Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3329–o3330. doi: 10.1107/S1600536812045795

Methyl 12-hydroxy-10-[1-(4-meth­oxy­phen­yl)-2-oxo-3-phen­oxy­azetidin-4-yl]-11-oxa-3-aza­hexa­cyclo­[11.7.1.02,9.02,12.03,7.017,21]henicosa-1(20),13,15,17(21),18-penta­ene-9-carboxyl­ate

Sivasubramanian Suhitha a, Thothadri Srinivasan a, Raju Rajesh b, Raghavachary Raghunathan b, Devadasan Velmurugan a,*
PMCID: PMC3588933  PMID: 23476169

Abstract

In the title compound, C37H34N2O7, both pyrrolidine rings adopt envelope conformations. The β-lactam ring is close to planar (r.m.s. deviation = 0.0395 Å) and makes a dihedral angle of 83.35 (15)° with the furan ring. The O atom attached to the β-lactam ring deviates by 0.187 (2) Å from the mean plane of the ring. The β-lactam ring makes dihedral angles of 14.90 (15) and 27.72 (17)° with the meth­oxy­phenyl and phenyl rings, respectively. The crystal packing features C—H⋯O hydrogen bonds.

Related literature  

For general background and therapeutic applications of β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Sundaramoorthy et al. (2012).graphic file with name e-68-o3329-scheme1.jpg

Experimental  

Crystal data  

  • C37H34N2O7

  • M r = 618.66

  • Orthorhombic, Inline graphic

  • a = 9.6545 (11) Å

  • b = 20.363 (2) Å

  • c = 31.804 (3) Å

  • V = 6252.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.969, T max = 0.978

  • 26528 measured reflections

  • 5614 independent reflections

  • 3210 reflections with I > 2σ(I)

  • R int = 0.062

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.127

  • S = 1.00

  • 5614 reflections

  • 421 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045795/pv2604sup1.cif

e-68-o3329-sup1.cif (41.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045795/pv2604Isup2.hkl

e-68-o3329-Isup2.hkl (269.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045795/pv2604Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O4i 0.93 2.49 3.409 (3) 173
C37—H37C⋯O7ii 0.96 2.53 3.217 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for the data collection. TS thanks the DST for an Inspire fellowship.

supplementary crystallographic information

Comment

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications of β-lactam derivatives, we have determined the crystal structure of the title compound and report it in this article.

In the title compound (Fig. 1), both pyrrolidine rings N2/C18–C20/C24 and N2/C20–C23 adopt C20- and C23-envelope conformations, respectively. The β lactam ring (N1/C8–C10) is essentially planar (rmsd = 0.0395 Å) and the O2 atom attached to it deviates by -0.187 (2)Å from its least-squares plane. The β lactam ring makes dihedral angles 14.90 (15)° and 27.72 (17)° with the methoxy phenyl and unsubstitued phenyl rings, respectively. The dihedral angle between the β lactam ring and the furan ring (O6/C17/C18/C24/C25) is 83.35 (15)°. The furan ring makes dihedral angles 81.84 (12)° and 72.24 (15)° with the two pyrrolidine rings. The dihedral angle between the furan ring and the cyclopentane ring (C24/C25/C26/C27/C28) is 71.56 (12)°. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Sundaramoorthy et al., 2012). The packing of the crystal structure is stabilised by intermolecular C—H···O hydrogen bonds (Tab. 1 & Fig. 2).

Experimental

A solution of methyl 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin -2-yl)methyl)acrylate (1.0 equiv.), acenaphthequinone (1.1 equiv.) and proline (1.1 equiv.) were refluxed in dry methanol. Completion of the reaction was evidenced by TLC analysis. The solvent was then removed under vacuum, diluted in dichloromethane and washed with brine and water. The organic layer was separated and removed and the residue subjected to column chromatography using ethyl acetate and hexane as an eluent (1:4) afforded the cycloadduct. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of single crystals.

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å and refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(methyl-C) and 1.2Ueq(non-methyl C). The hydroxyl H-atom was located from a difference map and was allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms were omitted for clarity.

Fig. 2.

Fig. 2.

A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound viewed down b axis. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C37H34N2O7 F(000) = 2608
Mr = 618.66 Dx = 1.314 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5614 reflections
a = 9.6545 (11) Å θ = 1.3–25.3°
b = 20.363 (2) Å µ = 0.09 mm1
c = 31.804 (3) Å T = 293 K
V = 6252.5 (11) Å3 Block, colourless
Z = 8 0.35 × 0.30 × 0.25 mm

Data collection

Bruker SMART APEXII area-detector diffractometer 5614 independent reflections
Radiation source: fine-focus sealed tube 3210 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.062
ω and φ scans θmax = 25.3°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.969, Tmax = 0.978 k = −22→24
26528 measured reflections l = −32→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0503P)2 + 1.3234P] where P = (Fo2 + 2Fc2)/3
5614 reflections (Δ/σ)max < 0.001
421 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1844 (4) −0.29414 (16) 0.45652 (10) 0.0994 (11)
H1A −0.2716 −0.2931 0.4710 0.149*
H1B −0.1945 −0.3182 0.4307 0.149*
H1C −0.1553 −0.2501 0.4504 0.149*
C2 −0.0580 (3) −0.29816 (14) 0.52120 (9) 0.0668 (7)
C3 −0.1206 (3) −0.24169 (13) 0.53561 (8) 0.0614 (7)
H3 −0.1869 −0.2206 0.5192 0.074*
C4 −0.0846 (3) −0.21631 (12) 0.57455 (7) 0.0580 (7)
H4 −0.1261 −0.1778 0.5840 0.070*
C5 0.0121 (3) −0.24757 (12) 0.59942 (8) 0.0559 (6)
C6 0.0725 (3) −0.30568 (13) 0.58544 (9) 0.0688 (7)
H6 0.1362 −0.3278 0.6022 0.083*
C7 0.0370 (3) −0.33014 (14) 0.54648 (9) 0.0742 (8)
H7 0.0777 −0.3688 0.5370 0.089*
C8 0.0036 (2) −0.15872 (11) 0.65931 (7) 0.0531 (6)
H8 −0.0971 −0.1585 0.6633 0.064*
C9 0.0769 (2) −0.18432 (12) 0.69942 (7) 0.0566 (6)
H9 0.1632 −0.1609 0.7056 0.068*
C10 0.1001 (3) −0.24787 (14) 0.67485 (8) 0.0656 (7)
C11 0.0410 (3) −0.19644 (13) 0.77364 (7) 0.0569 (6)
C12 0.1496 (3) −0.23813 (13) 0.78101 (8) 0.0663 (7)
H12 0.1945 −0.2591 0.7589 0.080*
C13 0.1909 (3) −0.24834 (16) 0.82211 (11) 0.0823 (9)
H13 0.2639 −0.2768 0.8278 0.099*
C14 0.1255 (4) −0.2170 (2) 0.85429 (11) 0.1028 (13)
H14 0.1525 −0.2250 0.8819 0.123*
C15 0.0202 (4) −0.1739 (2) 0.84622 (10) 0.1091 (13)
H15 −0.0224 −0.1517 0.8683 0.131*
C16 −0.0224 (3) −0.16324 (17) 0.80586 (9) 0.0832 (9)
H16 −0.0936 −0.1338 0.8003 0.100*
C17 0.0505 (2) −0.09544 (11) 0.63905 (7) 0.0465 (6)
H17 0.0342 −0.0988 0.6087 0.056*
C18 −0.0236 (2) −0.03335 (11) 0.65529 (6) 0.0431 (5)
C19 −0.0432 (2) −0.02920 (12) 0.70346 (6) 0.0513 (6)
H19A −0.1280 −0.0060 0.7103 0.062*
H19B −0.0472 −0.0728 0.7157 0.062*
C20 0.0831 (2) 0.00838 (13) 0.71975 (7) 0.0563 (6)
H20 0.1602 −0.0219 0.7248 0.068*
C21 0.0590 (3) 0.05173 (16) 0.75843 (8) 0.0771 (8)
H21A −0.0354 0.0472 0.7685 0.093*
H21B 0.1220 0.0399 0.7809 0.093*
C22 0.0859 (4) 0.12086 (16) 0.74376 (9) 0.0889 (9)
H22A 0.1813 0.1334 0.7489 0.107*
H22B 0.0251 0.1518 0.7579 0.107*
C23 0.0555 (3) 0.11824 (13) 0.69729 (8) 0.0680 (7)
H23A −0.0433 0.1184 0.6918 0.082*
H23B 0.0986 0.1545 0.6824 0.082*
C24 0.0864 (2) 0.02290 (11) 0.64621 (6) 0.0433 (5)
C25 0.2212 (2) −0.01860 (12) 0.63326 (7) 0.0484 (6)
C26 0.2334 (2) −0.00885 (12) 0.58636 (7) 0.0523 (6)
C27 0.1370 (2) 0.03869 (12) 0.57417 (7) 0.0516 (6)
C28 0.0569 (2) 0.06374 (12) 0.60742 (7) 0.0486 (6)
C29 −0.0358 (3) 0.11284 (13) 0.59889 (8) 0.0661 (7)
H29 −0.0874 0.1318 0.6204 0.079*
C30 −0.0519 (3) 0.13415 (15) 0.55704 (10) 0.0826 (9)
H30 −0.1154 0.1673 0.5513 0.099*
C31 0.0218 (4) 0.10812 (16) 0.52475 (9) 0.0859 (10)
H31 0.0052 0.1223 0.4974 0.103*
C32 0.1232 (3) 0.05987 (14) 0.53230 (8) 0.0669 (7)
C33 0.2122 (4) 0.03017 (17) 0.50266 (9) 0.0858 (10)
H33 0.2063 0.0419 0.4745 0.103*
C34 0.3064 (4) −0.01533 (17) 0.51499 (9) 0.0887 (10)
H34 0.3646 −0.0337 0.4949 0.106*
C35 0.3196 (3) −0.03595 (14) 0.55723 (8) 0.0725 (8)
H35 0.3853 −0.0671 0.5649 0.087*
C36 −0.1586 (2) −0.02405 (13) 0.63177 (7) 0.0500 (6)
C37 −0.3568 (3) 0.04349 (18) 0.62279 (9) 0.0912 (10)
H37A −0.3327 0.0532 0.5942 0.137*
H37B −0.3997 0.0812 0.6353 0.137*
H37C −0.4200 0.0071 0.6235 0.137*
N1 0.0482 (2) −0.22067 (10) 0.63899 (6) 0.0595 (5)
N2 0.11888 (18) 0.05505 (10) 0.68586 (5) 0.0501 (5)
O1 −0.0823 (2) −0.32569 (10) 0.48259 (6) 0.0937 (7)
O2 0.1430 (2) −0.30229 (10) 0.68253 (6) 0.0899 (6)
O3 −0.01484 (17) −0.18640 (9) 0.73418 (5) 0.0636 (5)
O4 −0.19583 (18) −0.05791 (10) 0.60292 (6) 0.0740 (5)
O5 −0.23191 (15) 0.02664 (9) 0.64624 (5) 0.0635 (5)
O6 0.19453 (14) −0.08459 (8) 0.64559 (4) 0.0525 (4)
O7 0.33797 (16) 0.00319 (10) 0.65408 (6) 0.0655 (5)
H7A 0.303 (3) 0.0308 (14) 0.6745 (9) 0.090 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.118 (3) 0.105 (3) 0.075 (2) 0.008 (2) −0.029 (2) −0.0208 (19)
C2 0.0727 (18) 0.0621 (18) 0.0657 (18) −0.0071 (15) −0.0012 (15) −0.0129 (15)
C3 0.0669 (17) 0.0586 (17) 0.0587 (17) −0.0053 (13) −0.0017 (13) −0.0016 (14)
C4 0.0671 (17) 0.0539 (16) 0.0529 (16) −0.0033 (13) 0.0057 (13) −0.0004 (13)
C5 0.0663 (16) 0.0493 (15) 0.0522 (16) −0.0063 (13) 0.0047 (13) 0.0030 (12)
C6 0.0727 (18) 0.0570 (17) 0.077 (2) 0.0029 (14) −0.0052 (15) 0.0009 (15)
C7 0.0778 (19) 0.0606 (18) 0.084 (2) 0.0053 (15) −0.0018 (16) −0.0166 (16)
C8 0.0601 (15) 0.0522 (15) 0.0469 (14) −0.0038 (12) −0.0009 (12) 0.0028 (12)
C9 0.0569 (15) 0.0662 (17) 0.0465 (15) −0.0052 (12) 0.0012 (12) 0.0110 (13)
C10 0.0746 (18) 0.0639 (19) 0.0583 (18) 0.0046 (14) 0.0042 (14) 0.0121 (15)
C11 0.0588 (16) 0.0667 (17) 0.0451 (16) −0.0158 (13) −0.0017 (12) 0.0117 (13)
C12 0.0731 (18) 0.0641 (18) 0.0616 (18) −0.0048 (14) −0.0088 (14) 0.0124 (14)
C13 0.081 (2) 0.087 (2) 0.079 (2) −0.0211 (17) −0.0233 (18) 0.0271 (19)
C14 0.097 (3) 0.157 (4) 0.054 (2) −0.048 (3) −0.019 (2) 0.027 (2)
C15 0.094 (3) 0.179 (4) 0.055 (2) −0.011 (3) 0.0026 (18) −0.012 (2)
C16 0.0722 (19) 0.120 (3) 0.0577 (19) 0.0013 (18) 0.0054 (15) 0.0031 (18)
C17 0.0484 (13) 0.0535 (14) 0.0375 (13) −0.0039 (11) −0.0004 (10) 0.0025 (11)
C18 0.0391 (12) 0.0570 (14) 0.0330 (12) −0.0001 (10) 0.0016 (9) 0.0036 (10)
C19 0.0510 (13) 0.0648 (16) 0.0382 (13) 0.0031 (11) 0.0058 (10) 0.0045 (11)
C20 0.0524 (14) 0.0747 (17) 0.0418 (14) 0.0066 (12) −0.0042 (11) −0.0020 (13)
C21 0.0775 (19) 0.113 (3) 0.0409 (16) 0.0027 (17) −0.0011 (13) −0.0145 (16)
C22 0.103 (2) 0.097 (2) 0.067 (2) 0.0008 (19) 0.0008 (17) −0.0316 (18)
C23 0.0772 (18) 0.0650 (18) 0.0617 (17) 0.0004 (14) 0.0044 (14) −0.0175 (14)
C24 0.0404 (12) 0.0527 (14) 0.0368 (13) −0.0028 (10) 0.0015 (9) −0.0021 (10)
C25 0.0416 (13) 0.0571 (16) 0.0465 (14) −0.0047 (11) 0.0058 (10) −0.0030 (12)
C26 0.0561 (14) 0.0570 (16) 0.0438 (14) −0.0146 (12) 0.0117 (11) −0.0082 (12)
C27 0.0610 (15) 0.0563 (16) 0.0373 (14) −0.0198 (12) 0.0040 (11) 0.0013 (11)
C28 0.0492 (13) 0.0526 (15) 0.0439 (14) −0.0098 (11) −0.0004 (11) 0.0045 (11)
C29 0.0676 (17) 0.0652 (18) 0.0654 (18) 0.0000 (14) 0.0000 (14) 0.0128 (14)
C30 0.091 (2) 0.081 (2) 0.076 (2) −0.0044 (17) −0.0112 (18) 0.0299 (18)
C31 0.109 (3) 0.091 (2) 0.057 (2) −0.029 (2) −0.0130 (18) 0.0294 (17)
C32 0.085 (2) 0.0700 (19) 0.0459 (17) −0.0277 (16) 0.0024 (15) 0.0067 (14)
C33 0.125 (3) 0.092 (3) 0.0404 (17) −0.040 (2) 0.0145 (18) −0.0012 (17)
C34 0.117 (3) 0.094 (3) 0.055 (2) −0.027 (2) 0.0365 (18) −0.0206 (18)
C35 0.0842 (19) 0.0754 (19) 0.0578 (18) −0.0144 (15) 0.0238 (15) −0.0135 (15)
C36 0.0443 (13) 0.0619 (17) 0.0439 (15) −0.0061 (12) 0.0046 (11) 0.0079 (13)
C37 0.0504 (16) 0.142 (3) 0.081 (2) 0.0219 (17) −0.0102 (14) 0.012 (2)
N1 0.0763 (14) 0.0545 (13) 0.0477 (13) 0.0003 (11) −0.0036 (11) 0.0061 (11)
N2 0.0485 (11) 0.0630 (13) 0.0387 (11) −0.0008 (9) 0.0011 (9) −0.0083 (10)
O1 0.1088 (17) 0.0879 (15) 0.0843 (15) 0.0127 (12) −0.0236 (12) −0.0371 (12)
O2 0.1236 (17) 0.0733 (14) 0.0729 (14) 0.0277 (13) −0.0007 (12) 0.0158 (11)
O3 0.0584 (10) 0.0863 (13) 0.0459 (10) −0.0035 (9) −0.0015 (8) 0.0165 (9)
O4 0.0688 (12) 0.0918 (14) 0.0613 (12) −0.0018 (10) −0.0224 (9) −0.0095 (10)
O5 0.0418 (9) 0.0909 (13) 0.0579 (10) 0.0123 (9) −0.0013 (8) 0.0041 (9)
O6 0.0442 (9) 0.0612 (11) 0.0520 (10) 0.0042 (8) 0.0053 (7) 0.0041 (8)
O7 0.0386 (9) 0.0956 (14) 0.0622 (12) −0.0063 (9) 0.0009 (8) −0.0150 (11)

Geometric parameters (Å, º)

C1—O1 1.440 (3) C19—H19A 0.9700
C1—H1A 0.9600 C19—H19B 0.9700
C1—H1B 0.9600 C20—N2 1.478 (3)
C1—H1C 0.9600 C20—C21 1.532 (3)
C2—O1 1.370 (3) C20—H20 0.9800
C2—C3 1.378 (4) C21—C22 1.506 (4)
C2—C7 1.383 (4) C21—H21A 0.9700
C3—C4 1.386 (3) C21—H21B 0.9700
C3—H3 0.9300 C22—C23 1.508 (4)
C4—C5 1.380 (3) C22—H22A 0.9700
C4—H4 0.9300 C22—H22B 0.9700
C5—C6 1.392 (3) C23—N2 1.470 (3)
C5—N1 1.416 (3) C23—H23A 0.9700
C6—C7 1.379 (4) C23—H23B 0.9700
C6—H6 0.9300 C24—N2 1.455 (3)
C7—H7 0.9300 C24—C28 1.515 (3)
C8—N1 1.482 (3) C24—C25 1.605 (3)
C8—C17 1.510 (3) C25—O7 1.381 (3)
C8—C9 1.549 (3) C25—O6 1.423 (3)
C8—H8 0.9800 C25—C26 1.509 (3)
C9—O3 1.417 (3) C26—C35 1.362 (3)
C9—C10 1.528 (4) C26—C27 1.397 (3)
C9—H9 0.9800 C27—C28 1.406 (3)
C10—O2 1.208 (3) C27—C32 1.406 (3)
C10—N1 1.363 (3) C28—C29 1.369 (3)
C11—C12 1.369 (4) C29—C30 1.408 (4)
C11—C16 1.372 (4) C29—H29 0.9300
C11—O3 1.381 (3) C30—C31 1.357 (4)
C12—C13 1.383 (4) C30—H30 0.9300
C12—H12 0.9300 C31—C32 1.408 (4)
C13—C14 1.362 (5) C31—H31 0.9300
C13—H13 0.9300 C32—C33 1.412 (4)
C14—C15 1.367 (5) C33—C34 1.356 (4)
C14—H14 0.9300 C33—H33 0.9300
C15—C16 1.365 (4) C34—C35 1.413 (4)
C15—H15 0.9300 C34—H34 0.9300
C16—H16 0.9300 C35—H35 0.9300
C17—O6 1.423 (2) C36—O4 1.203 (3)
C17—C18 1.542 (3) C36—O5 1.334 (3)
C17—H17 0.9800 C37—O5 1.458 (3)
C18—C36 1.514 (3) C37—H37A 0.9600
C18—C19 1.546 (3) C37—H37B 0.9600
C18—C24 1.589 (3) C37—H37C 0.9600
C19—C20 1.530 (3) O7—H7A 0.92 (3)
O1—C1—H1A 109.5 C22—C21—C20 105.3 (2)
O1—C1—H1B 109.5 C22—C21—H21A 110.7
H1A—C1—H1B 109.5 C20—C21—H21A 110.7
O1—C1—H1C 109.5 C22—C21—H21B 110.7
H1A—C1—H1C 109.5 C20—C21—H21B 110.7
H1B—C1—H1C 109.5 H21A—C21—H21B 108.8
O1—C2—C3 124.4 (3) C21—C22—C23 103.7 (2)
O1—C2—C7 116.2 (3) C21—C22—H22A 111.0
C3—C2—C7 119.4 (3) C23—C22—H22A 111.0
C2—C3—C4 119.9 (3) C21—C22—H22B 111.0
C2—C3—H3 120.0 C23—C22—H22B 111.0
C4—C3—H3 120.0 H22A—C22—H22B 109.0
C5—C4—C3 120.7 (2) N2—C23—C22 101.1 (2)
C5—C4—H4 119.7 N2—C23—H23A 111.6
C3—C4—H4 119.7 C22—C23—H23A 111.6
C4—C5—C6 119.5 (2) N2—C23—H23B 111.6
C4—C5—N1 119.8 (2) C22—C23—H23B 111.6
C6—C5—N1 120.6 (2) H23A—C23—H23B 109.4
C7—C6—C5 119.3 (3) N2—C24—C28 119.95 (19)
C7—C6—H6 120.3 N2—C24—C18 108.12 (16)
C5—C6—H6 120.3 C28—C24—C18 114.73 (16)
C6—C7—C2 121.2 (3) N2—C24—C25 106.54 (16)
C6—C7—H7 119.4 C28—C24—C25 103.42 (16)
C2—C7—H7 119.4 C18—C24—C25 102.06 (16)
N1—C8—C17 116.94 (19) O7—C25—O6 108.61 (18)
N1—C8—C9 86.55 (17) O7—C25—C26 111.61 (18)
C17—C8—C9 120.1 (2) O6—C25—C26 114.24 (18)
N1—C8—H8 110.4 O7—C25—C24 111.69 (18)
C17—C8—H8 110.4 O6—C25—C24 106.23 (16)
C9—C8—H8 110.4 C26—C25—C24 104.32 (18)
O3—C9—C10 117.7 (2) C35—C26—C27 119.9 (2)
O3—C9—C8 111.53 (19) C35—C26—C25 131.8 (2)
C10—C9—C8 86.05 (18) C27—C26—C25 108.28 (19)
O3—C9—H9 112.9 C26—C27—C28 114.1 (2)
C10—C9—H9 112.9 C26—C27—C32 122.6 (2)
C8—C9—H9 112.9 C28—C27—C32 123.3 (3)
O2—C10—N1 131.9 (3) C29—C28—C27 118.4 (2)
O2—C10—C9 136.4 (3) C29—C28—C24 133.2 (2)
N1—C10—C9 91.7 (2) C27—C28—C24 108.1 (2)
C12—C11—C16 121.3 (2) C28—C29—C30 119.0 (3)
C12—C11—O3 123.1 (2) C28—C29—H29 120.5
C16—C11—O3 115.6 (2) C30—C29—H29 120.5
C11—C12—C13 118.4 (3) C31—C30—C29 122.5 (3)
C11—C12—H12 120.8 C31—C30—H30 118.8
C13—C12—H12 120.8 C29—C30—H30 118.8
C14—C13—C12 120.4 (3) C30—C31—C32 120.5 (3)
C14—C13—H13 119.8 C30—C31—H31 119.7
C12—C13—H13 119.8 C32—C31—H31 119.7
C13—C14—C15 120.3 (3) C27—C32—C31 116.2 (3)
C13—C14—H14 119.8 C27—C32—C33 116.3 (3)
C15—C14—H14 119.8 C31—C32—C33 127.5 (3)
C16—C15—C14 120.2 (3) C34—C33—C32 120.5 (3)
C16—C15—H15 119.9 C34—C33—H33 119.7
C14—C15—H15 119.9 C32—C33—H33 119.7
C15—C16—C11 119.3 (3) C33—C34—C35 122.6 (3)
C15—C16—H16 120.3 C33—C34—H34 118.7
C11—C16—H16 120.3 C35—C34—H34 118.7
O6—C17—C8 111.30 (18) C26—C35—C34 118.1 (3)
O6—C17—C18 106.09 (17) C26—C35—H35 121.0
C8—C17—C18 114.68 (18) C34—C35—H35 121.0
O6—C17—H17 108.2 O4—C36—O5 123.2 (2)
C8—C17—H17 108.2 O4—C36—C18 124.2 (2)
C18—C17—H17 108.2 O5—C36—C18 112.5 (2)
C36—C18—C17 109.66 (18) O5—C37—H37A 109.5
C36—C18—C19 112.16 (17) O5—C37—H37B 109.5
C17—C18—C19 115.70 (18) H37A—C37—H37B 109.5
C36—C18—C24 113.28 (17) O5—C37—H37C 109.5
C17—C18—C24 102.72 (16) H37A—C37—H37C 109.5
C19—C18—C24 102.86 (16) H37B—C37—H37C 109.5
C20—C19—C18 105.37 (17) C10—N1—C5 132.6 (2)
C20—C19—H19A 110.7 C10—N1—C8 95.04 (19)
C18—C19—H19A 110.7 C5—N1—C8 130.2 (2)
C20—C19—H19B 110.7 C24—N2—C23 121.23 (18)
C18—C19—H19B 110.7 C24—N2—C20 107.00 (17)
H19A—C19—H19B 108.8 C23—N2—C20 106.56 (18)
N2—C20—C19 105.13 (17) C2—O1—C1 116.8 (2)
N2—C20—C21 104.5 (2) C11—O3—C9 118.00 (18)
C19—C20—C21 116.0 (2) C36—O5—C37 116.4 (2)
N2—C20—H20 110.3 C17—O6—C25 106.45 (16)
C19—C20—H20 110.3 C25—O7—H7A 103.4 (17)
C21—C20—H20 110.3
O1—C2—C3—C4 −177.3 (2) C35—C26—C27—C32 0.8 (4)
C7—C2—C3—C4 2.1 (4) C25—C26—C27—C32 179.1 (2)
C2—C3—C4—C5 −0.9 (4) C26—C27—C28—C29 176.9 (2)
C3—C4—C5—C6 −0.9 (4) C32—C27—C28—C29 −2.3 (3)
C3—C4—C5—N1 179.6 (2) C26—C27—C28—C24 −8.5 (3)
C4—C5—C6—C7 1.6 (4) C32—C27—C28—C24 172.2 (2)
N1—C5—C6—C7 −179.0 (2) N2—C24—C28—C29 −55.5 (3)
C5—C6—C7—C2 −0.3 (4) C18—C24—C28—C29 75.9 (3)
O1—C2—C7—C6 178.0 (2) C25—C24—C28—C29 −173.8 (3)
C3—C2—C7—C6 −1.5 (4) N2—C24—C28—C27 131.1 (2)
N1—C8—C9—O3 −124.0 (2) C18—C24—C28—C27 −97.5 (2)
C17—C8—C9—O3 116.7 (2) C25—C24—C28—C27 12.8 (2)
N1—C8—C9—C10 −5.66 (17) C27—C28—C29—C30 2.9 (4)
C17—C8—C9—C10 −125.0 (2) C24—C28—C29—C30 −170.0 (2)
O3—C9—C10—O2 −59.7 (4) C28—C29—C30—C31 −0.4 (4)
C8—C9—C10—O2 −172.0 (4) C29—C30—C31—C32 −2.8 (5)
O3—C9—C10—N1 118.4 (2) C26—C27—C32—C31 −179.9 (2)
C8—C9—C10—N1 6.14 (19) C28—C27—C32—C31 −0.7 (4)
C16—C11—C12—C13 2.7 (4) C26—C27—C32—C33 0.3 (4)
O3—C11—C12—C13 −175.3 (2) C28—C27—C32—C33 179.5 (2)
C11—C12—C13—C14 −0.6 (4) C30—C31—C32—C27 3.2 (4)
C12—C13—C14—C15 −1.6 (5) C30—C31—C32—C33 −177.0 (3)
C13—C14—C15—C16 1.7 (6) C27—C32—C33—C34 −1.1 (4)
C14—C15—C16—C11 0.3 (5) C31—C32—C33—C34 179.2 (3)
C12—C11—C16—C15 −2.5 (4) C32—C33—C34—C35 0.8 (5)
O3—C11—C16—C15 175.6 (3) C27—C26—C35—C34 −1.0 (4)
N1—C8—C17—O6 −72.3 (2) C25—C26—C35—C34 −178.8 (2)
C9—C8—C17—O6 30.2 (3) C33—C34—C35—C26 0.3 (4)
N1—C8—C17—C18 167.29 (18) C17—C18—C36—O4 −4.7 (3)
C9—C8—C17—C18 −90.2 (3) C19—C18—C36—O4 −134.7 (2)
O6—C17—C18—C36 152.17 (16) C24—C18—C36—O4 109.4 (3)
C8—C17—C18—C36 −84.6 (2) C17—C18—C36—O5 176.02 (17)
O6—C17—C18—C19 −79.8 (2) C19—C18—C36—O5 46.0 (3)
C8—C17—C18—C19 43.5 (3) C24—C18—C36—O5 −69.9 (2)
O6—C17—C18—C24 31.4 (2) O2—C10—N1—C5 7.8 (5)
C8—C17—C18—C24 154.71 (18) C9—C10—N1—C5 −170.5 (2)
C36—C18—C19—C20 −140.6 (2) O2—C10—N1—C8 171.8 (3)
C17—C18—C19—C20 92.5 (2) C9—C10—N1—C8 −6.4 (2)
C24—C18—C19—C20 −18.6 (2) C4—C5—N1—C10 155.1 (3)
C18—C19—C20—N2 32.5 (2) C6—C5—N1—C10 −24.4 (4)
C18—C19—C20—C21 147.4 (2) C4—C5—N1—C8 −3.9 (4)
N2—C20—C21—C22 −1.1 (3) C6—C5—N1—C8 176.7 (2)
C19—C20—C21—C22 −116.3 (3) C17—C8—N1—C10 128.5 (2)
C20—C21—C22—C23 26.2 (3) C9—C8—N1—C10 6.35 (19)
C21—C22—C23—N2 −41.4 (3) C17—C8—N1—C5 −66.8 (3)
C36—C18—C24—N2 119.8 (2) C9—C8—N1—C5 171.0 (2)
C17—C18—C24—N2 −121.96 (17) C28—C24—N2—C23 33.7 (3)
C19—C18—C24—N2 −1.5 (2) C18—C24—N2—C23 −100.4 (2)
C36—C18—C24—C28 −17.0 (3) C25—C24—N2—C23 150.5 (2)
C17—C18—C24—C28 101.2 (2) C28—C24—N2—C20 156.03 (18)
C19—C18—C24—C28 −138.27 (19) C18—C24—N2—C20 21.9 (2)
C36—C18—C24—C25 −128.07 (19) C25—C24—N2—C20 −87.19 (19)
C17—C18—C24—C25 −9.86 (19) C22—C23—N2—C24 164.2 (2)
C19—C18—C24—C25 110.64 (17) C22—C23—N2—C20 41.8 (2)
N2—C24—C25—O7 −19.2 (2) C19—C20—N2—C24 −33.9 (2)
C28—C24—C25—O7 108.2 (2) C21—C20—N2—C24 −156.53 (18)
C18—C24—C25—O7 −132.45 (18) C19—C20—N2—C23 97.2 (2)
N2—C24—C25—O6 99.09 (18) C21—C20—N2—C23 −25.5 (2)
C28—C24—C25—O6 −133.58 (17) C3—C2—O1—C1 −2.6 (4)
C18—C24—C25—O6 −14.2 (2) C7—C2—O1—C1 178.0 (3)
N2—C24—C25—C26 −139.87 (18) C12—C11—O3—C9 −38.0 (3)
C28—C24—C25—C26 −12.5 (2) C16—C11—O3—C9 144.0 (2)
C18—C24—C25—C26 106.85 (18) C10—C9—O3—C11 94.6 (3)
O7—C25—C26—C35 65.5 (3) C8—C9—O3—C11 −168.2 (2)
O6—C25—C26—C35 −58.2 (3) O4—C36—O5—C37 −5.3 (3)
C24—C25—C26—C35 −173.8 (2) C18—C36—O5—C37 174.0 (2)
O7—C25—C26—C27 −112.5 (2) C8—C17—O6—C25 −168.15 (17)
O6—C25—C26—C27 123.8 (2) C18—C17—O6—C25 −42.8 (2)
C24—C25—C26—C27 8.2 (2) O7—C25—O6—C17 155.54 (17)
C35—C26—C27—C28 −178.5 (2) C26—C25—O6—C17 −79.2 (2)
C25—C26—C27—C28 −0.2 (3) C24—C25—O6—C17 35.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C33—H33···O4i 0.93 2.49 3.409 (3) 173
C37—H37C···O7ii 0.96 2.53 3.217 (3) 128

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2604).

References

  1. Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett 41, 6551–6554.
  2. Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev 62, 547–585. [DOI] [PMC free article] [PubMed]
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Sundaramoorthy, S., Rajesh, R., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o2200–o2201. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045795/pv2604sup1.cif

e-68-o3329-sup1.cif (41.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045795/pv2604Isup2.hkl

e-68-o3329-Isup2.hkl (269.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045795/pv2604Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES