Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 7;68(Pt 12):o3300–o3301. doi: 10.1107/S1600536812044029

3-[(Furan-2-yl)carbon­yl]-1-(pyrimi­din-2-yl)thio­urea

Durga P Singh a, Seema Pratap a, Sushil K Gupta b, Ray J Butcher c,*
PMCID: PMC3588843  PMID: 23468808

Abstract

The title compound, C10H8N4O2S, was synthesized from furoyl isothio­cynate and 2-amino­pyrimidine in dry acetone. The two N—H groups are in an anti conformation with respect to each other and one N—H group is anti to the C=S group while the other is syn. The amide C=S and the C=O groups are syn to each other. The mean plane of the central thio­urea fragment forms dihedral angles of 13.50 (14) and 5.03 (11)° with the furan and pyrimidine rings, respectively. The dihedral angle between the furan and pyrimidine rings is 18.43 (10)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond generating an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of N—H⋯N and weak C—H⋯S hydrogen bonds to form inversion dimers.

Related literature  

For a general background to the biological activity of thio­urea, see: Koketsu & Ishihara (2006). For heterocyclic derivatives, metal complexes and mol­ecular electronics, see: Zeng et al. (2003); D’hooghe et al. (2005); Aly et al. (2007); Duque et al. (2009). For related structures, see: Singh et al. (2012); Koch (2001); Hassan et al. (2007); Pérez et al. (2008); Yan & Xue (2008).graphic file with name e-68-o3300-scheme1.jpg

Experimental  

Crystal data  

  • C10H8N4O2S

  • M r = 248.26

  • Monoclinic, Inline graphic

  • a = 5.6962 (2) Å

  • b = 21.0530 (7) Å

  • c = 8.7901 (3) Å

  • β = 95.559 (3)°

  • V = 1049.17 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.74 mm−1

  • T = 123 K

  • 0.40 × 0.22 × 0.11 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.421, T max = 1.000

  • 6957 measured reflections

  • 2028 independent reflections

  • 1951 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.108

  • S = 1.04

  • 2028 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044029/lh5548sup1.cif

e-68-o3300-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044029/lh5548Isup2.hkl

e-68-o3300-Isup2.hkl (99.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044029/lh5548Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N3 0.86 1.89 2.6240 (18) 142
N2—H2B⋯N4i 0.86 2.21 3.0726 (19) 175
C10—H10A⋯S1i 0.93 2.76 3.5536 (17) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

supplementary crystallographic information

Comment

Thiourea and its derivatives are known to exhibit a wide variety of biological activities (Koketsu & Ishihara, 2006). These are also widely used as precursors or intermediates towards the syntheisis of a variety of heterocyclic compounds (Zeng et al., 2003; D'hooghe, et al., 2005). In addition, aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007; Duque et al., 2009). The structure of a related compound was recently published (Yan & Xue, 2008) in which the molecule showed excellent herbicidal activity.

In view of the biological importance of thiourea and its furoic acid derviatives, the structure of the title compound was determined. In the title compound (Fig. 1), the conformation of the two N—H bonds are anti to each other, and one of them is anti to the C═S and the other is syn in the urea moiety. Furthermore, the amide C═S and the C═O groups are syn to each other, similar to the syn conformation observed in 1-furoyl-3-methyl-3-phenylthiourea (Pérez et al., 2008) and in N-(2-furoyl)-N'(6-methyl-2-pyridyl)thiourea (Hassan et al., 2007). The bond lengths and angles in the title compound are comparable to other thiourea derivatives (Koch 2001; Pérez et al., 2008; Singh et al., 2012). The C6—S1 and C5—O2 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (O2/C5/N1/C6/N2) makes dihedral angle of 13.50 (14)° with furan ring (O1/C1/C2/C3/C4)and 5.03 (11)° with pyrimidine ring (C7/N3/C8/C9/C10/N4), respectively. The dihedral angle between the mean planes of the furan and pyrimidine rings is 18.43 (10)°. The moleculer geometry is stabilized by an intramolecular N—H···N hydrogen bond generating an S(6) ring motif. In the crystal, molecules are linked by pairs of N—H···N and weak C—H···S hydrogen bonds (Table 1) forming centrosymmetric dimers (Fig. 2).

Experimental

A solution of 2-thiophenecarbonyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added dropwise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was refluxed for 50 minutes. After cooling to room temperature, a solution of 4-chloroaniline (0.01 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The resulting solide product was crystallized from acetone yielding yellow colour X-ray quality single crystals. Yield: 80%; M.P.: 455 - 456 K). Anal. Calc. for C10H8N4O2S (%): C, 48.38; H,3.25; N, 22.57. Found: C, 48.49; H, 3.28; N, 22.50.

Refinement

All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···N hydrogen bond.

Fig. 2.

Fig. 2.

Crystal packing for the title compound viewed along the c axis. Dashed lines indicate intermolecular N—H···N and C—H···S hydrogen bonds.

Crystal data

C10H8N4O2S F(000) = 512
Mr = 248.26 Dx = 1.572 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 4415 reflections
a = 5.6962 (2) Å θ = 4.2–72.7°
b = 21.0530 (7) Å µ = 2.74 mm1
c = 8.7901 (3) Å T = 123 K
β = 95.559 (3)° Plate, colorless
V = 1049.17 (6) Å3 0.40 × 0.22 × 0.11 mm
Z = 4

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 2028 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1951 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.5081 pixels mm-1 θmax = 72.8°, θmin = 4.2°
ω scans h = −6→5
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −25→25
Tmin = 0.421, Tmax = 1.000 l = −10→9
6957 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.4136P] where P = (Fo2 + 2Fc2)/3
2028 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. FT IR (selected, KBr, cm-1):3424, 3207 [ν(N – H)]; 1712 [amide-I,C═O]; 1586, 1556 [ν(C═C)]; 1505[thioureido-I], 1327 [thioureido-II], 1177 [thioureido-III], 763 [thioureido-IV]. 1H NMR (300 MHz, dmso-d6): δ 14.08 (s, 1H, H-bonded N–H); 11.90 (s, 1H,free N–H); 8.80 (d,J = 7.1 Hz, 2H, pyrimidine CH); 8.05 (d, J = 7.5 Hz, 1H, furan CH); 7.50(d,J = 7.8 Hz, 1H, pyrimidine CH);7.30 (t, J1(H,H) = 6.8 Hz,J2(H,H) = 7.1 Hz, 1H, pyrimidine CH);6.76 (t, J(H,H) = 7.8 Hz, 1H, furan CH). 13C NMR (75 MHz,dmso-d6): δ 177.4, 158.5, 157.1, 155.4, 147.6, 146.4, 117.6, 117.1, 112.9.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47026 (7) 0.555126 (18) 0.19269 (4) 0.02308 (17)
O1 −0.1466 (2) 0.71757 (6) 0.45239 (14) 0.0270 (3)
O2 0.0499 (2) 0.63600 (6) 0.26198 (14) 0.0283 (3)
N1 0.3619 (2) 0.61674 (6) 0.44577 (15) 0.0214 (3)
H1B 0.4047 0.6248 0.5403 0.026*
N2 0.7006 (2) 0.55592 (6) 0.46685 (16) 0.0201 (3)
H2B 0.7901 0.5300 0.4235 0.024*
N3 0.6446 (2) 0.60768 (6) 0.69888 (15) 0.0234 (3)
N4 0.9782 (2) 0.54126 (7) 0.67136 (15) 0.0216 (3)
C1 −0.1833 (3) 0.76232 (8) 0.5596 (2) 0.0285 (4)
H1A −0.3194 0.7867 0.5597 0.034*
C2 0.0017 (3) 0.76645 (8) 0.6641 (2) 0.0304 (4)
H2A 0.0183 0.7937 0.7478 0.036*
C3 0.1690 (3) 0.72089 (8) 0.6224 (2) 0.0288 (4)
H3A 0.3162 0.7124 0.6737 0.035*
C4 0.0718 (3) 0.69251 (7) 0.49378 (18) 0.0214 (3)
C5 0.1539 (3) 0.64564 (7) 0.38553 (18) 0.0204 (3)
C6 0.5082 (3) 0.57705 (7) 0.37439 (17) 0.0192 (3)
C7 0.7750 (3) 0.56938 (7) 0.61922 (18) 0.0196 (3)
C8 0.7219 (3) 0.61687 (8) 0.84626 (19) 0.0257 (4)
H8A 0.6344 0.6426 0.9055 0.031*
C9 0.9258 (3) 0.58957 (8) 0.91292 (19) 0.0261 (4)
H9A 0.9775 0.5958 1.0154 0.031*
C10 1.0498 (3) 0.55213 (8) 0.81814 (19) 0.0250 (4)
H10A 1.1902 0.5336 0.8591 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0259 (3) 0.0236 (3) 0.0195 (3) 0.00267 (13) 0.00100 (17) −0.00364 (13)
O1 0.0233 (6) 0.0286 (6) 0.0280 (6) 0.0067 (5) −0.0032 (5) −0.0046 (5)
O2 0.0252 (6) 0.0347 (7) 0.0245 (6) 0.0026 (5) −0.0006 (5) −0.0060 (5)
N1 0.0242 (7) 0.0215 (6) 0.0182 (6) 0.0022 (5) 0.0012 (5) −0.0023 (5)
N2 0.0232 (7) 0.0180 (6) 0.0195 (7) 0.0021 (5) 0.0041 (5) −0.0022 (5)
N3 0.0273 (7) 0.0210 (6) 0.0218 (7) 0.0036 (5) 0.0024 (5) −0.0017 (5)
N4 0.0224 (7) 0.0207 (6) 0.0217 (7) 0.0005 (5) 0.0026 (5) −0.0017 (5)
C1 0.0292 (9) 0.0246 (8) 0.0315 (9) 0.0081 (6) 0.0023 (7) −0.0038 (6)
C2 0.0315 (9) 0.0282 (9) 0.0304 (9) 0.0086 (7) −0.0025 (7) −0.0094 (7)
C3 0.0264 (8) 0.0286 (8) 0.0303 (9) 0.0072 (7) −0.0030 (7) −0.0073 (7)
C4 0.0198 (7) 0.0201 (7) 0.0240 (8) 0.0013 (6) 0.0010 (6) 0.0024 (6)
C5 0.0212 (7) 0.0194 (7) 0.0206 (7) −0.0026 (6) 0.0023 (6) 0.0006 (6)
C6 0.0219 (7) 0.0152 (7) 0.0210 (7) −0.0023 (5) 0.0042 (6) 0.0003 (5)
C7 0.0224 (8) 0.0163 (7) 0.0205 (8) −0.0012 (6) 0.0037 (6) 0.0014 (6)
C8 0.0316 (9) 0.0240 (8) 0.0218 (8) 0.0038 (6) 0.0041 (6) −0.0034 (6)
C9 0.0323 (9) 0.0253 (8) 0.0202 (8) 0.0011 (6) 0.0000 (6) −0.0034 (6)
C10 0.0241 (8) 0.0258 (9) 0.0245 (9) 0.0022 (6) −0.0011 (7) 0.0002 (6)

Geometric parameters (Å, º)

S1—C6 1.6565 (15) N4—C7 1.340 (2)
O1—C1 1.363 (2) C1—C2 1.332 (3)
O1—C4 1.3679 (19) C1—H1A 0.9300
O2—C5 1.203 (2) C2—C3 1.425 (2)
N1—C6 1.3739 (19) C2—H2A 0.9300
N1—C5 1.390 (2) C3—C4 1.349 (2)
N1—H1B 0.8600 C3—H3A 0.9300
N2—C6 1.373 (2) C4—C5 1.478 (2)
N2—C7 1.394 (2) C8—C9 1.375 (2)
N2—H2B 0.8600 C8—H8A 0.9300
N3—C7 1.339 (2) C9—C10 1.389 (2)
N3—C8 1.341 (2) C9—H9A 0.9300
N4—C10 1.335 (2) C10—H10A 0.9300
C1—O1—C4 106.22 (13) O1—C4—C5 115.00 (14)
C6—N1—C5 128.64 (13) O2—C5—N1 126.67 (15)
C6—N1—H1B 115.7 O2—C5—C4 122.34 (15)
C5—N1—H1B 115.7 N1—C5—C4 110.98 (13)
C6—N2—C7 130.81 (13) N2—C6—N1 114.28 (13)
C6—N2—H2B 114.6 N2—C6—S1 120.16 (11)
C7—N2—H2B 114.6 N1—C6—S1 125.56 (12)
C7—N3—C8 116.43 (14) N3—C7—N4 126.26 (14)
C10—N4—C7 115.33 (14) N3—C7—N2 119.48 (14)
C2—C1—O1 110.97 (15) N4—C7—N2 114.26 (13)
C2—C1—H1A 124.5 N3—C8—C9 122.41 (15)
O1—C1—H1A 124.5 N3—C8—H8A 118.8
C1—C2—C3 106.41 (15) C9—C8—H8A 118.8
C1—C2—H2A 126.8 C8—C9—C10 116.07 (15)
C3—C2—H2A 126.8 C8—C9—H9A 122.0
C4—C3—C2 106.46 (15) C10—C9—H9A 122.0
C4—C3—H3A 126.8 N4—C10—C9 123.46 (15)
C2—C3—H3A 126.8 N4—C10—H10A 118.3
C3—C4—O1 109.94 (14) C9—C10—H10A 118.3
C3—C4—C5 134.87 (15)
C4—O1—C1—C2 0.5 (2) C7—N2—C6—S1 177.23 (12)
O1—C1—C2—C3 −0.5 (2) C5—N1—C6—N2 −179.49 (14)
C1—C2—C3—C4 0.3 (2) C5—N1—C6—S1 1.3 (2)
C2—C3—C4—O1 0.0 (2) C8—N3—C7—N4 −2.3 (2)
C2—C3—C4—C5 174.44 (18) C8—N3—C7—N2 177.72 (14)
C1—O1—C4—C3 −0.26 (18) C10—N4—C7—N3 1.7 (2)
C1—O1—C4—C5 −175.93 (14) C10—N4—C7—N2 −178.32 (13)
C6—N1—C5—O2 8.1 (3) C6—N2—C7—N3 2.0 (2)
C6—N1—C5—C4 −171.00 (14) C6—N2—C7—N4 −177.98 (14)
C3—C4—C5—O2 −165.63 (19) C7—N3—C8—C9 1.0 (2)
O1—C4—C5—O2 8.6 (2) N3—C8—C9—C10 0.6 (2)
C3—C4—C5—N1 13.5 (3) C7—N4—C10—C9 0.2 (2)
O1—C4—C5—N1 −172.23 (12) C8—C9—C10—N4 −1.3 (2)
C7—N2—C6—N1 −2.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···N3 0.86 1.89 2.6240 (18) 142
N2—H2B···N4i 0.86 2.21 3.0726 (19) 175
C10—H10A···S1i 0.93 2.76 3.5536 (17) 144

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5548).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.
  3. D’hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232. [DOI] [PubMed]
  4. Duque, J., Estevez-Hernandez, O., Reguera, E., Ellena, J. & Correa, R. S. (2009). J. Coord. Chem. 62, 2804–2813.
  5. Hassan, N. N. N., Kadir, M. A., Yusof, M. S. M. & Yamin, B. M. (2007). Acta Cryst. E63, o4224.
  6. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  7. Koketsu, M. & Ishihara, H. (2006). Curr. Org. Synth. 3, 439–455.
  8. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o513. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012). Acta Cryst. E68, o2882–o2883. [DOI] [PMC free article] [PubMed]
  11. Yan, L. & Xue, S.-J. (2008). Chin. J. Struct. Chem. 27, 543–546.
  12. Zeng, R.-S., Zou, S.-J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044029/lh5548sup1.cif

e-68-o3300-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044029/lh5548Isup2.hkl

e-68-o3300-Isup2.hkl (99.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044029/lh5548Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES