Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3304–o3305. doi: 10.1107/S1600536812045321

Ethyl 4-oxo-8-trifluoro­methyl-1,4-dihydro­quinoline-3-carboxyl­ate

B Garudachari a, Arun M Islor a, M N Satyanarayan b, Thomas Gerber c, Eric Hosten c, Richard Betz c,*
PMCID: PMC3588845  PMID: 23468810

Abstract

The asymmetric unit of the title compound, C13H10F3NO3, contains two independent mol­ecules with similar conformations. In the crystal, N—H⋯O hydrogen bonds link alternating independent mol­ecules into chains in [-110]. In the chain, the quinoline planes of the independent mol­ecules are almost perpendicular to each other, forming a dihedral angle of 89.8 (1)°. π–π inter­actions between the aromatic rings of quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers, the shortest centroid–centroid distances are 3.495 (1) and 3.603 (1) Å] link the hydrogen-bonded chains into layers parallel to (110). Weak C—H⋯F and C—H⋯O inter­actions further consolidate the crystal packing.

Related literature  

For background information about the pharmacological properties of quinoline derivatives, see: Holla et al. (2006); Bekhit et al. (2004); Kaur et al. (2010); Isloor et al. (2009); Vijesh et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the title compound, see: Thomas et al. (2011).graphic file with name e-68-o3304-scheme1.jpg

Experimental  

Crystal data  

  • C13H10F3NO3

  • M r = 285.22

  • Triclinic, Inline graphic

  • a = 9.8248 (3) Å

  • b = 11.0222 (3) Å

  • c = 12.3450 (4) Å

  • α = 72.934 (1)°

  • β = 74.167 (1)°

  • γ = 74.059 (1)°

  • V = 1201.67 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 200 K

  • 0.53 × 0.38 × 0.32 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.928, T max = 0.956

  • 21419 measured reflections

  • 5963 independent reflections

  • 5051 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.04

  • 5963 reflections

  • 371 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045321/cv5354sup1.cif

e-68-o3304-sup1.cif (32.7KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045321/cv5354Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045321/cv5354Isup3.hkl

e-68-o3304-Isup3.hkl (291.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045321/cv5354Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O21i 0.892 (19) 1.875 (19) 2.6588 (13) 145.5 (16)
N2—H2⋯O11ii 0.851 (18) 2.011 (17) 2.7178 (13) 139.9 (16)
N2—H2⋯O12ii 0.851 (18) 2.487 (17) 3.0380 (15) 123.2 (14)
C212—H21B⋯F22iii 0.99 2.46 3.0909 (18) 121
C204—H204⋯O13iv 0.95 2.60 3.4691 (18) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

Quinoline derivatives constitute an important class of compounds that are widely found in plants. A number of synthetic analogues have been developed over the years. Some of them exhibit remarkable effects such as antimicrobial, anti-inflammatory and antimalarial (Holla et al., 2006; Bekhit et al., 2004; Kaur et al., 2010). This follows a broader trend that shows nitrogen-containing heterocycles to be among pharmaceutically active and interesting compounds (Isloor et al., 2009; Vijesh et al., 2011) which justifies our continuing efforts in designing novel heterocyclic molecules of biological importance and study their respective molecular and crystal structure.

The title compound is a derivative of 1,4-dihydroquinoline and does not adopt its aromatic tautomeric form as a quinoline derivative. There are two independent molecules in the asymmetric unit (Fig. 1).

In the crystal, classical N—H···O hydrogen bonds (Table 1) link the alternating independent molecules into chains in [-110] (Fig. 2). In the chain, the quinoline planes of independent molecules are almost perpendicular to each other forming a dihedral angle of 89.8 (1)°. The π–π interactions between the aromatic rings of the quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers the shortest intercentroid distances are 3.495 (1) and 3.603 (1) Å, respectively] link hydrogen-bonded chains into layers parallel to the (110) plane. Weak intermolecular C–H···F contacts are observed next to intermolecular C–H···O contacts (Table 1). In every case, the range of these contacts falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. While the C–H···O contacts stem from one of the hydrogen atoms on the phenyl moiety bearing the trifluoromethyl substituent and apply the ethereal oxygen atom as acceptor, the classical hydrogen bonds invariably have double bonded oxygen atoms as acceptors. These hydrogen bonds intermittently connect the two different molecules present in the asymmetric unit into chains along [-110] and show bifurcation between the two double bonded oxygen atoms in one case. In total, these contacts connect the molecules to planes parallel to ab. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unary level (taking into account the bifurcation). The descriptor for the C–H···O contacts is D while a C11(11) descriptor is found for the C–H···F contacts on the same level.

Experimental

Diethyl({[3-(trifluoromethyl)phenyl]amino}methylene)malonate (10.0 g, 0.030 mol) and Dowtherm (100 ml) were heated to 250 °C for 5 h. The reaction mixture was then cooled to 25 °C and stirred in n-hexane (150 ml) for 10 min. The solid product obtained was filtered, dried and recrystallized from ethanol, yield: 8.0 g (93.0%) (Thomas et al., 2011).

Refinement

C-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

Two independent molecules of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed down the c axis. Dashed lines denote classical N–H···O hydrogen bonds. Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Crystal data

C13H10F3NO3 Z = 4
Mr = 285.22 F(000) = 584
Triclinic, P1 Dx = 1.577 Mg m3
Hall symbol: -P 1 Melting point = 570–568 K
a = 9.8248 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.0222 (3) Å Cell parameters from 9882 reflections
c = 12.3450 (4) Å θ = 2.5–28.3°
α = 72.934 (1)° µ = 0.14 mm1
β = 74.167 (1)° T = 200 K
γ = 74.059 (1)° Platelet, colourless
V = 1201.67 (6) Å3 0.53 × 0.38 × 0.32 mm

Data collection

Bruker APEXII CCD diffractometer 5963 independent reflections
Radiation source: fine-focus sealed tube 5051 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
φ and ω scans θmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.928, Tmax = 0.956 k = −14→14
21419 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.3846P] where P = (Fo2 + 2Fc2)/3
5963 reflections (Δ/σ)max < 0.001
371 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F11 0.33975 (9) 0.25175 (8) 0.03791 (8) 0.0439 (2)
F12 0.44442 (10) 0.35929 (10) 0.09612 (10) 0.0568 (3)
F13 0.47655 (10) 0.37218 (10) −0.08575 (9) 0.0631 (3)
F21 0.16132 (9) 0.25934 (8) 0.55061 (8) 0.0470 (2)
F22 0.05981 (10) 0.16771 (11) 0.71858 (8) 0.0581 (3)
F23 0.01521 (11) 0.13966 (11) 0.56807 (11) 0.0657 (3)
O11 −0.20937 (11) 0.70312 (9) 0.17938 (8) 0.0405 (2)
O12 −0.33287 (11) 0.58234 (11) 0.40381 (10) 0.0474 (3)
O13 −0.19356 (10) 0.39636 (9) 0.48120 (8) 0.0360 (2)
O21 0.71392 (13) −0.18698 (10) 0.68194 (9) 0.0488 (3)
O22 0.83982 (11) −0.07326 (11) 0.79574 (11) 0.0533 (3)
O23 0.69974 (11) 0.11050 (11) 0.84210 (9) 0.0445 (2)
N1 0.12165 (11) 0.38724 (9) 0.19918 (9) 0.0270 (2)
H1 0.190 (2) 0.3151 (18) 0.2098 (16) 0.046 (5)*
N2 0.38130 (11) 0.12577 (10) 0.69417 (9) 0.0276 (2)
H2 0.3130 (19) 0.1915 (17) 0.7026 (15) 0.039 (4)*
C101 0.13071 (12) 0.48491 (11) 0.09948 (10) 0.0248 (2)
C102 0.25053 (13) 0.47904 (12) 0.00530 (11) 0.0291 (2)
C103 0.25240 (14) 0.57880 (13) −0.09286 (11) 0.0341 (3)
H103 0.3331 0.5743 −0.1560 0.041*
C104 0.13755 (15) 0.68645 (13) −0.10101 (11) 0.0345 (3)
H104 0.1399 0.7543 −0.1695 0.041*
C105 0.02133 (14) 0.69401 (11) −0.00978 (11) 0.0307 (2)
H105 −0.0566 0.7675 −0.0154 0.037*
C106 0.01622 (12) 0.59419 (11) 0.09183 (10) 0.0251 (2)
C107 0.37692 (14) 0.36615 (14) 0.01239 (12) 0.0372 (3)
C108 −0.11013 (12) 0.60598 (11) 0.18858 (10) 0.0269 (2)
C109 −0.10586 (12) 0.49925 (11) 0.28998 (10) 0.0255 (2)
C110 0.00998 (12) 0.39563 (11) 0.28906 (10) 0.0261 (2)
H110 0.0107 0.3260 0.3562 0.031*
C111 −0.22344 (12) 0.50028 (11) 0.39440 (10) 0.0281 (2)
C112 −0.29520 (15) 0.38902 (15) 0.59208 (11) 0.0383 (3)
H11A −0.2959 0.2970 0.6318 0.046*
H11B −0.3939 0.4329 0.5794 0.046*
C113 −0.25346 (18) 0.45247 (16) 0.66662 (13) 0.0459 (3)
H11C −0.1546 0.4106 0.6770 0.069*
H11D −0.3202 0.4435 0.7423 0.069*
H11E −0.2583 0.5448 0.6292 0.069*
C201 0.36760 (13) 0.02791 (11) 0.65228 (10) 0.0278 (2)
C202 0.24340 (14) 0.03303 (13) 0.61281 (11) 0.0333 (3)
C203 0.23449 (18) −0.07003 (15) 0.57567 (13) 0.0445 (3)
H203 0.1504 −0.0669 0.5502 0.053*
C204 0.3472 (2) −0.17898 (15) 0.57496 (14) 0.0498 (4)
H204 0.3396 −0.2497 0.5494 0.060*
C205 0.46903 (18) −0.18417 (13) 0.61103 (12) 0.0423 (3)
H205 0.5461 −0.2582 0.6093 0.051*
C206 0.48144 (14) −0.08153 (11) 0.65054 (10) 0.0309 (3)
C207 0.12056 (14) 0.14904 (15) 0.61157 (12) 0.0390 (3)
C208 0.61343 (14) −0.09151 (12) 0.69029 (10) 0.0322 (3)
C209 0.61215 (13) 0.01330 (12) 0.73845 (10) 0.0295 (2)
C210 0.49545 (13) 0.11609 (11) 0.73754 (10) 0.0277 (2)
H210 0.4959 0.1844 0.7697 0.033*
C211 0.73085 (13) 0.00904 (13) 0.79296 (11) 0.0341 (3)
C212 0.79490 (17) 0.11036 (17) 0.91340 (13) 0.0465 (4)
H21A 0.8003 0.2007 0.9067 0.056*
H21B 0.8936 0.0623 0.8857 0.056*
C213 0.74080 (19) 0.04817 (17) 1.03738 (13) 0.0484 (4)
H21C 0.6426 0.0950 1.0643 0.073*
H21D 0.8048 0.0511 1.0846 0.073*
H21E 0.7395 −0.0424 1.0444 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F11 0.0417 (4) 0.0334 (4) 0.0518 (5) −0.0007 (3) −0.0053 (4) −0.0137 (4)
F12 0.0366 (4) 0.0627 (6) 0.0764 (7) 0.0050 (4) −0.0282 (5) −0.0237 (5)
F13 0.0424 (5) 0.0589 (6) 0.0598 (6) 0.0010 (4) 0.0196 (4) −0.0110 (5)
F21 0.0428 (5) 0.0386 (4) 0.0502 (5) −0.0027 (3) −0.0098 (4) −0.0021 (4)
F22 0.0385 (5) 0.0789 (7) 0.0411 (5) 0.0022 (4) 0.0011 (4) −0.0130 (5)
F23 0.0512 (6) 0.0676 (7) 0.0894 (8) −0.0103 (5) −0.0422 (6) −0.0120 (6)
O11 0.0428 (5) 0.0338 (5) 0.0311 (5) 0.0145 (4) −0.0083 (4) −0.0078 (4)
O12 0.0306 (5) 0.0467 (6) 0.0462 (6) 0.0050 (4) 0.0015 (4) −0.0042 (5)
O13 0.0353 (5) 0.0409 (5) 0.0252 (4) −0.0031 (4) −0.0036 (3) −0.0049 (4)
O21 0.0574 (6) 0.0394 (5) 0.0384 (5) 0.0243 (5) −0.0201 (5) −0.0154 (4)
O22 0.0336 (5) 0.0522 (6) 0.0669 (8) 0.0066 (5) −0.0198 (5) −0.0091 (5)
O23 0.0421 (5) 0.0527 (6) 0.0424 (6) −0.0029 (4) −0.0195 (4) −0.0136 (5)
N1 0.0258 (5) 0.0247 (5) 0.0271 (5) 0.0029 (4) −0.0081 (4) −0.0061 (4)
N2 0.0264 (5) 0.0251 (5) 0.0278 (5) 0.0028 (4) −0.0066 (4) −0.0078 (4)
C101 0.0260 (5) 0.0251 (5) 0.0254 (5) −0.0036 (4) −0.0083 (4) −0.0082 (4)
C102 0.0270 (5) 0.0310 (6) 0.0305 (6) −0.0051 (4) −0.0058 (4) −0.0101 (5)
C103 0.0346 (6) 0.0402 (7) 0.0286 (6) −0.0128 (5) −0.0019 (5) −0.0094 (5)
C104 0.0448 (7) 0.0322 (6) 0.0274 (6) −0.0126 (5) −0.0099 (5) −0.0020 (5)
C105 0.0381 (6) 0.0250 (5) 0.0299 (6) −0.0034 (4) −0.0130 (5) −0.0055 (4)
C106 0.0283 (5) 0.0241 (5) 0.0243 (5) −0.0021 (4) −0.0094 (4) −0.0076 (4)
C107 0.0269 (6) 0.0407 (7) 0.0392 (7) −0.0036 (5) −0.0005 (5) −0.0118 (6)
C108 0.0285 (5) 0.0263 (5) 0.0258 (5) 0.0023 (4) −0.0099 (4) −0.0094 (4)
C109 0.0253 (5) 0.0264 (5) 0.0251 (5) −0.0016 (4) −0.0079 (4) −0.0079 (4)
C110 0.0274 (5) 0.0252 (5) 0.0248 (5) −0.0017 (4) −0.0090 (4) −0.0050 (4)
C111 0.0260 (5) 0.0299 (5) 0.0291 (6) −0.0049 (4) −0.0063 (4) −0.0086 (4)
C112 0.0366 (7) 0.0491 (8) 0.0279 (6) −0.0163 (6) −0.0004 (5) −0.0061 (5)
C113 0.0509 (8) 0.0551 (9) 0.0326 (7) −0.0138 (7) −0.0049 (6) −0.0128 (6)
C201 0.0341 (6) 0.0260 (5) 0.0197 (5) −0.0044 (4) −0.0050 (4) −0.0026 (4)
C202 0.0383 (6) 0.0350 (6) 0.0250 (6) −0.0102 (5) −0.0082 (5) −0.0010 (5)
C203 0.0595 (9) 0.0459 (8) 0.0352 (7) −0.0221 (7) −0.0159 (6) −0.0045 (6)
C204 0.0807 (12) 0.0363 (7) 0.0400 (8) −0.0201 (7) −0.0168 (8) −0.0093 (6)
C205 0.0650 (9) 0.0265 (6) 0.0319 (6) −0.0031 (6) −0.0107 (6) −0.0074 (5)
C206 0.0424 (7) 0.0249 (5) 0.0202 (5) −0.0009 (5) −0.0062 (5) −0.0038 (4)
C207 0.0313 (6) 0.0496 (8) 0.0348 (7) −0.0095 (6) −0.0103 (5) −0.0042 (6)
C208 0.0381 (6) 0.0282 (6) 0.0200 (5) 0.0072 (5) −0.0064 (4) −0.0032 (4)
C209 0.0283 (5) 0.0296 (6) 0.0233 (5) 0.0018 (4) −0.0053 (4) −0.0029 (4)
C210 0.0279 (5) 0.0269 (5) 0.0247 (5) −0.0012 (4) −0.0046 (4) −0.0057 (4)
C211 0.0295 (6) 0.0372 (6) 0.0282 (6) −0.0037 (5) −0.0066 (5) 0.0010 (5)
C212 0.0445 (8) 0.0630 (9) 0.0355 (7) −0.0223 (7) −0.0154 (6) −0.0003 (6)
C213 0.0564 (9) 0.0523 (9) 0.0335 (7) −0.0136 (7) −0.0072 (6) −0.0055 (6)

Geometric parameters (Å, º)

F11—C107 1.3341 (16) C108—C109 1.4457 (16)
F12—C107 1.3470 (17) C109—C110 1.3735 (15)
F13—C107 1.3310 (16) C109—C111 1.4782 (16)
F21—C207 1.3307 (17) C110—H110 0.9500
F22—C207 1.3437 (17) C112—C113 1.498 (2)
F23—C207 1.3285 (16) C112—H11A 0.9900
O11—C108 1.2351 (14) C112—H11B 0.9900
O12—C111 1.2029 (15) C113—H11C 0.9800
O13—C111 1.3464 (15) C113—H11D 0.9800
O13—C112 1.4529 (15) C113—H11E 0.9800
O21—C208 1.2370 (15) C201—C206 1.4027 (16)
O22—C211 1.1994 (16) C201—C202 1.4141 (17)
O23—C211 1.3495 (18) C202—C203 1.375 (2)
O23—C212 1.4479 (17) C202—C207 1.4976 (19)
N1—C110 1.3355 (15) C203—C204 1.393 (2)
N1—C101 1.3773 (15) C203—H203 0.9500
N1—H1 0.892 (19) C204—C205 1.368 (2)
N2—C210 1.3358 (15) C204—H204 0.9500
N2—C201 1.3763 (15) C205—C206 1.4017 (18)
N2—H2 0.851 (18) C205—H205 0.9500
C101—C106 1.4043 (15) C206—C208 1.4737 (18)
C101—C102 1.4132 (16) C208—C209 1.4420 (18)
C102—C103 1.3765 (18) C209—C210 1.3727 (15)
C102—C107 1.4981 (17) C209—C211 1.4815 (17)
C103—C104 1.3956 (19) C210—H210 0.9500
C103—H103 0.9500 C212—C213 1.495 (2)
C104—C105 1.3712 (18) C212—H21A 0.9900
C104—H104 0.9500 C212—H21B 0.9900
C105—C106 1.4044 (16) C213—H21C 0.9800
C105—H105 0.9500 C213—H21D 0.9800
C106—C108 1.4757 (16) C213—H21E 0.9800
C111—O13—C112 117.59 (10) H11C—C113—H11D 109.5
C211—O23—C212 117.55 (12) C112—C113—H11E 109.5
C110—N1—C101 121.95 (10) H11C—C113—H11E 109.5
C110—N1—H1 114.9 (12) H11D—C113—H11E 109.5
C101—N1—H1 123.2 (12) N2—C201—C206 118.05 (11)
C210—N2—C201 121.93 (10) N2—C201—C202 122.66 (11)
C210—N2—H2 115.4 (11) C206—C201—C202 119.28 (11)
C201—N2—H2 122.2 (11) C203—C202—C201 119.74 (13)
N1—C101—C106 118.41 (10) C203—C202—C207 119.36 (13)
N1—C101—C102 122.48 (10) C201—C202—C207 120.90 (11)
C106—C101—C102 119.12 (10) C202—C203—C204 120.80 (14)
C103—C102—C101 119.82 (11) C202—C203—H203 119.6
C103—C102—C107 119.71 (11) C204—C203—H203 119.6
C101—C102—C107 120.46 (11) C205—C204—C203 120.02 (13)
C102—C103—C104 121.00 (12) C205—C204—H204 120.0
C102—C103—H103 119.5 C203—C204—H204 120.0
C104—C103—H103 119.5 C204—C205—C206 120.81 (13)
C105—C104—C103 119.78 (11) C204—C205—H205 119.6
C105—C104—H104 120.1 C206—C205—H205 119.6
C103—C104—H104 120.1 C205—C206—C201 119.33 (13)
C104—C105—C106 120.70 (11) C205—C206—C208 119.22 (12)
C104—C105—H105 119.7 C201—C206—C208 121.44 (11)
C106—C105—H105 119.7 F23—C207—F21 106.70 (11)
C101—C106—C105 119.58 (11) F23—C207—F22 106.69 (12)
C101—C106—C108 121.19 (10) F21—C207—F22 105.13 (12)
C105—C106—C108 119.22 (10) F23—C207—C202 112.96 (13)
F13—C107—F11 106.66 (11) F21—C207—C202 113.00 (11)
F13—C107—F12 106.61 (11) F22—C207—C202 111.81 (11)
F11—C107—F12 105.45 (12) O21—C208—C209 125.29 (13)
F13—C107—C102 112.78 (12) O21—C208—C206 119.16 (12)
F11—C107—C102 113.23 (10) C209—C208—C206 115.54 (10)
F12—C107—C102 111.58 (11) C210—C209—C208 118.91 (11)
O11—C108—C109 124.72 (11) C210—C209—C211 119.79 (11)
O11—C108—C106 119.80 (11) C208—C209—C211 121.25 (11)
C109—C108—C106 115.48 (10) N2—C210—C209 123.90 (11)
C110—C109—C108 119.21 (10) N2—C210—H210 118.0
C110—C109—C111 119.66 (10) C209—C210—H210 118.0
C108—C109—C111 121.13 (10) O22—C211—O23 123.44 (13)
N1—C110—C109 123.71 (10) O22—C211—C209 125.73 (13)
N1—C110—H110 118.1 O23—C211—C209 110.82 (10)
C109—C110—H110 118.1 O23—C212—C213 110.57 (12)
O12—C111—O13 122.73 (11) O23—C212—H21A 109.5
O12—C111—C109 125.78 (11) C213—C212—H21A 109.5
O13—C111—C109 111.49 (10) O23—C212—H21B 109.5
O13—C112—C113 110.26 (11) C213—C212—H21B 109.5
O13—C112—H11A 109.6 H21A—C212—H21B 108.1
C113—C112—H11A 109.6 C212—C213—H21C 109.5
O13—C112—H11B 109.6 C212—C213—H21D 109.5
C113—C112—H11B 109.6 H21C—C213—H21D 109.5
H11A—C112—H11B 108.1 C212—C213—H21E 109.5
C112—C113—H11C 109.5 H21C—C213—H21E 109.5
C112—C113—H11D 109.5 H21D—C213—H21E 109.5
C110—N1—C101—C106 −2.05 (16) C210—N2—C201—C206 −3.23 (17)
C110—N1—C101—C102 177.88 (10) C210—N2—C201—C202 175.92 (11)
N1—C101—C102—C103 178.98 (11) N2—C201—C202—C203 −177.79 (12)
C106—C101—C102—C103 −1.09 (17) C206—C201—C202—C203 1.35 (18)
N1—C101—C102—C107 −2.20 (17) N2—C201—C202—C207 1.81 (18)
C106—C101—C102—C107 177.73 (11) C206—C201—C202—C207 −179.05 (11)
C101—C102—C103—C104 0.15 (18) C201—C202—C203—C204 −0.8 (2)
C107—C102—C103—C104 −178.67 (12) C207—C202—C203—C204 179.55 (13)
C102—C103—C104—C105 0.53 (19) C202—C203—C204—C205 −0.3 (2)
C103—C104—C105—C106 −0.26 (19) C203—C204—C205—C206 0.9 (2)
N1—C101—C106—C105 −178.71 (10) C204—C205—C206—C201 −0.4 (2)
C102—C101—C106—C105 1.35 (16) C204—C205—C206—C208 179.11 (13)
N1—C101—C106—C108 0.99 (16) N2—C201—C206—C205 178.44 (11)
C102—C101—C106—C108 −178.94 (10) C202—C201—C206—C205 −0.74 (18)
C104—C105—C106—C101 −0.69 (17) N2—C201—C206—C208 −1.05 (17)
C104—C105—C106—C108 179.60 (11) C202—C201—C206—C208 179.77 (11)
C103—C102—C107—F13 −4.70 (18) C203—C202—C207—F23 −2.68 (18)
C101—C102—C107—F13 176.48 (11) C201—C202—C207—F23 177.71 (12)
C103—C102—C107—F11 −125.94 (13) C203—C202—C207—F21 −123.94 (14)
C101—C102—C107—F11 55.24 (16) C201—C202—C207—F21 56.46 (16)
C103—C102—C107—F12 115.27 (14) C203—C202—C207—F22 117.68 (14)
C101—C102—C107—F12 −63.55 (15) C201—C202—C207—F22 −61.92 (16)
C101—C106—C108—O11 −179.90 (11) C205—C206—C208—O21 3.99 (18)
C105—C106—C108—O11 −0.19 (17) C201—C206—C208—O21 −176.53 (12)
C101—C106—C108—C109 0.70 (16) C205—C206—C208—C209 −175.03 (11)
C105—C106—C108—C109 −179.60 (10) C201—C206—C208—C209 4.46 (17)
O11—C108—C109—C110 179.19 (12) O21—C208—C209—C210 177.19 (12)
C106—C108—C109—C110 −1.43 (15) C206—C208—C209—C210 −3.86 (16)
O11—C108—C109—C111 −1.12 (18) O21—C208—C209—C211 −5.5 (2)
C106—C108—C109—C111 178.25 (10) C206—C208—C209—C211 173.49 (11)
C101—N1—C110—C109 1.34 (17) C201—N2—C210—C209 3.95 (18)
C108—C109—C110—N1 0.50 (17) C208—C209—C210—N2 −0.11 (18)
C111—C109—C110—N1 −179.19 (10) C211—C209—C210—N2 −177.50 (11)
C112—O13—C111—O12 −3.68 (18) C212—O23—C211—O22 −7.8 (2)
C112—O13—C111—C109 175.91 (10) C212—O23—C211—C209 171.24 (11)
C110—C109—C111—O12 −176.54 (12) C210—C209—C211—O22 −177.47 (13)
C108—C109—C111—O12 3.78 (19) C208—C209—C211—O22 5.2 (2)
C110—C109—C111—O13 3.89 (15) C210—C209—C211—O23 3.55 (16)
C108—C109—C111—O13 −175.80 (10) C208—C209—C211—O23 −173.77 (11)
C111—O13—C112—C113 −90.46 (14) C211—O23—C212—C213 −91.90 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O21i 0.892 (19) 1.875 (19) 2.6588 (13) 145.5 (16)
N2—H2···O11ii 0.851 (18) 2.011 (17) 2.7178 (13) 139.9 (16)
N2—H2···O12ii 0.851 (18) 2.487 (17) 3.0380 (15) 123.2 (14)
C212—H21B···F22iii 0.99 2.46 3.0909 (18) 121
C204—H204···O13iv 0.95 2.60 3.4691 (18) 153

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5354).

References

  1. Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249–255. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047. [DOI] [PubMed]
  8. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  9. Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Thomas, K. D., Adhikari, A. V., Telkar, S., Chowdhury, I. H., Mahmood, R., Pal, N. K., Row, G. & Sumesh, E. (2011). Eur. J. Med. Chem. 46, 5283–5292. [DOI] [PubMed]
  14. Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045321/cv5354sup1.cif

e-68-o3304-sup1.cif (32.7KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045321/cv5354Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045321/cv5354Isup3.hkl

e-68-o3304-Isup3.hkl (291.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045321/cv5354Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES