Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3323. doi: 10.1107/S1600536812045758

9,10-Diiodo­phenanthrene

Ruri Yokota a, Chitoshi Kitamura a,*, Takeshi Kawase a
PMCID: PMC3588929  PMID: 23476165

Abstract

The whole mol­ecule of the title compound, C14H8I2, is generated by crystallographic twofold symmetry. The mol­ecule is planar [maximum deviation = 0.0323 (6) Å] with the I atoms displaced from the mean plane of the phenanthrene ring system by only 0.0254 (5) Å. In the crystal, mol­ecules form face-to-face slipped anti­parallel π–π stacking inter­actions along the c axis with an inter­planar distance of 3.499 (7) Å.

Related literature  

For the synthesis of the title compound, see: Rodrígeuz-Lojo et al. (2012). For a related structure, see: Yokota et al. (2012).graphic file with name e-68-o3323-scheme1.jpg

Experimental  

Crystal data  

  • C14H8I2

  • M r = 430

  • Monoclinic, Inline graphic

  • a = 18.094 (2) Å

  • b = 9.4557 (14) Å

  • c = 7.4187 (10) Å

  • β = 111.953 (3)°

  • V = 1177.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 223 K

  • 0.52 × 0.08 × 0.05 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.388, T max = 0.869

  • 5595 measured reflections

  • 1345 independent reflections

  • 1077 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.12

  • 1345 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045758/jj2155sup1.cif

e-68-o3323-sup1.cif (12.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045758/jj2155Isup2.hkl

e-68-o3323-Isup2.hkl (65.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045758/jj2155Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.

supplementary crystallographic information

Comment

o-Diiodoarenes are valuable synthetic intermediates. We were able to obtain suitable single crystals of 9,10-diiodoophenanthrene, the title compound, by the recently published synthetic method of Rodrígeuz-Lojo et al. (2012). We report herein the crystal structure of C14H8I2, the title compound.

In the molecular structure of the title compound, (I), the mean plane of the arene ring displays a maximum deviation of 0.0323 (6) Å for I1 (Fig. 1). The molecule possesses C2 symmetry, and half of the formula unit is crystallographically independent. Bonds lengths and angles are in good agreement with the standard values. Crystal packing is stabilized by face-to-face, slipped, antiparrallel, π-π stacking along the direction of the c axis with an interplanar distance of 3.499 (7) Å (Fig. 2). Very recently, we have reported the crystal structure of 9,10-dibromophenanthrene (Yokota et al., 2012), the bromine analog of (I), which displays a similar packing arrangement.

Experimental

The title compound was prepared according to the literature method (Rodrígeuz-Lojo et al., 2012) Single crystals suitable for X-ray analysis were obtained from a toluene-hexane solution.

Refinement

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids. Symmetry code: (i) -x + 1, y, -z + 1.5.

Fig. 2.

Fig. 2.

The packing diagram of the title compound viewed along the b axis. Hydrogen atoms have been omitted for clarity.

Crystal data

C14H8I2 F(000) = 792
Mr = 430 Dx = 2.426 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3465 reflections
a = 18.094 (2) Å θ = 3.1–27.5°
b = 9.4557 (14) Å µ = 5.31 mm1
c = 7.4187 (10) Å T = 223 K
β = 111.953 (3)° Needle, colorless
V = 1177.2 (3) Å3 0.52 × 0.08 × 0.05 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 1345 independent reflections
Radiation source: fine-focus sealed x-ray tube 1077 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 3.5°
ω scans h = −23→22
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −12→12
Tmin = 0.388, Tmax = 0.869 l = −8→9
5595 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0077P)2 + 13.1956P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
1345 reflections Δρmax = 0.92 e Å3
73 parameters Δρmin = −0.92 e Å3
0 restraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3399 (3) 0.4417 (6) 0.4793 (7) 0.0368 (12)
H1 0.3127 0.3564 0.4332 0.044*
C2 0.3020 (3) 0.5667 (8) 0.4155 (8) 0.0470 (15)
H2 0.2488 0.5669 0.3275 0.056*
C3 0.3408 (3) 0.6927 (7) 0.4781 (9) 0.0467 (15)
H3 0.3146 0.7786 0.4306 0.056*
C4 0.4171 (4) 0.6931 (6) 0.6089 (8) 0.0424 (13)
H4 0.4426 0.78 0.6529 0.051*
C5 0.4587 (3) 0.5675 (5) 0.6798 (7) 0.0289 (10)
C6 0.4192 (3) 0.4383 (5) 0.6137 (7) 0.0261 (9)
C7 0.4618 (3) 0.3079 (5) 0.6846 (7) 0.0281 (10)
I1 0.40244 (3) 0.11933 (4) 0.58098 (7) 0.05783 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.029 (2) 0.051 (3) 0.029 (3) 0.003 (2) 0.008 (2) 0.001 (2)
C2 0.026 (3) 0.078 (4) 0.034 (3) 0.012 (3) 0.007 (2) 0.010 (3)
C3 0.038 (3) 0.057 (4) 0.048 (3) 0.024 (3) 0.019 (3) 0.020 (3)
C4 0.048 (3) 0.040 (3) 0.048 (3) 0.012 (2) 0.028 (3) 0.008 (3)
C5 0.030 (2) 0.030 (2) 0.031 (3) 0.0021 (19) 0.017 (2) 0.0012 (19)
C6 0.023 (2) 0.035 (2) 0.024 (2) 0.0010 (18) 0.0126 (18) 0.0001 (18)
C7 0.033 (2) 0.026 (2) 0.025 (2) −0.0029 (18) 0.010 (2) −0.0020 (18)
I1 0.0670 (3) 0.0402 (2) 0.0526 (3) −0.01527 (19) 0.0067 (2) −0.00726 (18)

Geometric parameters (Å, º)

C1—C2 1.359 (8) C4—C5 1.399 (7)
C1—C6 1.409 (7) C4—H4 0.94
C1—H1 0.94 C5—C6 1.408 (7)
C2—C3 1.372 (9) C5—C5i 1.467 (10)
C2—H2 0.94 C6—C7 1.445 (6)
C3—C4 1.359 (8) C7—C7i 1.360 (9)
C3—H3 0.94 C7—I1 2.075 (5)
C2—C1—C6 120.9 (5) C5—C4—H4 119.1
C2—C1—H1 119.6 C4—C5—C6 118.2 (5)
C6—C1—H1 119.6 C4—C5—C5i 121.9 (3)
C1—C2—C3 120.7 (5) C6—C5—C5i 119.8 (3)
C1—C2—H2 119.7 C5—C6—C1 118.5 (5)
C3—C2—H2 119.7 C5—C6—C7 118.7 (4)
C4—C3—C2 119.9 (5) C1—C6—C7 122.8 (5)
C4—C3—H3 120.1 C7i—C7—C6 121.5 (3)
C2—C3—H3 120.1 C7i—C7—I1 120.77 (13)
C3—C4—C5 121.8 (6) C6—C7—I1 117.8 (3)
C3—C4—H4 119.1
C6—C1—C2—C3 1.1 (8) C5i—C5—C6—C7 −0.9 (8)
C1—C2—C3—C4 −1.6 (9) C2—C1—C6—C5 −0.4 (7)
C2—C3—C4—C5 1.4 (9) C2—C1—C6—C7 −179.6 (5)
C3—C4—C5—C6 −0.7 (8) C5—C6—C7—C7i 1.2 (8)
C3—C4—C5—C5i 179.7 (6) C1—C6—C7—C7i −179.6 (6)
C4—C5—C6—C1 0.2 (7) C5—C6—C7—I1 −179.0 (3)
C5i—C5—C6—C1 179.8 (5) C1—C6—C7—I1 0.2 (6)
C4—C5—C6—C7 179.5 (5)

Symmetry code: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2155).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  5. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (1999). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rodrígeuz-Lojo, D., Cobas, A., Peña, D., Pérez, D. & Guitián, E. (2012). Org. Lett. 14, 1363–1365. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3174. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045758/jj2155sup1.cif

e-68-o3323-sup1.cif (12.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045758/jj2155Isup2.hkl

e-68-o3323-Isup2.hkl (65.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045758/jj2155Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES