Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3334. doi: 10.1107/S1600536812045874

4-Meth­oxy­benzamidinium nitrate

Simona Irrera a, Gustavo Portalone a,*
PMCID: PMC3588936  PMID: 23476172

Abstract

The title salt, C8H11N2O+·NO3 , was synthesized by a reaction between 4-meth­oxy­benzamidine (4-amidino­anisole) and nitric acid. The asymmetric unit comprises a non-planar 4-meth­oxy­benzamidinium cation and a nitrate anion. In the cation, the amidinium group has two similar C—N bond lengths [1.302 (3) and 1.313 (3) Å] and its plane forms a dihedral angle of 32.66 (5)° with the mean plane of the benzene ring. The nitrate–amidinium ion pair is not planar, as the dihedral angle between the planes defined by the CN2 + and NO3 units is 19.28 (6)°. The ionic components are associated in the crystal via N—H⋯O hydrogen bonds, resulting in a three-dimensional network.

Related literature  

For the biological and pharmacological relevance of benzamidine, see: Powers & Harper (1999); Grzesiak et al. (2000). For structural analysis of proton-transfer adducts containing mol­ecules of biological inter­est, see: Portalone (2011a ); Portalone & Irrera (2011). For the supra­molecular association in proton-transfer adducts containing benzamidinium cations, see; Portalone (2010, 2011b , 2012); Irrera & Portalone (2012); Irrera et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o3334-scheme1.jpg

Experimental  

Crystal data  

  • C8H11N2O+·NO3

  • M r = 213.20

  • Orthorhombic, Inline graphic

  • a = 7.1049 (7) Å

  • b = 10.3558 (8) Å

  • c = 13.4325 (9) Å

  • V = 988.32 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.977, T max = 0.991

  • 6206 measured reflections

  • 1253 independent reflections

  • 989 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.083

  • S = 0.98

  • 1253 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045874/fi2127sup1.cif

e-68-o3334-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045874/fi2127Isup2.hkl

e-68-o3334-Isup2.hkl (60.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.87 (2) 2.00 (2) 2.850 (3) 166 (2)
N1—H1B⋯O3i 0.91 (2) 2.10 (2) 3.008 (3) 170 (2)
N2—H2A⋯O2 0.87 (2) 2.05 (2) 2.920 (3) 175 (2)
N2—H2B⋯O1ii 0.84 (3) 2.43 (3) 3.030 (3) 129 (2)
N2—H2B⋯O3ii 0.84 (3) 2.33 (3) 3.174 (3) 177 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Following our on-going interest on systematic structural analysis of proton-transfer adducts containing molecules of biological interest (Portalone, 2011a; Portalone & Irrera, 2011), benzamidine derivatives, which have shown strong biological and pharmacological activity (Powers & Harper, 1999; Grzesiak et al., 2000), are being used in our group as bricks for supramolecular construction (Portalone, 2010, 2011b, 2012). Indeed, these molecules are strong Lewis bases and their cations can be easily anchored onto numerous inorganic and organic anions and polyanions, largely because of the presence of four potential donor sites for hydrogen-bonding.

We report here the crystal structure of the title compound, 4-methoxybenzamidinium nitrate, which was obtained by a reaction between 4-methoxybenzamidine (4-amidinoanisole) and nitric acid.

The asymmetric unit of the title compound comprises one non-planar 4-methoxybenzamidinium cation and one nitrate anion (Fig. 1).

In the cation, the amidinium group forms dihedral angle of 32.66 (5)° with the mean plane of the phenyl ring, which is close to the the values observed in protonated benzamidinium ions (14.4 (1) - 30.4 (1)°, Portalone, 2010, 2012; Irrera et al., 2012). The lack of planarity in all these systems is obviously caused by steric hindrances between the H atoms of the aromatic ring and the amidine group. This conformation is rather common in benzamidinium-containing small-molecule crystal structures, with the only exception of benzamidinium diliturate, where the benzamidinium cation is planar (Portalone, 2010). The pattern of bond lengths and bond angles of the 4-methoxybenzamidinium cation agrees with that reported in previous structural investigations (Irrera et al., 2012; Portalone, 2010, 2012; Irrera & Portalone, 2012). In particular the amidinium group, true to one's expectations, features similar C—N bonds [1.302 (3) and 1.313 (3) Å], evidencing the delocalization of the π electrons and double-bond character. The molecular parameters for the nitrate ion are in the expected range.

The ionic components of compound (I) are joined by two N+—H···O- (±) hydrogen bonds to form ionic dimers with graph-set motif R22(8) (Bernstein et al., 1995). Remarkably, at variance with the well known carboxylic dimer R22 (8) motif, the nitrate-amidinium pair is not planar, as the dihedral angles for the planes defined by the CN2+ and NO3- atoms is 19.28 (6)°. Similar deviation from planarity has been previously observed in the carboxylate-amidinium pair of benzamidinium 2,6-dimethoxybenzoate (Irrera et al., 2012).

Analysis of the crystal packing of the title compound (Fig. 2) shows that each amidinium unit is bound to three nitrate anions by five distinct N—H+···O- intermolecular hydrogen bonds (N+···O- = 2.850 (3) - 3.174 (3) Å, Table 1). Four cation-to-anion N+···O- interactions form two types of hydrogen-bonded rings: the R21(4), which indicates a bifurcated hydrogen bond from N2—H2b to the two acceptors (O1, O3), and the already mentioned R22(8) supramolecular synthon. Both these ring motifs lead to the formation of ribbons approximately along crystallographic b axis. These ribbons are then interconnected by means of the remaining N+···O- intermolecular hydrogen bond.

Experimental

4-methoxybenzamidine (0.1 mmol, Fluka at 96% purity) was dissolved without further purification in 6 ml of hot water and heated under reflux for 3 h. While stirring, HNO3 (4 mol L-1) was added dropwise until pH reached 2. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after one week.

Refinement

All H atoms were identified in difference Fourier maps, but for refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.93 Å (phenyl) and 0.96 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C, phenyl). and to 1.5Ueq(C, methyl). Positional and thermal parameters of H atoms of the amidinium group were freely refined, giving N—H distances in the range 0.84 (3) - 0.91 (2) Å. In the absence of significant anomalous scattering in this light-atom study of the title compound, Friedel pairs were merged prior to refinement.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacements ellipsoids are at the 50% probability level. The asymmetric unit was selected so that the two ions are linked by N+.—H···O- hydrogen bonds. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

Fig. 2.

Fig. 2.

Crystal packing diagram for the title compound. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

Crystal data

C8H11N2O+·NO3 F(000) = 448
Mr = 213.20 Dx = 1.433 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 2927 reflections
a = 7.1049 (7) Å θ = 3.0–29.0°
b = 10.3558 (8) Å µ = 0.12 mm1
c = 13.4325 (9) Å T = 298 K
V = 988.32 (14) Å3 Tablets, colourless
Z = 4 0.20 × 0.10 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer 1253 independent reflections
Radiation source: Enhance (Mo) X-ray Source 989 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 16.0696 pixels mm-1 θmax = 27.0°, θmin = 3.0°
ω and φ scans h = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) k = −13→12
Tmin = 0.977, Tmax = 0.991 l = −17→17
6206 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.0001P] where P = (Fo2 + 2Fc2)/3
1253 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 0.3500 (3) 0.10530 (16) 0.33730 (12) 0.0565 (5)
N1 0.3218 (3) 0.3966 (2) −0.07851 (16) 0.0441 (5)
H1A 0.325 (3) 0.426 (2) −0.1390 (18) 0.041 (6)*
H1B 0.268 (3) 0.448 (2) −0.0308 (18) 0.044 (7)*
N2 0.4153 (3) 0.1984 (2) −0.12938 (16) 0.0454 (5)
H2A 0.408 (3) 0.222 (3) −0.1914 (18) 0.046 (7)*
H2B 0.463 (3) 0.127 (3) −0.1138 (17) 0.045 (8)*
C1 0.3682 (3) 0.2331 (2) 0.04594 (15) 0.0359 (5)
C2 0.4110 (3) 0.3182 (2) 0.12224 (14) 0.0377 (5)
H2 0.4426 0.4032 0.1072 0.045*
C3 0.4073 (3) 0.2785 (2) 0.22025 (16) 0.0419 (5)
H3 0.4372 0.3363 0.2708 0.050*
C4 0.3588 (3) 0.1520 (2) 0.24330 (16) 0.0397 (5)
C5 0.3158 (3) 0.0660 (2) 0.16755 (17) 0.0432 (5)
H5 0.2832 −0.0188 0.1827 0.052*
C6 0.3215 (3) 0.1061 (2) 0.07021 (17) 0.0401 (5)
H6 0.2937 0.0478 0.0197 0.048*
C7 0.3686 (3) 0.2769 (2) −0.05791 (15) 0.0347 (5)
C8 0.3767 (4) 0.1947 (3) 0.41712 (18) 0.0639 (8)
H8A 0.498 (3) 0.2338 (16) 0.4114 (9) 0.096*
H8B 0.368 (3) 0.1501 (8) 0.4793 (11) 0.096*
H8C 0.282 (2) 0.2602 (17) 0.4141 (9) 0.096*
N3 0.3829 (3) 0.3901 (2) −0.35182 (15) 0.0471 (5)
O1 0.3880 (3) 0.46641 (18) −0.28077 (14) 0.0669 (5)
O2 0.3696 (3) 0.27255 (18) −0.33771 (13) 0.0735 (6)
O3 0.3962 (3) 0.43439 (17) −0.43752 (12) 0.0611 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0789 (12) 0.0439 (10) 0.0466 (9) −0.0041 (10) 0.0002 (8) 0.0075 (9)
N1 0.0525 (12) 0.0399 (12) 0.0401 (11) 0.0049 (10) 0.0049 (9) 0.0023 (10)
N2 0.0481 (12) 0.0456 (14) 0.0425 (12) 0.0050 (11) 0.0003 (9) −0.0013 (10)
C1 0.0272 (10) 0.0357 (12) 0.0448 (11) 0.0026 (9) 0.0010 (9) −0.0008 (10)
C2 0.0386 (12) 0.0279 (12) 0.0466 (12) −0.0024 (9) −0.0005 (9) −0.0001 (10)
C3 0.0477 (13) 0.0346 (11) 0.0433 (11) −0.0016 (11) −0.0055 (10) −0.0071 (11)
C4 0.0403 (12) 0.0363 (12) 0.0426 (11) 0.0034 (10) 0.0002 (9) 0.0048 (11)
C5 0.0460 (13) 0.0297 (12) 0.0537 (13) −0.0028 (11) 0.0043 (11) 0.0007 (11)
C6 0.0370 (11) 0.0345 (12) 0.0488 (12) −0.0006 (10) −0.0001 (10) −0.0055 (11)
C7 0.0264 (10) 0.0359 (12) 0.0416 (11) 0.0001 (9) 0.0020 (9) −0.0032 (11)
C8 0.0867 (19) 0.0635 (18) 0.0415 (12) −0.0123 (17) −0.0007 (13) 0.0001 (13)
N3 0.0480 (11) 0.0489 (12) 0.0446 (10) 0.0027 (10) −0.0002 (10) 0.0090 (11)
O1 0.0978 (14) 0.0531 (11) 0.0498 (9) 0.0019 (11) 0.0058 (10) 0.0028 (9)
O2 0.1182 (17) 0.0438 (11) 0.0586 (10) −0.0156 (12) −0.0060 (12) 0.0124 (9)
O3 0.0836 (12) 0.0565 (11) 0.0434 (9) 0.0070 (10) 0.0062 (9) 0.0164 (9)

Geometric parameters (Å, º)

O4—C4 1.354 (3) C3—C4 1.390 (3)
O4—C8 1.429 (3) C3—H3 0.9300
N1—C7 1.313 (3) C4—C5 1.387 (3)
N1—H1A 0.87 (2) C5—C6 1.373 (3)
N1—H1B 0.91 (2) C5—H5 0.9300
N2—C7 1.302 (3) C6—H6 0.9300
N2—H2A 0.87 (2) C8—H8A 0.9572
N2—H2B 0.84 (3) C8—H8B 0.9572
C1—C2 1.386 (3) C8—H8C 0.9572
C1—C6 1.395 (3) N3—O2 1.235 (3)
C1—C7 1.467 (3) N3—O1 1.240 (3)
C2—C3 1.379 (3) N3—O3 1.243 (2)
C2—H2 0.9300
C4—O4—C8 117.53 (18) C6—C5—C4 119.9 (2)
C7—N1—H1A 121.4 (16) C6—C5—H5 120.1
C7—N1—H1B 120.3 (14) C4—C5—H5 120.1
H1A—N1—H1B 118 (2) C5—C6—C1 121.0 (2)
C7—N2—H2A 120.8 (17) C5—C6—H6 119.5
C7—N2—H2B 118.0 (16) C1—C6—H6 119.5
H2A—N2—H2B 121 (2) N2—C7—N1 120.0 (2)
C2—C1—C6 118.62 (19) N2—C7—C1 120.6 (2)
C2—C1—C7 120.41 (18) N1—C7—C1 119.49 (19)
C6—C1—C7 120.95 (19) O4—C8—H8A 109.5
C3—C2—C1 120.8 (2) O4—C8—H8B 109.5
C3—C2—H2 119.6 H8A—C8—H8B 109.5
C1—C2—H2 119.6 O4—C8—H8C 109.5
C2—C3—C4 119.9 (2) H8A—C8—H8C 109.5
C2—C3—H3 120.1 H8B—C8—H8C 109.5
C4—C3—H3 120.1 O2—N3—O1 120.82 (19)
O4—C4—C5 116.40 (19) O2—N3—O3 120.8 (2)
O4—C4—C3 123.8 (2) O1—N3—O3 118.4 (2)
C5—C4—C3 119.8 (2)
C6—C1—C2—C3 −0.1 (3) C3—C4—C5—C6 0.1 (3)
C7—C1—C2—C3 178.67 (18) C4—C5—C6—C1 −0.6 (3)
C1—C2—C3—C4 −0.5 (3) C2—C1—C6—C5 0.6 (3)
C8—O4—C4—C5 −174.4 (2) C7—C1—C6—C5 −178.10 (19)
C8—O4—C4—C3 5.5 (3) C2—C1—C7—N2 148.0 (2)
C2—C3—C4—O4 −179.38 (19) C6—C1—C7—N2 −33.3 (3)
C2—C3—C4—C5 0.5 (3) C2—C1—C7—N1 −31.7 (3)
O4—C4—C5—C6 179.9 (2) C6—C1—C7—N1 147.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.87 (2) 2.00 (2) 2.850 (3) 166 (2)
N1—H1B···O3i 0.91 (2) 2.10 (2) 3.008 (3) 170 (2)
N2—H2A···O2 0.87 (2) 2.05 (2) 2.920 (3) 175 (2)
N2—H2B···O1ii 0.84 (3) 2.43 (3) 3.030 (3) 129 (2)
N2—H2B···O3ii 0.84 (3) 2.33 (3) 3.174 (3) 177 (2)

Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2127).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Grzesiak, A., Helland, R., Smalas, A. O., Krowarsch, D., Dadlez, M. & Otlewski, J. (2000). J. Mol. Biol. 301, 205–217. [DOI] [PubMed]
  5. Irrera, S., Ortaggi, G. & Portalone, G. (2012). Acta Cryst. C68, o447–o451. [DOI] [PubMed]
  6. Irrera, S. & Portalone, G. (2012). Acta Cryst. E68, o3083. [DOI] [PMC free article] [PubMed]
  7. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Portalone, G. (2010). Acta Cryst. C66, o295–o301. [DOI] [PubMed]
  9. Portalone, G. (2011a). Chem. Centr. J. 5, 51. [DOI] [PMC free article] [PubMed]
  10. Portalone, G. (2011b). Acta Cryst. E67, o3394–o3395. [DOI] [PMC free article] [PubMed]
  11. Portalone, G. (2012). Acta Cryst. E68, o268–o269. [DOI] [PMC free article] [PubMed]
  12. Portalone, G. & Irrera, S. (2011). J. Mol. Struct. 991, 92–96.
  13. Powers, J. C. & Harper, J. W. (1999). Proteinase Inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55–152. Amsterdam: Elsevier.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045874/fi2127sup1.cif

e-68-o3334-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045874/fi2127Isup2.hkl

e-68-o3334-Isup2.hkl (60.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES