AA 115.9 N2A—C6A—S2A 125.44 (18)
C6B—N2B—C7B 128.1 (2) N1A—C6A—S2A 119.68 (17)
C6B—N2B—H2BA 116.0 N2B—C6B—N1B 114.6 (2)
C7B—N2B—H2BA 116.0 N2B—C6B—S2B 125.81 (17)
C7A—N3A—C8A 110.1 (2) N1B—C6B—S2B 119.57 (17)
C7B—N3B—C8B 109.9 (2) N3A—C7A—N2A 118.5 (2)
C2A—C1A—S1A 112.31 (19) N3A—C7A—S3A 115.58 (18)
C2A—C1A—H1A 123.8 N2A—C7A—S3A 125.85 (18)
S1A—C1A—H1A 123.8 N3B—C7B—N2B 118.3 (2)
C2B—C1B—S1B 112.34 (19) N3B—C7B—S3B 115.79 (17)
C2B—C1B—H1B 123.8 N2B—C7B—S3B 125.78 (18)
S1B—C1B—H1B 123.8 C9A—C8A—N3A 115.1 (2)
C1A—C2A—C3A 112.5 (2) C9A—C8A—H8A 122.4
C1A—C2A—H2A 123.7 N3A—C8A—H8A 122.4
C3A—C2A—H2A 123.7 C9B—C8B—N3B 115.3 (2)
C1B—C2B—C3B 112.4 (2) C9B—C8B—H8B 122.3
C1B—C2B—H2B 123.8 N3B—C8B—H8B 122.3
C3B—C2B—H2B 123.8 C8A—C9A—S3A 111.08 (19)
C4A—C3A—C2A 112.3 (2) C8A—C9A—H9A 124.5
C4A—C3A—H3A 123.9 S3A—C9A—H9A 124.5
C2A—C3A—H3A 123.9 C8B—C9B—S3B 110.83 (18)
C4B—C3B—C2B 112.4 (2) C8B—C9B—H9B 124.6
C4B—C3B—H3B 123.8 S3B—C9B—H9B 124.6
C2B—C3B—H3B 123.8
C4A—S1A—C1A—C2A 0.6 (2) C7A—N2A—C6A—N1A 176.5 (2)
C4B—S1B—C1B—C2B 0.3 (2) C7A—N2A—C6A—S2A −4.3 (4)
S1A—C1A—C2A—C3A −0.5 (3) C5A—N1A—C6A—N2A −10.2 (3)
S1B—C1B—C2B—C3B −0.3 (3) C5A—N1A—C6A—S2A 170.44 (18)
C1A—C2A—C3A—C4A 0.1 (3) C7B—N2B—C6B—N1B 175.1 (2)
C1B—C2B—C3B—C4B 0.1 (3) C7B—N2B—C6B—S2B −5.7 (4)
C2A—C3A—C4A—C5A 177.8 (2) C5B—N1B—C6B—N2B −13.9 (3)
C2A—C3A—C4A—S1A 0.3 (3) C5B—N1B—C6B—S2B 166.76 (18)
C1A—S1A—C4A—C3A −0.49 (19) C8A—N3A—C7A—N2A 177.4 (2)
C1A—S1A—C4A—C5A −178.44 (19) C8A—N3A—C7A—S3A −0.9 (3)
C2B—C3B—C4B—C5B 179.2 (2) C6A—N2A—C7A—N3A 176.3 (2)
C2B—C3B—C4B—S1B 0.1 (3) C6A—N2A—C7A—S3A −5.5 (4)
C1B—S1B—C4B—C3B −0.2 (2) C9A—S3A—C7A—N3A 0.9 (2)
C1B—S1B—C4B—C5B −179.44 (19) C9A—S3A—C7A—N2A −177.3 (2)
C6A—N1A—C5A—O1A 7.0 (4) C8B—N3B—C7B—N2B 174.97 (19)
C6A—N1A—C5A—C4A −173.1 (2) C8B—N3B—C7B—S3B −1.3 (3)
C3A—C4A—C5A—O1A −170.5 (2) C6B—N2B—C7B—N3B 174.7 (2)
S1A—C4A—C5A—O1A 6.9 (3) C6B—N2B—C7B—S3B −9.5 (3)
C3A—C4A—C5A—N1A 9.6 (4) C9B—S3B—C7B—N3B 1.54 (19)
S1A—C4A—C5A—N1A −173.01 (16) C9B—S3B—C7B—N2B −174.4 (2)
C6B—N1B—C5B—O1B 6.8 (4) C7A—N3A—C8A—C9A 0.5 (3)
C6B—N1B—C5B—C4B −173.2 (2) C7B—N3B—C8B—C9B 0.2 (3)
C3B—C4B—C5B—O1B −176.5 (2) N3A—C8A—C9A—S3A 0.2 (3)
S1B—C4B—C5B—O1B 2.5 (3) C7A—S3A—C9A—C8A −0.6 (2)
C3B—C4B—C5B—N1B 3.5 (4) N3B—C8B—C9B—S3B 0.9 (3)
S1B—C4B—C5B—N1B −177.49 (16) C7B—S3B—C9B—C8B −1.32 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O1Wi 0.86 2.22 3.003 (3) 152
N1B—H1BA···O1Wii 0.86 2.14 2.973 (3) 163
N2A—H2AA···O1A 0.86 1.89 2.599 (3) 138
N2B—H2BA···O1B 0.86 1.90 2.588 (3) 136
O1W—H1W···N3B 0.82 (1) 2.06 (1) 2.852 (3) 163 (4)
O1W—H2W···N3A 0.82 (1) 2.09 (1) 2.892 (3) 167 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2240).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.
  3. Gu, C.-L., Liu, L., Sui, Y., Zhao, J.-L. D., Wang, D. & Chen, Y.-J. (2007). Tetrahedron, 18, 455–463.
  4. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  5. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695. [DOI] [PMC free article] [PubMed]
  6. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222.
  9. Yan, L. & Xue, S.-J. (2008). Chin. J. Struct. Chem. 27, 543–546.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204500X/zs2240sup1.cif

e-68-o3295-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204500X/zs2240Isup2.hkl

e-68-o3295-Isup2.hkl (223.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204500X/zs2240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES