Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3319–o3320. doi: 10.1107/S1600536812045291

2-Amino-5-methyl­pyridinium trifluoro­acetate

Kaliyaperumal Thanigaimani a, Abbas Farhadikoutenaei a, Nuridayanti Che Khalib a, Suhana Arshad a, Ibrahim Abdul Razak a,*,
PMCID: PMC3588927  PMID: 23476163

Abstract

In the title salt, C6H9N2 +·C2F3O2 , the F atoms of the anion are disordered over two sets of sites, with refined occupancies in a ratio of 0.505 (17):0.495 (17). In the crystal, cations and anions are linked via N—H⋯O hydrogen bonds, forming R 2 2(8) ring motifs. The ionic units are linked into a two-dimensional network parallel to (100) by N—H⋯O and weak C—H⋯O hydrogen bonds. The crystal structure is further stabilized by weak C—H⋯F hydrogen bonds, resulting in a three-dimensional network.

Related literature  

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For a related structure, see: Rodrigues et al. (2001).graphic file with name e-68-o3319-scheme1.jpg

Experimental  

Crystal data  

  • C6H9N2 +·C2F3O2

  • M r = 222.17

  • Orthorhombic, Inline graphic

  • a = 18.725 (4) Å

  • b = 4.6256 (10) Å

  • c = 11.319 (2) Å

  • V = 980.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.54 × 0.29 × 0.11 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.926, T max = 0.985

  • 12012 measured reflections

  • 3216 independent reflections

  • 2627 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.114

  • S = 1.07

  • 3216 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1368 Friedel pairs

  • Flack parameter: −0.1 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045291/lh5549sup1.cif

e-68-o3319-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045291/lh5549Isup2.hkl

e-68-o3319-Isup2.hkl (157.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045291/lh5549Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.98 (3) 1.75 (3) 2.7281 (19) 177 (2)
N2—H2N2⋯O1 0.95 (3) 1.92 (3) 2.865 (2) 173 (2)
N2—H1N2⋯O2i 0.86 (3) 1.99 (3) 2.8347 (18) 167 (3)
C3—H3A⋯F2ii 0.95 2.51 3.429 (6) 164
C5—H5A⋯O1iii 0.95 2.27 3.1910 (19) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Trifluoroacetic acid is a very strong carboxylic acid, easily volatile, and used for protein purification. An example of a crystal structure of a trifluoroacetate salts has been reported (Rodrigues et al., 2001). In order to study potential hydrogen bonding interactions the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one trifluoroacetate anion. The F atoms of the anion are disordered over two sets of sites, with occupancies of 0.505 (17) and 0.495 (17). In the 2-amino-5-methylpyridinium cation, a wider than normal angle [C1—N1—C5 = 122.77 (14)°] is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.016 (2) Å for atom N2. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal (Fig. 2), the cations and anions are linked via N—H···O hydrogen bonds to form R22(8) ring motifs (Bernstein et al., 1995). The ionic units are linked into a two-dimensional network parallel to (100) by N2—H1N2···O2i and C5—H5A···O1iii hydrogen bonds (symmetry codes in Table 1). The crystal structure is further stabilized by C3—H3A···F2ii hydrogen bonds, resulting in a three-dimensional network.

Experimental

To a hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement

The F atoms of the anion are disordered over two sets of sites, with occupancies of 0.505 (17):0.495 (17). Atoms H1N1, H1N2 and H2N2 were located in a difference Fourier maps and refined freely. The remaining hydrogen atoms were positioned geometrically [C–H= 0.95–0.98 Å] and were refined using a riding model, with Uiso(H)=1.2 Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing diagram of the title compound. Only major disorder component is shown. Hydrogen bonds are shown as dashed lines.

Crystal data

C6H9N2+·C2F3O2 F(000) = 456
Mr = 222.17 Dx = 1.505 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4200 reflections
a = 18.725 (4) Å θ = 2.8–32.5°
b = 4.6256 (10) Å µ = 0.15 mm1
c = 11.319 (2) Å T = 100 K
V = 980.4 (3) Å3 Plate, colourless
Z = 4 0.54 × 0.29 × 0.11 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3216 independent reflections
Radiation source: fine-focus sealed tube 2627 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 32.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −28→28
Tmin = 0.926, Tmax = 0.985 k = −6→6
12012 measured reflections l = −16→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.1405P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3216 reflections Δρmax = 0.23 e Å3
177 parameters Δρmin = −0.30 e Å3
1 restraint Absolute structure: Flack (1983), 1368 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.1 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.5951 (6) −0.360 (3) 0.6163 (9) 0.0636 (17) 0.505 (17)
F2 0.5409 (3) 0.0250 (13) 0.6382 (9) 0.075 (2) 0.505 (17)
F3 0.5859 (5) −0.076 (4) 0.4723 (7) 0.104 (4) 0.505 (17)
F1X 0.6094 (7) −0.352 (2) 0.5755 (15) 0.097 (4) 0.495 (17)
F2X 0.5478 (4) −0.032 (2) 0.6626 (5) 0.080 (2) 0.495 (17)
F3X 0.5752 (3) 0.0168 (15) 0.4869 (6) 0.0479 (14) 0.495 (17)
O1 0.67666 (7) 0.0887 (3) 0.73348 (10) 0.0384 (3)
O2 0.70767 (6) 0.1522 (3) 0.54434 (9) 0.0312 (3)
N1 0.80834 (7) 0.5530 (3) 0.60374 (10) 0.0248 (3)
N2 0.78211 (9) 0.5050 (4) 0.80182 (12) 0.0320 (3)
C1 0.81952 (8) 0.6336 (4) 0.71687 (12) 0.0257 (3)
C2 0.87136 (9) 0.8495 (4) 0.73742 (14) 0.0307 (3)
H2A 0.8806 0.9141 0.8156 0.037*
C3 0.90806 (9) 0.9649 (4) 0.64496 (15) 0.0316 (3)
H3A 0.9432 1.1084 0.6599 0.038*
C4 0.89527 (8) 0.8768 (4) 0.52703 (13) 0.0279 (3)
C5 0.84486 (8) 0.6703 (4) 0.51114 (12) 0.0257 (3)
H5A 0.8347 0.6054 0.4333 0.031*
C6 0.93586 (10) 1.0012 (4) 0.42471 (17) 0.0364 (4)
H6A 0.9186 0.9147 0.3510 0.055*
H6B 0.9868 0.9594 0.4342 0.055*
H6C 0.9286 1.2110 0.4221 0.055*
C7 0.59832 (9) −0.0794 (4) 0.58757 (15) 0.0312 (3)
C8 0.66781 (9) 0.0707 (4) 0.62616 (13) 0.0268 (3)
H2N2 0.7456 (13) 0.369 (6) 0.785 (2) 0.040 (6)*
H1N2 0.7919 (14) 0.558 (6) 0.873 (3) 0.050 (7)*
H1N1 0.7723 (13) 0.405 (6) 0.585 (2) 0.043 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.075 (3) 0.027 (2) 0.089 (4) −0.0046 (19) −0.017 (2) 0.007 (2)
F2 0.0328 (17) 0.044 (2) 0.148 (6) 0.0071 (15) 0.004 (3) −0.043 (3)
F3 0.093 (4) 0.194 (10) 0.0252 (15) −0.097 (5) −0.010 (2) 0.014 (4)
F1X 0.092 (6) 0.021 (2) 0.177 (11) 0.005 (3) −0.069 (7) −0.017 (5)
F2X 0.041 (3) 0.154 (6) 0.044 (2) −0.038 (3) 0.0180 (16) −0.011 (3)
F3X 0.0410 (16) 0.060 (3) 0.042 (3) −0.0108 (16) −0.0251 (16) 0.0201 (19)
O1 0.0462 (7) 0.0534 (9) 0.0156 (5) −0.0029 (6) 0.0001 (4) 0.0020 (5)
O2 0.0337 (5) 0.0450 (7) 0.0149 (4) −0.0038 (5) 0.0021 (4) −0.0058 (5)
N1 0.0316 (6) 0.0292 (7) 0.0136 (5) 0.0038 (5) −0.0025 (4) −0.0004 (5)
N2 0.0454 (8) 0.0368 (9) 0.0138 (5) 0.0023 (7) 0.0001 (5) −0.0032 (5)
C1 0.0341 (7) 0.0277 (8) 0.0154 (6) 0.0089 (6) −0.0027 (5) −0.0032 (6)
C2 0.0412 (8) 0.0290 (9) 0.0220 (6) 0.0061 (7) −0.0067 (6) −0.0064 (6)
C3 0.0351 (8) 0.0299 (9) 0.0298 (7) 0.0036 (6) −0.0051 (6) −0.0059 (7)
C4 0.0305 (7) 0.0298 (9) 0.0235 (7) 0.0075 (6) −0.0013 (5) 0.0003 (6)
C5 0.0321 (6) 0.0302 (8) 0.0147 (5) 0.0069 (6) −0.0025 (5) −0.0014 (5)
C6 0.0394 (8) 0.0377 (10) 0.0320 (7) 0.0008 (7) 0.0038 (7) 0.0033 (8)
C7 0.0380 (7) 0.0299 (9) 0.0255 (6) −0.0003 (6) −0.0007 (6) 0.0037 (6)
C8 0.0318 (7) 0.0305 (8) 0.0181 (6) 0.0052 (6) −0.0001 (5) −0.0008 (6)

Geometric parameters (Å, º)

F1—C7 1.341 (11) N2—H1N2 0.86 (3)
F2—C7 1.311 (6) C1—C2 1.412 (2)
F3—C7 1.325 (8) C2—C3 1.361 (3)
F1X—C7 1.287 (11) C2—H2A 0.9500
F2X—C7 1.290 (5) C3—C4 1.416 (2)
F3X—C7 1.297 (6) C3—H3A 0.9500
O1—C8 1.2289 (18) C4—C5 1.355 (2)
O2—C8 1.2478 (19) C4—C6 1.500 (2)
N1—C1 1.3500 (18) C5—H5A 0.9500
N1—C5 1.3640 (19) C6—H6A 0.9800
N1—H1N1 0.98 (3) C6—H6B 0.9800
N2—C1 1.330 (2) C6—H6C 0.9800
N2—H2N2 0.95 (3) C7—C8 1.538 (2)
C1—N1—C5 122.78 (14) C4—C6—H6A 109.5
C1—N1—H1N1 119.9 (15) C4—C6—H6B 109.5
C5—N1—H1N1 117.3 (15) H6A—C6—H6B 109.5
C1—N2—H2N2 121.8 (14) C4—C6—H6C 109.5
C1—N2—H1N2 116.0 (19) H6A—C6—H6C 109.5
H2N2—N2—H1N2 122 (2) H6B—C6—H6C 109.5
N2—C1—N1 118.73 (15) F1X—C7—F2X 110.9 (7)
N2—C1—C2 124.01 (14) F1X—C7—F3X 107.3 (7)
N1—C1—C2 117.26 (14) F2X—C7—F3X 106.0 (5)
C3—C2—C1 119.86 (14) F2—C7—F1 102.4 (6)
C3—C2—H2A 120.1 F3—C7—F1 104.0 (8)
C1—C2—H2A 120.1 F1X—C7—C8 109.7 (5)
C2—C3—C4 121.77 (16) F2X—C7—C8 110.8 (3)
C2—C3—H3A 119.1 F3X—C7—C8 112.1 (3)
C4—C3—H3A 119.1 F2—C7—C8 113.8 (3)
C5—C4—C3 116.49 (14) F3—C7—C8 115.0 (4)
C5—C4—C6 121.40 (14) F1—C7—C8 114.0 (5)
C3—C4—C6 122.10 (16) O1—C8—O2 129.24 (16)
C4—C5—N1 121.84 (13) O1—C8—C7 115.18 (15)
C4—C5—H5A 119.1 O2—C8—C7 115.57 (13)
N1—C5—H5A 119.1
C5—N1—C1—N2 −179.15 (15) F2X—C7—C8—O1 32.3 (6)
C5—N1—C1—C2 0.2 (2) F3X—C7—C8—O1 150.5 (4)
N2—C1—C2—C3 178.70 (16) F2—C7—C8—O1 51.3 (5)
N1—C1—C2—C3 −0.6 (2) F3—C7—C8—O1 174.4 (9)
C1—C2—C3—C4 0.7 (2) F1—C7—C8—O1 −65.7 (5)
C2—C3—C4—C5 −0.4 (2) F1X—C7—C8—O2 88.4 (9)
C2—C3—C4—C6 −179.53 (17) F2X—C7—C8—O2 −148.9 (5)
C3—C4—C5—N1 −0.1 (2) F3X—C7—C8—O2 −30.7 (4)
C6—C4—C5—N1 179.11 (15) F2—C7—C8—O2 −129.9 (5)
C1—N1—C5—C4 0.1 (2) F3—C7—C8—O2 −6.8 (9)
F1X—C7—C8—O1 −90.5 (9) F1—C7—C8—O2 113.2 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.98 (3) 1.75 (3) 2.7281 (19) 177 (2)
N2—H2N2···O1 0.95 (3) 1.92 (3) 2.865 (2) 173 (2)
N2—H1N2···O2i 0.86 (3) 1.99 (3) 2.8347 (18) 167 (3)
C3—H3A···F2ii 0.95 2.51 3.429 (6) 164
C5—H5A···O1iii 0.95 2.27 3.1910 (19) 162

Symmetry codes: (i) −x+3/2, y+1/2, z+1/2; (ii) x+1/2, −y+3/2, z; (iii) −x+3/2, y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5549).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Jeffrey, G. A. (1997). In An Introduction of Hydrogen Bonding Oxford University Press.
  7. Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures Berlin: Springer.
  8. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  9. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society New York: Wiley.
  10. Rodrigues, V. H., Paixão, J. A., Costa, M. M. R. R. & Matos Beja, A. (2001). Acta Cryst. C57, 417–420. [DOI] [PubMed]
  11. Scheiner, S. (1997). In Hydrogen Bonding: A Theoretical Perspective Oxford University Press.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045291/lh5549sup1.cif

e-68-o3319-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045291/lh5549Isup2.hkl

e-68-o3319-Isup2.hkl (157.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045291/lh5549Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES