Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3306. doi: 10.1107/S1600536812045345

2,3-Dihydro-1H-pyrrolo­[1,2-a]indole-9-carbonitrile

Lee G Madeley a, Andreas Lemmerer a, Joseph P Michael a,*
PMCID: PMC3588846  PMID: 23468811

Abstract

The asymmetric unit of the title compound, C12H10N2, which may serve as a model for mitosenes, contains two independent mol­ecules. The conformation of the five-membered rings in both molecules is envelope, with the central CH2—CH2—CH2 C atom at the flap in each case. In the crystal, they inter­act by a combination of weak C—H⋯N and π–π inter­actions [centroid–centroid distances = 3.616 (1) and 3.499 (1) Å] and C—H⋯π contacts.

Related literature  

For the synthesis of the title compound by intra­molecular Heck reaction of [1-(2-bromo­phen­yl)pyrrolidin-2-yl­idene]-acetonitrile, see: Michael et al. (1993). For an alternative synthesis by cyclization of [2-(2-oxopyrrolidin-1-yl)phen­yl]acetonitrile with sodium hydride, see: Verboom et al. (1986). For background to mitosenes, see: Franck (1978); Kasai & Kono (1992).graphic file with name e-68-o3306-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N2

  • M r = 182.22

  • Triclinic, Inline graphic

  • a = 9.1383 (3) Å

  • b = 9.5340 (3) Å

  • c = 12.3138 (4) Å

  • α = 90.794 (2)°

  • β = 90.528 (2)°

  • γ = 116.272 (2)°

  • V = 961.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.45 × 0.30 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.963, T max = 0.978

  • 7592 measured reflections

  • 3498 independent reflections

  • 2809 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.097

  • S = 1.04

  • 3498 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045345/bh2462sup1.cif

e-68-o3306-sup1.cif (26.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045345/bh2462Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045345/bh2462Isup3.hkl

e-68-o3306-Isup3.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045345/bh2462Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C6A–C11A and C6B–C11B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A1⋯N2B 0.99 2.68 3.338 (2) 124
C2A—H2A1⋯N2B 0.99 2.66 3.373 (2) 129
C3A—H3A2⋯N2A i 0.99 2.66 3.634 (2) 168
C3B—H3B1⋯N2B ii 0.99 2.57 3.495 (2) 156
C3A—H3A1⋯Cg1iii 0.99 2.79 3.545 (2) 135
C3B—H3B2⋯Cg2iv 0.99 2.67 3.523 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwatersrand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work. Ms C. Wilson is thanked for carrying out the preliminary synthesis.

supplementary crystallographic information

Comment

The mitosenes, naturally occurring biologically active degradation products of the important mitomycin antibiotics (Franck, 1978; Kasai & Kono, 1992) are characterized by the presence of a pyrrolo[1,2-a]indole core. The title compound, 2,3-dihydro-1H-pyrrolo[1,2-a]indole-9-carbonitrile, was prepared as part of a model study on the use of intramolecular Heck reactions for creating this core from various [1-(2-bromoaryl)pyrrolidin-2-ylidene]acetates and analogues (Michael et al., 1993).

The asymmetric unit of (I) consists of two molecules, labelled A and B, on general positions. Fig. 1 shows the atomic numbering scheme. The hydrogen bonding of (I) consists of weak C—H···N hydrogen bonds and various π–π interactions. Each molecule in the asymmetric unit makes centrosymmetric dimers using the C3A—H3A2···N2A and C3B—H3B1···N2B hydrogen bonds, shown explicitly for the B molecule in Fig. 2. Between the A and B molecules, two ethylene groups from the A molecule hydrogen bond to the cyanide N atom of the B molecule, through C1A—H1A1···N2B and C2A—H2A1···N2B hydrogen bonds. In addition, both A/A and B/B molecules sit parallel to each other and undergo π–π interactions, with distances of 3.616 (1) Å for A···A and 3.499 (1) Å for B···B (Fig. 2). Also C—H···π contacts are formed between those same A/A and B/B molecules, C3A—H3A1···Cg1iii [Cg1: C6A to C11A; symmetry operator: (iii) -x, -y, -z] and C3B—H3B2···Cg2iv [Cg2: C6B to C11B; symmetry operator: (iv) 1-x, 1-y, 1-z].

Experimental

The title compound was prepared by reaction of [1-(2-bromophenyl)pyrrolidin-2-ylidene]acetonitrile (350 mg, 1.33 mmol) with palladium(II) acetate (299 mg, 1.33 mmol, 1 eq.), tri-o-tolylphosphine (407 mg, 1.33 mmol) and triethylamine (0.19 ml, 1.33 mmol), heated under reflux in acetonitrile (7 ml) for 96 h. The crude oil obtained after evaporation of the solvent (1.20 g) was purified by column chromatography on silica gel with hexane/ethyl acetate (5:1 v/v) as eluent to yield a colourless solid (133 mg, 55%). Recrystallization from ethyl acetate produced colourless blocks, m.p. 400–401 K. An alternative synthesis is available from the literature, based on cyclization of [2-(2-oxopyrrolidin-1-yl)phenyl]acetonitrile with sodium hydride (Verboom et al., 1986).

Refinement

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 for aromatic CH and 0.99 for methylene CH2) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

View of the hydrogen bonds of (I). C—H···N are shown as dashed red lines and C—H···π as dashed blue lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C12H10N2 Z = 4
Mr = 182.22 F(000) = 384
Triclinic, P1 Dx = 1.258 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1383 (3) Å Cell parameters from 3160 reflections
b = 9.5340 (3) Å θ = 2.4–28.2°
c = 12.3138 (4) Å µ = 0.08 mm1
α = 90.794 (2)° T = 173 K
β = 90.528 (2)° Block, colourless
γ = 116.272 (2)° 0.50 × 0.45 × 0.30 mm
V = 961.78 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 2809 reflections with I > 2σ(I)
ω scans Rint = 0.023
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 25.5°, θmin = 1.7°
Tmin = 0.963, Tmax = 0.978 h = −10→11
7592 measured reflections k = −11→11
3498 independent reflections l = −14→14

Refinement

Refinement on F2 0 constraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.2024P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.19 e Å3
3498 reflections Δρmin = −0.15 e Å3
254 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.027 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A −0.10944 (18) 0.17265 (18) 0.14642 (13) 0.0397 (4)
H1A1 −0.1299 0.1843 0.2241 0.048*
H1A2 −0.211 0.0937 0.1114 0.048*
C2A −0.0463 (2) 0.32983 (19) 0.08862 (13) 0.0447 (4)
H2A1 −0.018 0.4164 0.1424 0.054*
H2A2 −0.1311 0.3303 0.0382 0.054*
C3A 0.10660 (19) 0.35042 (18) 0.02512 (13) 0.0419 (4)
H3A1 0.0836 0.3383 −0.0541 0.05*
H3A2 0.1987 0.4544 0.0405 0.05*
C4A 0.14316 (17) 0.22297 (16) 0.06621 (11) 0.0323 (3)
C5A 0.25796 (16) 0.16684 (15) 0.05611 (11) 0.0307 (3)
C6A 0.20402 (16) 0.02878 (15) 0.12165 (11) 0.0296 (3)
C7A 0.26457 (17) −0.07929 (17) 0.14459 (12) 0.0358 (3)
H7A 0.3632 −0.0697 0.1133 0.043*
C8A 0.17821 (18) −0.20006 (17) 0.21350 (13) 0.0407 (4)
H8A 0.2178 −0.2746 0.2291 0.049*
C9A 0.03390 (18) −0.21502 (18) 0.26077 (12) 0.0422 (4)
H9A −0.0218 −0.2986 0.3087 0.051*
C10A −0.02975 (18) −0.11093 (17) 0.23936 (12) 0.0375 (4)
H10A −0.1283 −0.1214 0.2712 0.045*
C11A 0.05677 (16) 0.00985 (16) 0.16923 (11) 0.0304 (3)
C12A 0.40232 (18) 0.23407 (17) −0.00564 (12) 0.0361 (3)
N1A 0.02493 (14) 0.13034 (13) 0.13356 (9) 0.0325 (3)
N2A 0.52063 (17) 0.28700 (16) −0.05460 (11) 0.0503 (4)
C1B 0.49796 (18) 0.56982 (17) 0.73859 (12) 0.0365 (3)
H1B1 0.6163 0.6215 0.7237 0.044*
H1B2 0.4801 0.5177 0.8096 0.044*
C2B 0.4245 (2) 0.68616 (19) 0.73518 (13) 0.0463 (4)
H2B1 0.5104 0.7941 0.7484 0.056*
H2B2 0.3405 0.6617 0.7915 0.056*
C3B 0.34765 (17) 0.67027 (16) 0.62107 (12) 0.0346 (3)
H3B1 0.2426 0.6768 0.6243 0.041*
H3B2 0.4221 0.7519 0.5724 0.041*
C4B 0.32309 (15) 0.51204 (15) 0.58477 (11) 0.0281 (3)
C5B 0.24306 (16) 0.40067 (15) 0.50510 (11) 0.0297 (3)
C6B 0.27990 (16) 0.27070 (15) 0.52490 (11) 0.0292 (3)
C7B 0.23096 (18) 0.12242 (16) 0.47682 (12) 0.0375 (4)
H7B 0.1594 0.0902 0.4153 0.045*
C8B 0.28912 (19) 0.02423 (17) 0.52084 (13) 0.0422 (4)
H8B 0.2565 −0.0768 0.4891 0.051*
C9B 0.39485 (19) 0.06978 (17) 0.61108 (13) 0.0406 (4)
H9B 0.4336 −0.0004 0.6387 0.049*
C10B 0.44413 (17) 0.21428 (16) 0.66078 (12) 0.0344 (3)
H10B 0.5156 0.2452 0.7224 0.041*
C11B 0.38481 (16) 0.31282 (15) 0.61696 (11) 0.0285 (3)
C12B 0.14474 (18) 0.41506 (17) 0.42058 (12) 0.0359 (3)
N1B 0.40605 (13) 0.45930 (12) 0.65134 (9) 0.0282 (3)
N2B 0.06647 (18) 0.42763 (17) 0.35107 (12) 0.0546 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0365 (8) 0.0434 (9) 0.0459 (9) 0.0241 (7) −0.0033 (7) −0.0072 (7)
C2A 0.0552 (10) 0.0451 (9) 0.0449 (9) 0.0325 (8) −0.0066 (8) −0.0048 (7)
C3A 0.0459 (9) 0.0358 (8) 0.0463 (9) 0.0202 (7) −0.0062 (7) 0.0025 (7)
C4A 0.0342 (8) 0.0300 (7) 0.0291 (7) 0.0111 (6) −0.0051 (6) −0.0002 (6)
C5A 0.0299 (7) 0.0304 (7) 0.0295 (7) 0.0113 (6) −0.0013 (6) 0.0010 (6)
C6A 0.0268 (7) 0.0304 (7) 0.0285 (7) 0.0100 (6) −0.0044 (6) −0.0013 (6)
C7A 0.0294 (7) 0.0363 (8) 0.0416 (8) 0.0147 (6) −0.0052 (6) 0.0001 (6)
C8A 0.0386 (8) 0.0353 (8) 0.0490 (9) 0.0172 (7) −0.0094 (7) 0.0060 (7)
C9A 0.0397 (9) 0.0385 (8) 0.0403 (9) 0.0098 (7) −0.0012 (7) 0.0101 (7)
C10A 0.0316 (8) 0.0392 (8) 0.0369 (8) 0.0111 (7) 0.0024 (6) 0.0042 (6)
C11A 0.0302 (7) 0.0316 (7) 0.0285 (7) 0.0131 (6) −0.0028 (6) −0.0015 (6)
C12A 0.0379 (8) 0.0341 (8) 0.0345 (8) 0.0142 (7) 0.0007 (7) 0.0028 (6)
N1A 0.0317 (6) 0.0331 (6) 0.0344 (6) 0.0160 (5) 0.0001 (5) −0.0001 (5)
N2A 0.0452 (8) 0.0503 (8) 0.0512 (8) 0.0169 (7) 0.0130 (7) 0.0078 (7)
C1B 0.0389 (8) 0.0356 (8) 0.0350 (8) 0.0169 (7) −0.0070 (6) −0.0070 (6)
C2B 0.0563 (10) 0.0428 (9) 0.0467 (9) 0.0287 (8) −0.0098 (8) −0.0113 (7)
C3B 0.0345 (8) 0.0295 (7) 0.0429 (8) 0.0171 (6) 0.0002 (6) −0.0007 (6)
C4B 0.0263 (7) 0.0274 (7) 0.0319 (7) 0.0131 (6) 0.0043 (6) 0.0047 (6)
C5B 0.0272 (7) 0.0297 (7) 0.0304 (7) 0.0111 (6) −0.0003 (6) 0.0034 (6)
C6B 0.0271 (7) 0.0274 (7) 0.0313 (7) 0.0105 (6) 0.0036 (6) 0.0029 (6)
C7B 0.0376 (8) 0.0310 (8) 0.0381 (8) 0.0102 (6) −0.0006 (7) −0.0028 (6)
C8B 0.0489 (9) 0.0264 (7) 0.0503 (9) 0.0158 (7) 0.0057 (8) −0.0028 (7)
C9B 0.0460 (9) 0.0325 (8) 0.0507 (9) 0.0237 (7) 0.0073 (7) 0.0077 (7)
C10B 0.0342 (8) 0.0351 (8) 0.0379 (8) 0.0188 (6) 0.0019 (6) 0.0047 (6)
C11B 0.0272 (7) 0.0263 (7) 0.0318 (7) 0.0115 (6) 0.0043 (6) 0.0035 (5)
C12B 0.0352 (8) 0.0347 (8) 0.0375 (8) 0.0153 (7) −0.0025 (7) 0.0012 (6)
N1B 0.0285 (6) 0.0279 (6) 0.0297 (6) 0.0139 (5) −0.0022 (5) −0.0002 (5)
N2B 0.0565 (9) 0.0606 (9) 0.0494 (9) 0.0287 (8) −0.0155 (7) 0.0012 (7)

Geometric parameters (Å, º)

C1A—N1A 1.4616 (17) C1B—N1B 1.4624 (17)
C1A—C2A 1.535 (2) C1B—C2B 1.530 (2)
C1A—H1A1 0.99 C1B—H1B1 0.99
C1A—H1A2 0.99 C1B—H1B2 0.99
C2A—C3A 1.544 (2) C2B—C3B 1.540 (2)
C2A—H2A1 0.99 C2B—H2B1 0.99
C2A—H2A2 0.99 C2B—H2B2 0.99
C3A—C4A 1.4891 (19) C3B—C4B 1.4852 (18)
C3A—H3A1 0.99 C3B—H3B1 0.99
C3A—H3A2 0.99 C3B—H3B2 0.99
C4A—N1A 1.3517 (18) C4B—N1B 1.3552 (16)
C4A—C5A 1.3784 (19) C4B—C5B 1.3767 (19)
C5A—C12A 1.419 (2) C5B—C12B 1.4161 (19)
C5A—C6A 1.4455 (19) C5B—C6B 1.4437 (19)
C6A—C7A 1.3990 (19) C6B—C7B 1.4005 (19)
C6A—C11A 1.4104 (19) C6B—C11B 1.4114 (19)
C7A—C8A 1.380 (2) C7B—C8B 1.379 (2)
C7A—H7A 0.95 C7B—H7B 0.95
C8A—C9A 1.396 (2) C8B—C9B 1.397 (2)
C8A—H8A 0.95 C8B—H8B 0.95
C9A—C10A 1.381 (2) C9B—C10B 1.378 (2)
C9A—H9A 0.95 C9B—H9B 0.95
C10A—C11A 1.3896 (19) C10B—C11B 1.3882 (18)
C10A—H10A 0.95 C10B—H10B 0.95
C11A—N1A 1.3800 (17) C11B—N1B 1.3818 (17)
C12A—N2A 1.1508 (19) C12B—N2B 1.1515 (18)
N1A—C1A—C2A 102.51 (12) N1B—C1B—C2B 101.64 (11)
N1A—C1A—H1A1 111.3 N1B—C1B—H1B1 111.4
C2A—C1A—H1A1 111.3 C2B—C1B—H1B1 111.4
N1A—C1A—H1A2 111.3 N1B—C1B—H1B2 111.4
C2A—C1A—H1A2 111.3 C2B—C1B—H1B2 111.4
H1A1—C1A—H1A2 109.2 H1B1—C1B—H1B2 109.3
C1A—C2A—C3A 107.49 (12) C1B—C2B—C3B 106.64 (12)
C1A—C2A—H2A1 110.2 C1B—C2B—H2B1 110.4
C3A—C2A—H2A1 110.2 C3B—C2B—H2B1 110.4
C1A—C2A—H2A2 110.2 C1B—C2B—H2B2 110.4
C3A—C2A—H2A2 110.2 C3B—C2B—H2B2 110.4
H2A1—C2A—H2A2 108.5 H2B1—C2B—H2B2 108.6
C4A—C3A—C2A 103.49 (12) C4B—C3B—C2B 102.46 (11)
C4A—C3A—H3A1 111.1 C4B—C3B—H3B1 111.3
C2A—C3A—H3A1 111.1 C2B—C3B—H3B1 111.3
C4A—C3A—H3A2 111.1 C4B—C3B—H3B2 111.3
C2A—C3A—H3A2 111.1 C2B—C3B—H3B2 111.3
H3A1—C3A—H3A2 109 H3B1—C3B—H3B2 109.2
N1A—C4A—C5A 109.25 (12) N1B—C4B—C5B 109.20 (11)
N1A—C4A—C3A 110.47 (12) N1B—C4B—C3B 110.27 (11)
C5A—C4A—C3A 140.26 (13) C5B—C4B—C3B 140.53 (12)
C4A—C5A—C12A 126.19 (12) C4B—C5B—C12B 125.28 (13)
C4A—C5A—C6A 106.83 (12) C4B—C5B—C6B 106.93 (11)
C12A—C5A—C6A 126.98 (13) C12B—C5B—C6B 127.78 (13)
C7A—C6A—C11A 118.89 (12) C7B—C6B—C11B 118.82 (12)
C7A—C6A—C5A 134.72 (13) C7B—C6B—C5B 134.60 (13)
C11A—C6A—C5A 106.40 (12) C11B—C6B—C5B 106.53 (11)
C8A—C7A—C6A 118.66 (14) C8B—C7B—C6B 118.46 (14)
C8A—C7A—H7A 120.7 C8B—C7B—H7B 120.8
C6A—C7A—H7A 120.7 C6B—C7B—H7B 120.8
C7A—C8A—C9A 121.37 (14) C7B—C8B—C9B 121.55 (13)
C7A—C8A—H8A 119.3 C7B—C8B—H8B 119.2
C9A—C8A—H8A 119.3 C9B—C8B—H8B 119.2
C10A—C9A—C8A 121.45 (14) C10B—C9B—C8B 121.40 (13)
C10A—C9A—H9A 119.3 C10B—C9B—H9B 119.3
C8A—C9A—H9A 119.3 C8B—C9B—H9B 119.3
C9A—C10A—C11A 117.06 (14) C9B—C10B—C11B 117.09 (14)
C9A—C10A—H10A 121.5 C9B—C10B—H10B 121.5
C11A—C10A—H10A 121.5 C11B—C10B—H10B 121.5
N1A—C11A—C10A 130.29 (13) N1B—C11B—C10B 130.31 (13)
N1A—C11A—C6A 107.14 (11) N1B—C11B—C6B 106.98 (11)
C10A—C11A—C6A 122.57 (13) C10B—C11B—C6B 122.67 (13)
N2A—C12A—C5A 178.68 (16) N2B—C12B—C5B 179.15 (17)
C4A—N1A—C11A 110.38 (11) C4B—N1B—C11B 110.34 (11)
C4A—N1A—C1A 114.62 (11) C4B—N1B—C1B 113.89 (11)
C11A—N1A—C1A 134.86 (12) C11B—N1B—C1B 135.75 (11)
N1A—C1A—C2A—C3A 11.78 (15) N1B—C1B—C2B—C3B −21.63 (16)
C1A—C2A—C3A—C4A −10.85 (16) C1B—C2B—C3B—C4B 21.44 (16)
C2A—C3A—C4A—N1A 5.68 (16) C2B—C3B—C4B—N1B −13.05 (15)
C2A—C3A—C4A—C5A −175.95 (17) C2B—C3B—C4B—C5B 166.94 (17)
N1A—C4A—C5A—C12A −178.53 (13) N1B—C4B—C5B—C12B −179.62 (13)
C3A—C4A—C5A—C12A 3.1 (3) C3B—C4B—C5B—C12B 0.4 (3)
N1A—C4A—C5A—C6A 0.56 (15) N1B—C4B—C5B—C6B 0.12 (15)
C3A—C4A—C5A—C6A −177.82 (17) C3B—C4B—C5B—C6B −179.87 (16)
C4A—C5A—C6A—C7A 179.59 (15) C4B—C5B—C6B—C7B 176.58 (15)
C12A—C5A—C6A—C7A −1.3 (3) C12B—C5B—C6B—C7B −3.7 (3)
C4A—C5A—C6A—C11A −0.40 (14) C4B—C5B—C6B—C11B −0.84 (15)
C12A—C5A—C6A—C11A 178.68 (13) C12B—C5B—C6B—C11B 178.89 (13)
C11A—C6A—C7A—C8A −0.4 (2) C11B—C6B—C7B—C8B −0.8 (2)
C5A—C6A—C7A—C8A 179.65 (14) C5B—C6B—C7B—C8B −177.95 (15)
C6A—C7A—C8A—C9A −0.5 (2) C6B—C7B—C8B—C9B −0.2 (2)
C7A—C8A—C9A—C10A 0.9 (2) C7B—C8B—C9B—C10B 0.7 (2)
C8A—C9A—C10A—C11A −0.4 (2) C8B—C9B—C10B—C11B −0.3 (2)
C9A—C10A—C11A—N1A −179.53 (14) C9B—C10B—C11B—N1B 176.69 (13)
C9A—C10A—C11A—C6A −0.5 (2) C9B—C10B—C11B—C6B −0.7 (2)
C7A—C6A—C11A—N1A −179.89 (12) C7B—C6B—C11B—N1B −176.67 (12)
C5A—C6A—C11A—N1A 0.10 (14) C5B—C6B—C11B—N1B 1.24 (14)
C7A—C6A—C11A—C10A 0.9 (2) C7B—C6B—C11B—C10B 1.2 (2)
C5A—C6A—C11A—C10A −179.10 (13) C5B—C6B—C11B—C10B 179.14 (12)
C5A—C4A—N1A—C11A −0.52 (15) C5B—C4B—N1B—C11B 0.68 (15)
C3A—C4A—N1A—C11A 178.38 (11) C3B—C4B—N1B—C11B −179.33 (11)
C5A—C4A—N1A—C1A −176.82 (11) C5B—C4B—N1B—C1B 179.18 (11)
C3A—C4A—N1A—C1A 2.08 (16) C3B—C4B—N1B—C1B −0.83 (16)
C10A—C11A—N1A—C4A 179.36 (14) C10B—C11B—N1B—C4B −178.89 (14)
C6A—C11A—N1A—C4A 0.25 (15) C6B—C11B—N1B—C4B −1.21 (15)
C10A—C11A—N1A—C1A −5.4 (3) C10B—C11B—N1B—C1B 3.1 (3)
C6A—C11A—N1A—C1A 175.50 (14) C6B—C11B—N1B—C1B −179.25 (14)
C2A—C1A—N1A—C4A −8.84 (16) C2B—C1B—N1B—C4B 14.35 (16)
C2A—C1A—N1A—C11A 176.06 (14) C2B—C1B—N1B—C11B −167.66 (15)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C6A–C11A and C6B–C11B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1A—H1A1···N2B 0.99 2.68 3.338 (2) 124
C2A—H2A1···N2B 0.99 2.66 3.373 (2) 129
C3A—H3A2···N2Ai 0.99 2.66 3.634 (2) 168
C3B—H3B1···N2Bii 0.99 2.57 3.495 (2) 156
C3A—H3A1···Cg1iii 0.99 2.79 3.545 (2) 135
C3B—H3B2···Cg2iv 0.99 2.67 3.523 (2) 146

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2462).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Franck, R. W. (1978). Fortschr. Chem. Org. Naturst. 38, 1–45. [DOI] [PubMed]
  7. Kasai, M. & Kono, M. (1992). Synlett, pp. 778–790.
  8. Michael, J. P., Chang, S.-F. & Wilson, C. (1993). Tetrahedron Lett. 34, 8365–8368.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Verboom, W., Orlemans, E. O. M., Berga, H. J., Scheltinga, H. W. & Reinhoudt, D. N. (1986). Tetrahedron, 42, 5053–5064.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045345/bh2462sup1.cif

e-68-o3306-sup1.cif (26.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045345/bh2462Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045345/bh2462Isup3.hkl

e-68-o3306-Isup3.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045345/bh2462Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES