Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3308–o3309. doi: 10.1107/S160053681204562X

N-(2-Amino-5-chloro­phen­yl)-2-bromo­benzene­sulfonamide

Maria Altamura a, Valentina Fedi a, Rossano Nannicini a, Paola Paoli b,*, Patrizia Rossi b
PMCID: PMC3588848  PMID: 23468813

Abstract

In the title compound, C12H10BrClN2O2S, the sulfonamide group adopts a staggered conformation about the N—S bond [the C—S—N—H torsion angle is 97 (3)°] with the N-atom lone pair bis­ecting the O=S=O angle. For the C(Ar)—S bond, the ortho-substituted C atom bis­ects one of O=S–N angles [the C—C—S—N torsion angle is −57.7 (3)°]. The mean planes of the aromatic rings form a dihedral angle of 75.1 (1)°. In the crystal, mol­ecules form inversion dimers through pairs of N—H⋯NH2 hydrogen bonds. The mol­ecules are further consolidated into layers along the bc plane by weaker N—H⋯O inter­actions.

Related literature  

For the synthesis of the title compound, see: Altamura et al. (2009). For the biological activity of sulfa drugs, see: Chegwidden et al. (2000); Lu & Tucker (2007); Tappe et al. (2008); Purushottamachar et al. (2008). For structural studies of mol­ecules having the sulfonamide –SO2—NH group, see: Parkin et al. (2008); Perlovich et al. (2009, 2011); Vega-Hissi et al. (2011); Altamura et al. (2009, 2012).graphic file with name e-68-o3308-scheme1.jpg

Experimental  

Crystal data  

  • C12H10BrClN2O2S

  • M r = 361.64

  • Monoclinic, Inline graphic

  • a = 13.657 (1) Å

  • b = 14.361 (2) Å

  • c = 7.0829 (9) Å

  • β = 100.75 (1)°

  • V = 1364.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 298 K

  • 0.32 × 0.26 × 0.22 mm

Data collection  

  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.365, T max = 0.447

  • 6647 measured reflections

  • 2533 independent reflections

  • 1629 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.082

  • S = 0.94

  • 2533 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204562X/ld2080sup1.cif

e-68-o3308-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204562X/ld2080Isup2.hkl

e-68-o3308-Isup2.hkl (121.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204562X/ld2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

HN1—N1—S1—C1 97 (3)
HN1—N1—S1—O1 −19 (3)
C7—N1—S1—O2 50.2 (3)
C6—C1—S1—N1 −57.7 (3)
C6—C1—S1—O1 57.8 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯N2i 0.78 (3) 2.26 (3) 3.022 (4) 166 (3)
N2—HN2A⋯O1ii 0.87 (3) 2.45 (3) 3.258 (4) 154 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze), where the data collection was performed.

supplementary crystallographic information

Comment

The study of the structural and conformational properties of the sulfonamide group (R—SO2—NR2) is essential to the comprehension of the "sulfa drugs" action. They found applications as HIV inhibitors (Lu & Tucker, 2007), antimicrobial drugs (Tappe et al., 2008), carbonic anhydrase inhibitors (Chegwidden et al., 2000), anti-tumor agents (Purushottamachar et al., 2008), just to name a few. In this respect a lot of publications have appeared reporting structural data of compounds containing the sulfonamide function (Parkin et al., 2008, Altamura et al., 2009, Perlovich et al., 2009, Perlovich et al., 2011,Vega-Hissi et al., 2011, Altamura et al., 2012). The molecule, as expected, has a staggered conformation about the N—S bond, with the N lone pair bisecting the OŜO angle (Table 1, Fig. 1). The value of the dihedral angle C6—C1—S1—O1 (Table 1) is also in the range observed for arylsulfonamides bearing a non-hydrogen atom in ortho position (a bromine atom in this case). The sulfonamide nitrogen atom is almost planar- trigonal (Σ<N=357 (3)°). The aromatic rings are almost perpendicular to each other with a dihedral angle of 75.1 (1)°. In the crystal, dimers are formed by a couple of complementary hydrogen bonds involving the nitrogen atom of the sulfonamide grouping as a donor and amino nitrogen as an acceptor (Table 2). Dimers form layers along bc plane through weaker NH2···SO2 H-bonds between the amino group and an oxygen atom of the sulfonamide moiety (Table 2). The remaining amine H atom (HN2B) appears to be involved in bifurcated intra-molecular contacts with the oxygen and the nitrogen atoms of the sulfonamide group (HN2B···O2 = 2.72 (3) Å, N2—HN2B···O2 = 132 (3)°; HN2B···N1 = 2.58 (4) Å, N2—HN2B···N1 = 98 (3)°), which could contribute in stabilization of the observed molecular conformation.

Experimental

For the synthesis of the title compound, see: Altamura et al. (2009). Crystals of the title compound suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate/hexane solution of N-(2-amino-5-chlorophenyl)-2-bromobenzenesulfonamide.

Refinement

The N—H H atoms were located in the Fourier difference map and their coordinates were refined with U(H) = 1.2Ueq(N). All other H atoms were positioned using idealized geometry and refined using a riding model with U(H) 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing labelling and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound as viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H10BrClN2O2S Z = 4
Mr = 361.64 F(000) = 720
Monoclinic, P21/c Dx = 1.760 Mg m3
a = 13.657 (1) Å Mo Kα radiation, λ = 0.71069 Å
b = 14.361 (2) Å µ = 3.36 mm1
c = 7.0829 (9) Å T = 298 K
β = 100.75 (1)° Prismatic, colourless
V = 1364.8 (3) Å3 0.32 × 0.26 × 0.22 mm

Data collection

Oxford Diffraction Xcalibur3 CCD diffractometer 2533 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1629 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 16.4547 pixels mm-1 θmax = 27.3°, θmin = 4.5°
ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −17→18
Tmin = 0.365, Tmax = 0.447 l = −8→8
6647 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3
2533 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09409 (17) 0.35073 (16) 0.8889 (4) 0.0597 (7)
O2 0.11627 (17) 0.51070 (16) 1.0184 (3) 0.0530 (6)
S1 0.13873 (6) 0.44073 (6) 0.88946 (13) 0.0402 (2)
Cl1 0.37936 (7) 0.67877 (7) 0.45078 (14) 0.0597 (3)
Br1 0.26467 (3) 0.30924 (3) 0.61701 (6) 0.0772 (2)
C1 0.2700 (2) 0.4257 (2) 0.9480 (5) 0.0353 (8)
C2 0.3192 (3) 0.4646 (2) 1.1197 (5) 0.0501 (9)
H2 0.2842 0.5022 1.1912 0.060*
C3 0.4190 (3) 0.4482 (3) 1.1847 (6) 0.0648 (11)
H3 0.4509 0.4743 1.3000 0.078*
C4 0.4715 (3) 0.3937 (3) 1.0807 (6) 0.0626 (11)
H4 0.5389 0.3829 1.1258 0.075*
C5 0.4252 (3) 0.3548 (2) 0.9097 (6) 0.0527 (10)
H5 0.4611 0.3183 0.8380 0.063*
C6 0.3248 (2) 0.3706 (2) 0.8458 (5) 0.0419 (8)
C7 0.1417 (2) 0.5706 (2) 0.6229 (4) 0.0313 (7)
C8 0.2332 (2) 0.5803 (2) 0.5710 (4) 0.0362 (8)
H8 0.2742 0.5286 0.5697 0.043*
C9 0.2643 (2) 0.6666 (2) 0.5209 (5) 0.0373 (8)
C10 0.2038 (3) 0.7433 (2) 0.5235 (4) 0.0398 (8)
H10 0.2252 0.8016 0.4911 0.048*
C11 0.1118 (2) 0.7335 (2) 0.5742 (4) 0.0391 (8)
H11 0.0712 0.7854 0.5745 0.047*
C12 0.0789 (2) 0.6470 (2) 0.6248 (4) 0.0292 (7)
N1 0.1089 (2) 0.48048 (18) 0.6746 (4) 0.0380 (7)
HN1 0.091 (2) 0.443 (2) 0.595 (5) 0.046*
N2 −0.0166 (2) 0.6362 (2) 0.6676 (4) 0.0428 (8)
HN2A −0.045 (3) 0.689 (2) 0.687 (5) 0.051*
HN2B −0.021 (3) 0.597 (2) 0.750 (5) 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0480 (14) 0.0428 (15) 0.088 (2) −0.0138 (13) 0.0117 (13) 0.0216 (13)
O2 0.0536 (15) 0.0621 (16) 0.0470 (15) 0.0154 (13) 0.0193 (12) −0.0013 (12)
S1 0.0373 (5) 0.0376 (5) 0.0473 (5) −0.0003 (4) 0.0122 (4) 0.0064 (4)
Cl1 0.0463 (6) 0.0695 (7) 0.0655 (7) −0.0078 (5) 0.0160 (5) 0.0115 (5)
Br1 0.0876 (4) 0.0665 (3) 0.0700 (3) 0.0282 (2) −0.0049 (2) −0.0302 (2)
C1 0.0377 (19) 0.0259 (18) 0.043 (2) −0.0002 (15) 0.0094 (16) 0.0059 (14)
C2 0.053 (2) 0.052 (2) 0.044 (2) 0.008 (2) 0.0050 (18) −0.0004 (17)
C3 0.062 (3) 0.071 (3) 0.054 (3) 0.001 (2) −0.009 (2) −0.006 (2)
C4 0.042 (2) 0.065 (3) 0.077 (3) 0.006 (2) 0.003 (2) 0.012 (2)
C5 0.048 (2) 0.051 (2) 0.062 (3) 0.009 (2) 0.016 (2) 0.0096 (19)
C6 0.044 (2) 0.033 (2) 0.049 (2) 0.0027 (17) 0.0091 (17) 0.0018 (15)
C7 0.0335 (19) 0.0278 (18) 0.0318 (18) −0.0037 (16) 0.0040 (14) 0.0002 (13)
C8 0.040 (2) 0.0309 (19) 0.038 (2) 0.0035 (16) 0.0072 (15) 0.0028 (14)
C9 0.0369 (19) 0.043 (2) 0.0308 (19) −0.0014 (17) 0.0046 (14) 0.0013 (14)
C10 0.052 (2) 0.032 (2) 0.034 (2) −0.0057 (18) 0.0023 (17) 0.0065 (14)
C11 0.048 (2) 0.034 (2) 0.0329 (19) 0.0083 (18) 0.0013 (16) −0.0009 (14)
C12 0.0305 (18) 0.0313 (18) 0.0250 (17) 0.0009 (16) 0.0029 (13) −0.0030 (13)
N1 0.0424 (17) 0.0304 (16) 0.0391 (17) −0.0034 (14) 0.0021 (13) −0.0018 (12)
N2 0.0429 (19) 0.040 (2) 0.046 (2) 0.0065 (16) 0.0081 (15) −0.0001 (14)

Geometric parameters (Å, º)

O1—S1 1.429 (2) C5—H5 0.9300
O2—S1 1.429 (2) C7—C8 1.375 (4)
S1—N1 1.605 (3) C7—C12 1.395 (4)
S1—C1 1.776 (3) C7—N1 1.438 (4)
Cl1—C9 1.743 (3) C8—C9 1.377 (4)
Br1—C6 1.892 (3) C8—H8 0.9300
C1—C6 1.383 (4) C9—C10 1.379 (4)
C1—C2 1.392 (4) C10—C11 1.376 (4)
C2—C3 1.375 (5) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.390 (4)
C3—C4 1.366 (5) C11—H11 0.9300
C3—H3 0.9300 C12—N2 1.402 (4)
C4—C5 1.377 (5) N1—HN1 0.78 (3)
C4—H4 0.9300 N2—HN2A 0.87 (3)
C5—C6 1.380 (4) N2—HN2B 0.82 (3)
O1—S1—O2 119.70 (16) C8—C7—C12 121.0 (3)
O1—S1—N1 106.66 (16) C8—C7—N1 120.0 (3)
O2—S1—N1 108.00 (14) C12—C7—N1 119.0 (3)
O1—S1—C1 107.58 (14) C7—C8—C9 119.9 (3)
O2—S1—C1 105.30 (15) C7—C8—H8 120.0
N1—S1—C1 109.34 (15) C9—C8—H8 120.0
C6—C1—C2 117.8 (3) C8—C9—C10 120.1 (3)
C6—C1—S1 124.6 (3) C8—C9—Cl1 120.1 (3)
C2—C1—S1 117.2 (3) C10—C9—Cl1 119.8 (3)
C3—C2—C1 120.7 (3) C11—C10—C9 120.0 (3)
C3—C2—H2 119.7 C11—C10—H10 120.0
C1—C2—H2 119.7 C9—C10—H10 120.0
C4—C3—C2 120.4 (4) C10—C11—C12 120.9 (3)
C4—C3—H3 119.8 C10—C11—H11 119.6
C2—C3—H3 119.8 C12—C11—H11 119.6
C3—C4—C5 120.4 (4) C11—C12—C7 118.1 (3)
C3—C4—H4 119.8 C11—C12—N2 120.9 (3)
C5—C4—H4 119.8 C7—C12—N2 120.9 (3)
C4—C5—C6 119.1 (3) C7—N1—S1 121.7 (2)
C4—C5—H5 120.4 C7—N1—HN1 120 (3)
C6—C5—H5 120.4 S1—N1—HN1 115 (3)
C5—C6—C1 121.6 (3) C12—N2—HN2A 114 (2)
C5—C6—Br1 116.7 (3) C12—N2—HN2B 116 (3)
C1—C6—Br1 121.6 (2) HN2A—N2—HN2B 112 (3)
HN1—N1—S1—C1 97 (3) C6—C1—S1—N1 −57.7 (3)
HN1—N1—S1—O1 −19 (3) C6—C1—S1—O1 57.8 (3)
C7—N1—S1—O2 50.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—HN1···N2i 0.78 (3) 2.26 (3) 3.022 (4) 166 (3)
N2—HN2A···O1ii 0.87 (3) 2.45 (3) 3.258 (4) 154 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2080).

References

  1. Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219–2231.
  2. Altamura, M., Fedi, V., Nannicini, R., Paoli, P. & Rossi, P. (2012). Acta Cryst. E68, o3144–o3145. [DOI] [PMC free article] [PubMed]
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Chegwidden, W. R., Carter, N. D. & Edwards, Y. H. (2000). In The Carbonic Anhydrases New Horizons Basel: Birkhauser Verlag.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Lu, R. J. & Tucker, J. A. (2007). J. Med. Chem. 50, 6535–6544. [DOI] [PubMed]
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  9. Parkin, A., Collins, A., Gilmore, C. J. & Wilson, C. C. (2008). Acta Cryst. B64, 66–71. [DOI] [PubMed]
  10. Perlovich, G. L., Ryzhakov, A. M., Tkachev, T. T. & Hansen, L. K. (2011). Cryst. Growth Des. 11, 1067–1081.
  11. Perlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738–4755. [DOI] [PubMed]
  12. Purushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K. & Njar, V. C. O. (2008). Bioorg. Med. Chem. 16, 3519–3529. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Tappe, W., Zarfl, C., Kummer, S., Burauel, P., Vereecken, H. & Groeneweg, J. (2008). Chemosphere, 72, 836–843. [DOI] [PubMed]
  16. Vega-Hissi, E. G., Andrada, M. F., Zamarbide, G. N., Estrada, M. R. & Tomas-Vert, F. (2011). J. Mol. Model. 17, 1317–1323. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204562X/ld2080sup1.cif

e-68-o3308-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204562X/ld2080Isup2.hkl

e-68-o3308-Isup2.hkl (121.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204562X/ld2080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES