Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3327–o3328. doi: 10.1107/S1600536812045394

(5S,11aS)-5-Hydro­per­oxy-1,5,11,11a-tetra­hydro­[1]benzothieno[3,2-f]indol­izin-3(2H)-one

Viktor Vrábel a,*, Ľubomír Švorc a, Štefan Marchalín b, Peter Šafář b
PMCID: PMC3588932  PMID: 23476168

Abstract

The absolute configuration of the title compound, C14H13NO3S, was assigned from the synthesis and confirmed by the structure determination. The central six-membered ring of the indolizine moiety adopts an envelope conformation, with the greatest deviation from the mean plane of the ring being 0.661 (2) Å for the bridgehead C atom. The benzothiene ring attached to the indolizine ring system is planar to within 0.008 (2) Å. In the crystal, mol­ecules form chains parallel to the b axis via O—H⋯O hydrogen bonds.

Related literature  

For background to indolizines and their biological activity, see: Malonne et al. (1998); Medda et al. (2003); Sonnet et al. (2000); Campagna et al. (1990); Pearson & Guo (2001). For their synthesis, see: Šafář et al. (2009a ,b ). For compounds with similar properties, see: Švorc et al. (2008, 2009). For IR spectroscopy on similar compounds, see: Šafář et al. (2009a ). For conformational analysis, see: Nardelli (1983).graphic file with name e-68-o3327-scheme1.jpg

Experimental  

Crystal data  

  • C14H13NO3S

  • M r = 275.31

  • Monoclinic, Inline graphic

  • a = 7.8040 (5) Å

  • b = 7.9800 (4) Å

  • c = 10.2903 (5) Å

  • β = 99.458 (5)°

  • V = 632.13 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur (Ruby, Gemi) diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.947, T max = 0.974

  • 21595 measured reflections

  • 2555 independent reflections

  • 2162 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.068

  • S = 1.00

  • 2555 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1185 Friedel pairs

  • Flack parameter: −0.05 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND, (Brandenburg, 2001), PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045394/bg2481sup1.cif

e-68-o3327-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045394/bg2481Isup2.hkl

e-68-o3327-Isup2.hkl (125.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045394/bg2481Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 (1) 1.86 (1) 2.6962 (19) 173 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Grant Agency of Slovak Republic, Grant Nos. 1/0429/11, 1/0679/11 and the Slovak Research and Development Agency under contract Nos. APVV-0797–11 and APVV-0204–10 for financial support for this research program.

supplementary crystallographic information

Comment

Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. As part of our recent efforts to synthesize novel polycyclic indolizine derivative, we report here the synthesis and molecular and crystal structure of the title compound, (I) (Fig. 1). The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom (Flack, 1983) and assigned consistent with the starting material. The expected stereochemistry of both atoms C5 and C15 was confirmed as S, see Fig. 1. The central N-heterocyclic ring is not planar and adopts a envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C6, C7, C14, C15 and N1 are planar to within 0.075 (3) Å, while atom C5 is displaced from this plane with out-of-plane displacement of 0.661 (2) Å. The pyrrolidine ring is distorted towards a flat-envelope conformation, with atom C4 on the flap. Atom C4 is 0.402 (2) Å from the mean plane defined by atoms C5, N1, C2 and C3. The dihedral angle between the plane of the central N-heterocyclic ring and the plane of the pyrrolidine ring is 44.6 (1)°. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (358.1°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl, similar to what is observed for amides. Intermolecular O—H···O hydrogen bonds link the molecules into infinite chains, which run parallel to the b axis (Fig. 2) and help to stabilize the crystal structure of the compound. The bond lengths of the carbonyl group C2=O1 is 1.233 (2) Å somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond.

Experimental

To a solution of (11aS)-1,5,11,11a-tetrahydro[1]benzothieno[3,2-f] indolizin-3(2H)-one (0.041 mmol) in THF (2 ml) was added 3 drops of H2O2 at 0°C and the mixture was allowed to react at room temperature for 72 h. The colorless crystals were filtered off, and washing with dry n-hexane (1 ml) gave pure indolizinhydroperoxid.

Refinement

All H atoms bonded to C were positioned with idealized geometry using a riding model with C–H = 0.93, 0.97 and 0.98 Å for aromatic, methylene and methine H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H3 atom on O3 was located in a difference map and finally refined isotropically with O—H distance fixed at 0.84 Å. The absolute configuration has been determined. The number of Friedel pairs is 1185.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular links are generated by O–H···O hydrogen bonds along the b axis which are shown by green dashed lines (Brandenburg, 2001).

Crystal data

C14H13NO3S F(000) = 288
Mr = 275.31 Dx = 1.446 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 10799 reflections
a = 7.8040 (5) Å θ = 3.2–29.6°
b = 7.9800 (4) Å µ = 0.26 mm1
c = 10.2903 (5) Å T = 295 K
β = 99.458 (5)° Block, colourless
V = 632.13 (6) Å3 0.25 × 0.20 × 0.15 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur (Ruby, Gemi) diffractometer 2555 independent reflections
Radiation source: fine-focus sealed tube 2162 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.4340 pixels mm-1 θmax = 26.4°, θmin = 4.4°
ω scans h = −9→9
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] k = −9→9
Tmin = 0.947, Tmax = 0.974 l = −12→12
21595 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0441P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2555 reflections Δρmax = 0.13 e Å3
176 parameters Δρmin = −0.14 e Å3
2 restraints Absolute structure: Flack (1983), 1185 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.05 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 −0.1152 (2) 0.0934 (2) 0.10939 (14) 0.0487 (4)
C3 −0.2994 (2) 0.1556 (3) 0.07868 (18) 0.0625 (5)
H3B −0.3714 0.1014 0.1347 0.075*
H3A −0.3483 0.1340 −0.0127 0.075*
C4 −0.2872 (2) 0.3432 (3) 0.1057 (2) 0.0662 (5)
H4B −0.3852 0.3817 0.1447 0.079*
H4A −0.2838 0.4054 0.0252 0.079*
C5 −0.1161 (2) 0.3639 (3) 0.20284 (16) 0.0527 (4)
H5 −0.0563 0.4666 0.1834 0.063*
C6 −0.1345 (2) 0.3584 (3) 0.34751 (18) 0.0584 (4)
H6B −0.1750 0.4661 0.3741 0.070*
H6A −0.2190 0.2739 0.3613 0.070*
C7 0.0371 (2) 0.31816 (19) 0.42819 (16) 0.0490 (4)
C8 0.2927 (2) 0.2798 (2) 0.60665 (15) 0.0497 (4)
C9 0.4223 (3) 0.2701 (3) 0.71705 (16) 0.0633 (5)
H9 0.4012 0.3056 0.7990 0.076*
C10 0.5810 (3) 0.2073 (3) 0.70255 (19) 0.0707 (6)
H10 0.6691 0.2028 0.7752 0.085*
C11 0.6131 (3) 0.1499 (3) 0.58133 (19) 0.0634 (5)
H11 0.7218 0.1064 0.5743 0.076*
C12 0.4862 (2) 0.1569 (2) 0.47181 (16) 0.0511 (4)
H12 0.5084 0.1174 0.3912 0.061*
C13 0.3233 (2) 0.22356 (19) 0.48218 (15) 0.0428 (4)
C14 0.17251 (19) 0.24634 (19) 0.38248 (14) 0.0412 (4)
C15 0.15873 (19) 0.1929 (2) 0.24080 (14) 0.0413 (4)
H15 0.1927 0.0751 0.2363 0.050*
N1 −0.01704 (17) 0.21547 (16) 0.17396 (12) 0.0447 (3)
O1 −0.06189 (17) −0.04709 (17) 0.08604 (12) 0.0627 (3)
O2 0.27750 (15) 0.29669 (15) 0.18624 (11) 0.0513 (3)
O3 0.28192 (17) 0.23328 (18) 0.05339 (11) 0.0597 (3)
H3 0.207 (2) 0.299 (3) 0.013 (2) 0.098 (9)*
S1 0.08315 (6) 0.35880 (6) 0.59656 (4) 0.06228 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0512 (10) 0.0610 (11) 0.0332 (7) −0.0060 (9) 0.0043 (7) 0.0038 (8)
C3 0.0518 (11) 0.0782 (14) 0.0546 (10) −0.0038 (10) 0.0001 (8) 0.0057 (9)
C4 0.0501 (10) 0.0692 (13) 0.0765 (12) 0.0052 (11) 0.0018 (9) 0.0209 (11)
C5 0.0440 (9) 0.0452 (9) 0.0699 (10) 0.0038 (9) 0.0121 (8) 0.0093 (9)
C6 0.0508 (9) 0.0560 (9) 0.0702 (10) 0.0095 (10) 0.0151 (8) −0.0066 (10)
C7 0.0520 (10) 0.0446 (10) 0.0529 (9) −0.0003 (8) 0.0156 (8) −0.0048 (7)
C8 0.0679 (11) 0.0400 (8) 0.0435 (9) 0.0012 (8) 0.0161 (8) 0.0007 (7)
C9 0.0933 (15) 0.0563 (11) 0.0402 (9) 0.0050 (11) 0.0102 (9) 0.0006 (8)
C10 0.0872 (16) 0.0703 (14) 0.0492 (10) 0.0112 (12) −0.0050 (10) 0.0097 (9)
C11 0.0673 (12) 0.0648 (12) 0.0560 (10) 0.0171 (10) 0.0042 (9) 0.0099 (9)
C12 0.0589 (11) 0.0514 (10) 0.0439 (9) 0.0086 (9) 0.0111 (8) 0.0041 (7)
C13 0.0549 (9) 0.0338 (8) 0.0411 (7) −0.0015 (7) 0.0120 (7) 0.0016 (6)
C14 0.0467 (9) 0.0354 (8) 0.0433 (8) −0.0009 (7) 0.0125 (7) −0.0009 (6)
C15 0.0405 (8) 0.0433 (9) 0.0408 (8) −0.0002 (7) 0.0084 (6) 0.0009 (6)
N1 0.0429 (7) 0.0457 (7) 0.0458 (7) 0.0001 (6) 0.0082 (6) 0.0021 (6)
O1 0.0674 (9) 0.0619 (8) 0.0554 (7) −0.0007 (7) 0.0000 (6) −0.0159 (6)
O2 0.0498 (6) 0.0609 (7) 0.0445 (6) −0.0061 (5) 0.0121 (5) 0.0000 (5)
O3 0.0607 (8) 0.0756 (9) 0.0452 (7) 0.0118 (7) 0.0163 (6) 0.0007 (6)
S1 0.0745 (3) 0.0630 (3) 0.0537 (2) 0.0086 (3) 0.0234 (2) −0.0118 (2)

Geometric parameters (Å, º)

C2—O1 1.233 (2) C8—C13 1.414 (2)
C2—N1 1.345 (2) C8—S1 1.7400 (19)
C2—C3 1.505 (3) C9—C10 1.366 (3)
C3—C4 1.523 (3) C9—H9 0.9300
C3—H3B 0.9700 C10—C11 1.390 (3)
C3—H3A 0.9700 C10—H10 0.9300
C4—C5 1.539 (3) C11—C12 1.374 (3)
C4—H4B 0.9700 C11—H11 0.9300
C4—H4A 0.9700 C12—C13 1.398 (2)
C5—N1 1.471 (2) C12—H12 0.9300
C5—C6 1.519 (2) C13—C14 1.440 (2)
C5—H5 0.9800 C14—C15 1.506 (2)
C6—C7 1.490 (2) C15—O2 1.4252 (19)
C6—H6B 0.9700 C15—N1 1.441 (2)
C6—H6A 0.9700 C15—H15 0.9800
C7—C14 1.353 (2) O2—O3 1.4634 (16)
C7—S1 1.7411 (17) O3—H3 0.841 (2)
C8—C9 1.393 (3)
O1—C2—N1 124.86 (17) C13—C8—S1 110.95 (13)
O1—C2—C3 126.89 (16) C10—C9—C8 118.72 (16)
N1—C2—C3 108.17 (16) C10—C9—H9 120.6
C2—C3—C4 104.88 (16) C8—C9—H9 120.6
C2—C3—H3B 110.8 C9—C10—C11 121.29 (18)
C4—C3—H3B 110.8 C9—C10—H10 119.4
C2—C3—H3A 110.8 C11—C10—H10 119.4
C4—C3—H3A 110.8 C12—C11—C10 120.70 (18)
H3B—C3—H3A 108.8 C12—C11—H11 119.7
C3—C4—C5 104.22 (16) C10—C11—H11 119.7
C3—C4—H4B 110.9 C11—C12—C13 119.67 (15)
C5—C4—H4B 110.9 C11—C12—H12 120.2
C3—C4—H4A 110.9 C13—C12—H12 120.2
C5—C4—H4A 110.9 C12—C13—C8 118.72 (15)
H4B—C4—H4A 108.9 C12—C13—C14 129.82 (14)
N1—C5—C6 108.21 (14) C8—C13—C14 111.46 (14)
N1—C5—C4 102.19 (16) C7—C14—C13 113.53 (14)
C6—C5—C4 114.92 (14) C7—C14—C15 121.41 (14)
N1—C5—H5 110.4 C13—C14—C15 125.04 (13)
C6—C5—H5 110.4 O2—C15—N1 111.66 (12)
C4—C5—H5 110.4 O2—C15—C14 105.62 (12)
C7—C6—C5 109.33 (13) N1—C15—C14 109.74 (12)
C7—C6—H6B 109.8 O2—C15—H15 109.9
C5—C6—H6B 109.8 N1—C15—H15 109.9
C7—C6—H6A 109.8 C14—C15—H15 109.9
C5—C6—H6A 109.8 C2—N1—C15 124.42 (15)
H6B—C6—H6A 108.3 C2—N1—C5 114.03 (14)
C14—C7—C6 125.42 (15) C15—N1—C5 119.65 (13)
C14—C7—S1 112.32 (13) C15—O2—O3 106.49 (11)
C6—C7—S1 122.26 (12) O2—O3—H3 97.2 (18)
C9—C8—C13 120.88 (17) C8—S1—C7 91.72 (7)
C9—C8—S1 128.16 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1i 0.84 (1) 1.86 (1) 2.6962 (19) 173 (2)

Symmetry code: (i) −x, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2481).

References

  1. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.
  7. Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128. [DOI] [PubMed]
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.
  11. Šafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Comesse, S. & Daich, A. (2009b). Tetrahedron Asymmetry, 20, 2137–2144.
  12. Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009a). Tetrahedron Asymmetry, 20, 626–634.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164–o1165. [DOI] [PMC free article] [PubMed]
  17. Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2009). Acta Cryst. E65, o695–o696. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045394/bg2481sup1.cif

e-68-o3327-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045394/bg2481Isup2.hkl

e-68-o3327-Isup2.hkl (125.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045394/bg2481Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES