Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3307. doi: 10.1107/S1600536812045692

5-[(E)-Meth­oxy(phen­yl)methyl­idene]-1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazole

Biplab Maji a, Guillaume Berionni a, Herbert Mayr a, Peter Mayer a,*
PMCID: PMC3588847  PMID: 23468812

Abstract

In the title compound, C28H23N3O, the 1,2,4-triazole ring deviates slightly from planarity adopting a N3 T C2 conformation which is distorted towards an E C2 conformation. The plane around the ethyl­ene unit makes a dihedral angle of 17.32 (11)° with the mean plane [r.m.s. deviation = 0.036 (1) Å] of the 1,2,4-triazole fragment. The dihedral angles between the four phenyl rings and the 1,2,4-triazole ring are 31.01 (10), 49.01 (8), 78.55 (6) and 41.51 (9)°. In the crystal, mol­ecules are linked along [100] by weak C—H⋯O hydrogen bonds.

Related literature  

For chemical background, see: Arduengo et al. (1991); Enders et al. (2007); Biju et al. (2011); Breslow (1958). For puckering analysis, see: Cremer & Pople (1975). For a related structure, see: Nair et al. (2008).graphic file with name e-68-o3307-scheme1.jpg

Experimental  

Crystal data  

  • C28H23N3O

  • M r = 417.49

  • Monoclinic, Inline graphic

  • a = 5.8831 (2) Å

  • b = 10.5560 (2) Å

  • c = 35.0548 (8) Å

  • β = 93.749 (1)°

  • V = 2172.31 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.35 × 0.09 × 0.04 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 12170 measured reflections

  • 3797 independent reflections

  • 2601 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.116

  • S = 1.02

  • 3797 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045692/lx2259sup1.cif

e-68-o3307-sup1.cif (29.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045692/lx2259Isup2.hkl

e-68-o3307-Isup2.hkl (186.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045692/lx2259Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.95 2.43 3.162 (3) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

Umpolung reactions of aldehydes catalyzed by N-heterocyclic carbenes [Arduengo et al. (1991)] belong to the most important organocatalytic CC bond-forming reactions [Enders et al. (2007), Biju et al. (2011)]. An acyl anion equivalent, the so called Breslow intermediate [Breslow (1958)] was proposed to be the key intermediate of these transformations.

To understand the structure of these intermediates, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the 1,2,4-triazole fragment is nearly planar, with a mean deviation of 0.036 (1) Å from the least-squares plane defined by the five constituent atoms.

The asymmetric unit contains one molecule of the title compound which is shown in Figure 1.

Puckering analysis [Cremer et al. (1975)] reveals that the 4,5-dihydro-1H-1,2,4-triazole ring adopts a N3TC2 conformation which is distorted towards a EC2 conformation. In a related structure [Nair et al. (2008)] of a compound which is different from the title compound only through the substituent connected by a double bond with the 4,5-dihydro-1H-1,2,4-triazole ring, the latter ring is planar and not puckered. The methoxy(phenyl)methylene group is bound to the 4,5-dihydro-1H-1,2,4-triazole ring in a distance of 1.358 (3) Å which indicates a double bond. However, the plane of the heterocycle and the plane around the methylene atom are not coplanar but enclose a dihedral angle of 17.32 (11)°. In the related structure, the corresponding dihedral angle is 42.5 (4)°. The plane of the phenyl ring bound to the methylene atom is not coplanar with the plane around the methylene atom as well (dihedral angle 34.14 (10)°). The dihedral angles between the four phenyl rings and the mean plane of the 1,2,4-triazole ring are 31.01 (10)° [the C3-C8 phenyl ring], 49.01 (8)° [the C9-C14 phenyl ring], 78.55 (6)° [the C15-C20 phenyl ring] and 41.51 (9)° [the C22-C27 phenyl ring]. In the crystal packing, molecules are connected by weak C–H···O hydrogen bonds (Table 1).

Experimental

To an oven dried Schlenk-flask charged with NaH (48 mg, 2.0 mmol), tBuOK (11 mg, 98 mol), and 5-(methoxy(phenyl)methyl)-1,3,4-triphenyl-4H-1,2,4-triazolium chloride (454 mg, 1.00 mmol) was added dry THF (15 ml) under nitrogen and the reaction mixture was allowed to stir for 4 h in the dark. The solvent was then removed under vacuum, and the residue was suspended in dry toluene (20 ml) and filtered through a celite pad under nitrogen. Then the solvent was evaporated to give 296 mg (0.709 mmol, 71%) of the title compound as 10:1 mixture of E:Z isomers. Crystals suitable for X-ray crystallography were grown by cooling down a saturated acetonitrile solution at -30 °C under argon for 48 h.

Refinement

C-bound H atoms were positioned geometrically (C–H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)]. The methyl group was allowed to rotate along the C-O bond to best fit the experimental electron density.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C28H23N3O F(000) = 880
Mr = 417.49 Dx = 1.277 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6637 reflections
a = 5.8831 (2) Å θ = 3.1–25.4°
b = 10.5560 (2) Å µ = 0.08 mm1
c = 35.0548 (8) Å T = 200 K
β = 93.749 (1)° Rod, yellow
V = 2172.31 (10) Å3 0.35 × 0.09 × 0.04 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2601 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.058
MONTEL, graded multilayered X-ray optics monochromator θmax = 25.0°, θmin = 3.5°
Detector resolution: 9 pixels mm-1 h = −6→6
CCD; rotation images scans k = −12→12
12170 measured reflections l = −41→41
3797 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.5794P] where P = (Fo2 + 2Fc2)/3
3797 reflections (Δ/σ)max < 0.001
290 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1775 (2) 1.09309 (12) 0.07479 (4) 0.0400 (4)
N1 1.0129 (3) 0.87548 (14) 0.15014 (4) 0.0372 (4)
N2 0.8760 (3) 0.91293 (15) 0.17968 (5) 0.0397 (4)
N3 0.9369 (3) 1.07815 (14) 0.14195 (4) 0.0334 (4)
C1 0.8328 (3) 1.03112 (18) 0.17323 (5) 0.0343 (5)
C2 1.0374 (3) 0.97436 (17) 0.12411 (5) 0.0328 (5)
C3 1.1547 (3) 0.76856 (18) 0.15771 (5) 0.0362 (5)
C4 1.3673 (4) 0.7594 (2) 0.14287 (6) 0.0428 (5)
H4 1.4222 0.8266 0.1280 0.051*
C5 1.4982 (4) 0.6526 (2) 0.14986 (6) 0.0513 (6)
H5 1.6422 0.6459 0.1392 0.062*
C6 1.4236 (4) 0.5561 (2) 0.17190 (7) 0.0579 (7)
H6 1.5132 0.4819 0.1761 0.070*
C7 1.2164 (4) 0.5677 (2) 0.18806 (6) 0.0539 (6)
H7 1.1665 0.5025 0.2042 0.065*
C8 1.0811 (4) 0.67325 (18) 0.18098 (6) 0.0429 (5)
H8 0.9384 0.6802 0.1920 0.051*
C9 0.6887 (3) 1.10815 (17) 0.19698 (5) 0.0347 (5)
C10 0.4797 (4) 1.06009 (19) 0.20649 (6) 0.0397 (5)
H10 0.4299 0.9795 0.1972 0.048*
C11 0.3445 (4) 1.1301 (2) 0.22955 (6) 0.0451 (5)
H11 0.2019 1.0971 0.2361 0.054*
C12 0.4148 (4) 1.2471 (2) 0.24312 (6) 0.0481 (6)
H12 0.3214 1.2947 0.2589 0.058*
C13 0.6216 (4) 1.2945 (2) 0.23355 (6) 0.0477 (6)
H13 0.6703 1.3751 0.2429 0.057*
C14 0.7589 (4) 1.22654 (18) 0.21059 (6) 0.0415 (5)
H14 0.9009 1.2604 0.2041 0.050*
C15 0.8681 (3) 1.19569 (17) 0.12357 (5) 0.0325 (5)
C16 1.0135 (4) 1.29802 (18) 0.12531 (6) 0.0399 (5)
H16 1.1605 1.2911 0.1381 0.048*
C17 0.9442 (4) 1.41053 (19) 0.10842 (6) 0.0464 (6)
H17 1.0438 1.4815 0.1094 0.056*
C18 0.7300 (4) 1.4201 (2) 0.09014 (6) 0.0497 (6)
H18 0.6830 1.4976 0.0783 0.060*
C19 0.5839 (4) 1.3179 (2) 0.08887 (6) 0.0493 (6)
H19 0.4358 1.3253 0.0765 0.059*
C20 0.6534 (4) 1.20490 (19) 0.10556 (6) 0.0414 (5)
H20 0.5540 1.1339 0.1047 0.050*
C21 1.1253 (3) 0.97381 (18) 0.08928 (5) 0.0355 (5)
C22 1.1836 (3) 0.86455 (18) 0.06625 (5) 0.0368 (5)
C23 1.0535 (4) 0.75417 (19) 0.06459 (6) 0.0450 (5)
H23 0.9233 0.7483 0.0792 0.054*
C24 1.1113 (4) 0.6529 (2) 0.04203 (6) 0.0533 (6)
H24 1.0203 0.5785 0.0412 0.064*
C25 1.2999 (5) 0.6594 (2) 0.02071 (7) 0.0588 (7)
H25 1.3400 0.5897 0.0054 0.071*
C26 1.4289 (4) 0.7680 (2) 0.02195 (7) 0.0594 (7)
H26 1.5592 0.7731 0.0074 0.071*
C27 1.3718 (4) 0.8695 (2) 0.04401 (6) 0.0499 (6)
H27 1.4619 0.9442 0.0441 0.060*
C28 1.0477 (4) 1.1273 (2) 0.04035 (6) 0.0510 (6)
H28A 1.1075 1.0825 0.0187 0.077*
H28B 1.0590 1.2189 0.0363 0.077*
H28C 0.8878 1.1040 0.0425 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0444 (9) 0.0394 (8) 0.0369 (8) −0.0049 (7) 0.0075 (6) 0.0010 (6)
N1 0.0436 (10) 0.0337 (9) 0.0356 (9) 0.0083 (8) 0.0126 (8) 0.0004 (7)
N2 0.0493 (11) 0.0336 (10) 0.0378 (10) 0.0050 (8) 0.0148 (8) −0.0009 (7)
N3 0.0384 (10) 0.0302 (8) 0.0323 (9) 0.0020 (7) 0.0084 (7) 0.0001 (7)
C1 0.0369 (12) 0.0326 (11) 0.0340 (11) −0.0005 (9) 0.0064 (9) 0.0008 (9)
C2 0.0330 (11) 0.0319 (10) 0.0336 (11) 0.0006 (9) 0.0030 (9) 0.0000 (9)
C3 0.0426 (13) 0.0344 (11) 0.0312 (11) 0.0057 (10) −0.0011 (9) −0.0055 (9)
C4 0.0450 (14) 0.0458 (13) 0.0370 (12) 0.0076 (11) −0.0017 (10) −0.0063 (10)
C5 0.0514 (15) 0.0560 (15) 0.0451 (13) 0.0192 (12) −0.0066 (11) −0.0098 (11)
C6 0.0674 (18) 0.0483 (15) 0.0555 (15) 0.0257 (13) −0.0155 (13) −0.0093 (12)
C7 0.0787 (19) 0.0355 (12) 0.0454 (14) 0.0039 (12) −0.0113 (13) 0.0016 (10)
C8 0.0542 (14) 0.0358 (11) 0.0381 (12) 0.0029 (10) −0.0012 (10) −0.0015 (9)
C9 0.0426 (13) 0.0336 (11) 0.0284 (10) 0.0058 (9) 0.0065 (9) 0.0029 (8)
C10 0.0449 (13) 0.0359 (11) 0.0390 (12) 0.0040 (10) 0.0080 (10) 0.0032 (9)
C11 0.0481 (14) 0.0484 (13) 0.0398 (12) 0.0090 (11) 0.0116 (10) 0.0072 (10)
C12 0.0619 (16) 0.0417 (13) 0.0427 (12) 0.0172 (12) 0.0189 (11) 0.0016 (10)
C13 0.0670 (16) 0.0351 (12) 0.0419 (13) 0.0070 (11) 0.0117 (11) −0.0023 (9)
C14 0.0497 (13) 0.0352 (11) 0.0404 (12) 0.0020 (10) 0.0094 (10) −0.0003 (9)
C15 0.0382 (12) 0.0308 (10) 0.0294 (11) 0.0030 (9) 0.0080 (9) −0.0002 (8)
C16 0.0429 (13) 0.0392 (12) 0.0375 (12) −0.0044 (10) 0.0018 (10) 0.0011 (9)
C17 0.0629 (16) 0.0356 (12) 0.0409 (12) −0.0064 (11) 0.0061 (11) 0.0013 (10)
C18 0.0699 (17) 0.0383 (12) 0.0420 (13) 0.0154 (12) 0.0118 (12) 0.0055 (10)
C19 0.0459 (14) 0.0576 (15) 0.0445 (14) 0.0124 (12) 0.0032 (10) 0.0075 (11)
C20 0.0387 (13) 0.0453 (12) 0.0405 (12) 0.0000 (10) 0.0044 (10) 0.0036 (10)
C21 0.0358 (12) 0.0368 (11) 0.0342 (11) −0.0008 (9) 0.0061 (9) 0.0026 (9)
C22 0.0378 (12) 0.0417 (12) 0.0311 (11) 0.0042 (10) 0.0040 (9) −0.0001 (9)
C23 0.0575 (15) 0.0437 (12) 0.0345 (12) −0.0014 (11) 0.0092 (10) −0.0017 (10)
C24 0.0801 (18) 0.0407 (13) 0.0395 (13) 0.0006 (12) 0.0069 (13) −0.0013 (10)
C25 0.0808 (19) 0.0521 (15) 0.0442 (14) 0.0205 (14) 0.0095 (13) −0.0076 (11)
C26 0.0567 (16) 0.0711 (17) 0.0526 (15) 0.0123 (14) 0.0199 (12) −0.0093 (13)
C27 0.0448 (14) 0.0585 (14) 0.0475 (13) −0.0009 (11) 0.0119 (11) −0.0046 (11)
C28 0.0662 (16) 0.0509 (13) 0.0359 (12) 0.0018 (12) 0.0034 (11) 0.0062 (10)

Geometric parameters (Å, º)

O1—C21 1.399 (2) C13—C14 1.378 (3)
O1—C28 1.432 (2) C13—H13 0.9500
N1—C2 1.400 (2) C14—H14 0.9500
N1—N2 1.410 (2) C15—C16 1.377 (3)
N1—C3 1.418 (2) C15—C20 1.378 (3)
N2—C1 1.290 (2) C16—C17 1.377 (3)
N3—C1 1.383 (2) C16—H16 0.9500
N3—C2 1.411 (2) C17—C18 1.380 (3)
N3—C15 1.444 (2) C17—H17 0.9500
C1—C9 1.471 (3) C18—C19 1.378 (3)
C2—C21 1.357 (3) C18—H18 0.9500
C3—C8 1.383 (3) C19—C20 1.379 (3)
C3—C4 1.389 (3) C19—H19 0.9500
C4—C5 1.379 (3) C20—H20 0.9500
C4—H4 0.9500 C21—C22 1.461 (3)
C5—C6 1.368 (3) C22—C23 1.393 (3)
C5—H5 0.9500 C22—C27 1.396 (3)
C6—C7 1.383 (3) C23—C24 1.385 (3)
C6—H6 0.9500 C23—H23 0.9500
C7—C8 1.382 (3) C24—C25 1.379 (3)
C7—H7 0.9500 C24—H24 0.9500
C8—H8 0.9500 C25—C26 1.374 (3)
C9—C14 1.391 (3) C25—H25 0.9500
C9—C10 1.391 (3) C26—C27 1.375 (3)
C10—C11 1.384 (3) C26—H26 0.9500
C10—H10 0.9500 C27—H27 0.9500
C11—C12 1.377 (3) C28—H28A 0.9800
C11—H11 0.9500 C28—H28B 0.9800
C12—C13 1.377 (3) C28—H28C 0.9800
C12—H12 0.9500
C21—O1—C28 114.57 (15) C13—C14—H14 120.1
C2—N1—N2 110.97 (14) C9—C14—H14 120.2
C2—N1—C3 129.13 (16) C16—C15—C20 120.87 (18)
N2—N1—C3 116.30 (15) C16—C15—N3 119.97 (17)
C1—N2—N1 104.95 (15) C20—C15—N3 119.13 (17)
C1—N3—C2 107.04 (15) C15—C16—C17 119.50 (19)
C1—N3—C15 122.47 (15) C15—C16—H16 120.3
C2—N3—C15 125.66 (15) C17—C16—H16 120.3
N2—C1—N3 113.19 (17) C16—C17—C18 119.9 (2)
N2—C1—C9 123.34 (17) C16—C17—H17 120.1
N3—C1—C9 123.48 (16) C18—C17—H17 120.1
C21—C2—N1 130.15 (17) C19—C18—C17 120.4 (2)
C21—C2—N3 126.72 (17) C19—C18—H18 119.8
N1—C2—N3 103.07 (15) C17—C18—H18 119.8
C8—C3—C4 119.67 (19) C18—C19—C20 119.8 (2)
C8—C3—N1 119.11 (18) C18—C19—H19 120.1
C4—C3—N1 121.21 (18) C20—C19—H19 120.1
C5—C4—C3 119.8 (2) C15—C20—C19 119.5 (2)
C5—C4—H4 120.1 C15—C20—H20 120.2
C3—C4—H4 120.1 C19—C20—H20 120.2
C6—C5—C4 120.9 (2) C2—C21—O1 115.37 (16)
C6—C5—H5 119.6 C2—C21—C22 128.13 (17)
C4—C5—H5 119.6 O1—C21—C22 116.40 (16)
C5—C6—C7 119.3 (2) C23—C22—C27 117.48 (19)
C5—C6—H6 120.3 C23—C22—C21 122.35 (18)
C7—C6—H6 120.3 C27—C22—C21 120.15 (18)
C8—C7—C6 120.7 (2) C24—C23—C22 121.0 (2)
C8—C7—H7 119.6 C24—C23—H23 119.5
C6—C7—H7 119.6 C22—C23—H23 119.5
C7—C8—C3 119.6 (2) C25—C24—C23 120.5 (2)
C7—C8—H8 120.2 C25—C24—H24 119.8
C3—C8—H8 120.2 C23—C24—H24 119.8
C14—C9—C10 119.54 (18) C26—C25—C24 119.1 (2)
C14—C9—C1 121.43 (19) C26—C25—H25 120.4
C10—C9—C1 119.02 (17) C24—C25—H25 120.4
C11—C10—C9 119.74 (19) C25—C26—C27 120.8 (2)
C11—C10—H10 120.1 C25—C26—H26 119.6
C9—C10—H10 120.1 C27—C26—H26 119.6
C12—C11—C10 120.6 (2) C26—C27—C22 121.1 (2)
C12—C11—H11 119.7 C26—C27—H27 119.4
C10—C11—H11 119.7 C22—C27—H27 119.4
C13—C12—C11 119.5 (2) O1—C28—H28A 109.5
C13—C12—H12 120.3 O1—C28—H28B 109.5
C11—C12—H12 120.3 H28A—C28—H28B 109.5
C12—C13—C14 120.9 (2) O1—C28—H28C 109.5
C12—C13—H13 119.5 H28A—C28—H28C 109.5
C14—C13—H13 119.5 H28B—C28—H28C 109.5
C13—C14—C9 119.7 (2)
C2—N1—N2—C1 −4.0 (2) C10—C11—C12—C13 0.0 (3)
C3—N1—N2—C1 156.58 (17) C11—C12—C13—C14 0.1 (3)
N1—N2—C1—N3 −1.9 (2) C12—C13—C14—C9 −0.3 (3)
N1—N2—C1—C9 178.51 (17) C10—C9—C14—C13 0.5 (3)
C2—N3—C1—N2 7.0 (2) C1—C9—C14—C13 −178.36 (18)
C15—N3—C1—N2 163.63 (17) C1—N3—C15—C16 112.9 (2)
C2—N3—C1—C9 −173.41 (17) C2—N3—C15—C16 −95.0 (2)
C15—N3—C1—C9 −16.8 (3) C1—N3—C15—C20 −64.9 (2)
N2—N1—C2—C21 −169.4 (2) C2—N3—C15—C20 87.3 (2)
C3—N1—C2—C21 33.2 (3) C20—C15—C16—C17 −0.8 (3)
N2—N1—C2—N3 7.94 (19) N3—C15—C16—C17 −178.53 (18)
C3—N1—C2—N3 −149.47 (18) C15—C16—C17—C18 0.4 (3)
C1—N3—C2—C21 168.75 (19) C16—C17—C18—C19 0.5 (3)
C15—N3—C2—C21 13.1 (3) C17—C18—C19—C20 −0.8 (3)
C1—N3—C2—N1 −8.70 (19) C16—C15—C20—C19 0.4 (3)
C15—N3—C2—N1 −164.34 (16) N3—C15—C20—C19 178.17 (18)
C2—N1—C3—C8 −171.14 (18) C18—C19—C20—C15 0.4 (3)
N2—N1—C3—C8 32.4 (2) N1—C2—C21—O1 −164.52 (18)
C2—N1—C3—C4 10.3 (3) N3—C2—C21—O1 18.7 (3)
N2—N1—C3—C4 −146.16 (18) N1—C2—C21—C22 11.7 (3)
C8—C3—C4—C5 3.3 (3) N3—C2—C21—C22 −165.01 (19)
N1—C3—C4—C5 −178.13 (17) C28—O1—C21—C2 −116.42 (19)
C3—C4—C5—C6 −1.3 (3) C28—O1—C21—C22 66.9 (2)
C4—C5—C6—C7 −1.5 (3) C2—C21—C22—C23 37.1 (3)
C5—C6—C7—C8 2.4 (3) O1—C21—C22—C23 −146.70 (18)
C6—C7—C8—C3 −0.5 (3) C2—C21—C22—C27 −144.7 (2)
C4—C3—C8—C7 −2.4 (3) O1—C21—C22—C27 31.5 (3)
N1—C3—C8—C7 178.99 (17) C27—C22—C23—C24 0.8 (3)
N2—C1—C9—C14 131.4 (2) C21—C22—C23—C24 179.02 (19)
N3—C1—C9—C14 −48.1 (3) C22—C23—C24—C25 0.1 (3)
N2—C1—C9—C10 −47.4 (3) C23—C24—C25—C26 −0.4 (3)
N3—C1—C9—C10 133.1 (2) C24—C25—C26—C27 −0.1 (4)
C14—C9—C10—C11 −0.4 (3) C25—C26—C27—C22 1.0 (4)
C1—C9—C10—C11 178.48 (18) C23—C22—C27—C26 −1.3 (3)
C9—C10—C11—C12 0.1 (3) C21—C22—C27—C26 −179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···O1i 0.95 2.43 3.162 (3) 134

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2259).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.
  3. Biju, A. T., Kuhl, N. & Glorius, F. (2011). Acc. Chem. Res. 44, 1182–1195. [DOI] [PubMed]
  4. Breslow, R. (1958). J. Am. Chem. Soc. 80, 3719–3726.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Enders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606–5655. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Nair, V., Mathew, S. C., Vallalath, S., Pillai, A. N. & Suresh, E. (2008). Synthesis, pp. 551–554.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045692/lx2259sup1.cif

e-68-o3307-sup1.cif (29.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045692/lx2259Isup2.hkl

e-68-o3307-Isup2.hkl (186.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045692/lx2259Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES