Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3337. doi: 10.1107/S1600536812045886

9-(5-Bromo-1H-indol-3-yl)-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione dimethyl sulfoxide monosolvate

Ahmed El-Khouly a, Sema Öztürk Yildirim b,c, Ray J Butcher b,*, Rahime Şimsek a, Cihat Şafak a
PMCID: PMC3588939  PMID: 23476175

Abstract

In the title compound, C21H19BrN2O2·C2H6OS, the indole ring system is essentially planar, with a maximum deviation of 0.050 (3) Å for the non-bridgehead C atom adjacent to the N atom. The two cyclo­hex-2-enone rings adopt half-chair conformations. An intra­molecular C—H⋯O hydrogen bond occurs. The solvent mol­ecule exhibits minor disorder of the S atom [site occupancies = 0.8153 (16) and 0.1847 (18)]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature  

For biological properties of acridines, including anti­bacterial, anti-parasitic, and anti­tumor activity, see: Biwersi et al. (1994); Wainwright (2001); Guetzoyan et al. (2007); Denny (2002); Luan et al. (2011). For recent studies showing that some acridine analogs having aryl and heteroaryl substituents at the ten position on the ring exert potassium-channel-modulating activiy, see: Şimşek et al. (2004), Berkan et al. (2002). For a description of the Cambridge Structural Database, see: Allen, (2002).graphic file with name e-68-o3337-scheme1.jpg

Experimental  

Crystal data  

  • C21H19BrN2O2·C2H6OS

  • M r = 489.42

  • Monoclinic, Inline graphic

  • a = 9.1544 (4) Å

  • b = 18.9619 (8) Å

  • c = 12.9790 (5) Å

  • β = 105.623 (4)°

  • V = 2169.72 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.71 mm−1

  • T = 123 K

  • 0.51 × 0.23 × 0.12 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] T min = 0.272, T max = 0.721

  • 14006 measured reflections

  • 4444 independent reflections

  • 4183 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.137

  • S = 1.06

  • 4444 reflections

  • 290 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.96 e Å−3

  • Δρmin = −1.35 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045886/hg5266sup1.cif

e-68-o3337-sup1.cif (34.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045886/hg5266Isup2.hkl

e-68-o3337-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045886/hg5266Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1 0.95 2.50 3.252 (3) 136
N1—H1A⋯O2i 0.88 2.03 2.901 (3) 173
N2—H2C⋯O100ii 0.88 2.10 2.920 (3) 154
N2—H2C⋯O100iii 0.88 2.52 3.038 (3) 118

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

Acridines display abroad range of biological properties including antibacterial, anti-parasitic, and antitumor activities (Biwersi et al., 1994; Wainwright, 2001;Guetzoyan et al., 2007; Denny, 2002; Luan et al., 2011). Furthermore, the indole moiety also has a wide range of biological activities which may enhance the acridine ring properties. Recent studies show that some acridine analogs having aryl and heteroaryl substituents on their ten position on the ring exert potassium channel modulating activities (Şimşek et al., 2004; Berkan et al., 2002).

The title acridine compound contains (Fig. 1), 5-bromo-3-methyl-1H-indole connected to the 3,4,6,7,9,10-hexahydro-2H,5H-acridine-1,8-dione system and the disordered dimethyl sulfoxide solvent molecule. The Br—C bond distance [1.910 (3) Å] is in the normal range (Allen, 2002). The 1-H indole ring system is essentially planar with a maximum deviation of -0.050 (3) Å for atom C21. The 1H-indol ring system forms a dihedral angle of 22.40 (12) ° with the 1,4-dihydro-pyridine ring (N1/C1/C6—C8/C13). The two cyclohex-2-enone rings (C1—C6 and C8—C13) adopt half chair conformations with C3 atom 0.345 (3) Å and C11 atom 0.335 (3) Å out of the mean-plane formed by the remaining ring atoms. The solvent molecule exhibits minor disorder of its S atom [site occupancies = 0.8153 (16) and 0.1847 (18)]. In the crystal, molecules are linked by C—H···O and N—H···O hydrogen bonds (Tab. 1 & Fig. 2).

Experimental

A mixture of 5-bromoindole-3-carbaldehyde (1.0 mmol), 1,3-cyclohexanedione (2.0 mmol), ammonium acetate (5.0 mmol) was dissolved in 5 ml of methanol and refluxed until the reaction was completed (monitored by TLC). The forming precipitate was filtered off and crystallized from ethanol. Crystals were grown by slow evaporation of an dimethyl sulfoxide/methanol mixed solution.

Refinement

All disordered components were subjected to rigid bond and similarity restraints and all major and minor disordered components were refined anisotropically. Hydrogen atoms were positioned geometrically [C—H = 0.95–1.00 Å; N—H = 0.88 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl). A rotating-group model was applied for methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability ellipsoids for non-H atoms. Only major disordered component for the solvent molecule is shown.

Fig. 2.

Fig. 2.

The packing of (I), viewed down a axis, showing molecules are linked into plane parallel to bc plane. Only major disordered component for the solvent molecule is shown and hydrogen bonds are shown as dashed lines.

Crystal data

C21H19BrN2O2·C2H6OS F(000) = 1008
Mr = 489.42 Dx = 1.498 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 7435 reflections
a = 9.1544 (4) Å θ = 3.5–75.5°
b = 18.9619 (8) Å µ = 3.71 mm1
c = 12.9790 (5) Å T = 123 K
β = 105.623 (4)° Prism, light-yellow
V = 2169.72 (16) Å3 0.51 × 0.23 × 0.12 mm
Z = 4

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 4444 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4183 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 10.5081 pixels mm-1 θmax = 75.7°, θmin = 4.2°
ω scans h = −10→11
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)] k = −20→23
Tmin = 0.272, Tmax = 0.721 l = −15→16
14006 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0699P)2 + 3.3586P] where P = (Fo2 + 2Fc2)/3
4444 reflections (Δ/σ)max = 0.001
290 parameters Δρmax = 1.96 e Å3
6 restraints Δρmin = −1.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S10A −0.13796 (9) 0.48345 (4) 0.17928 (7) 0.03482 (18) 0.8153 (16)
O100 −0.0432 (3) 0.51319 (16) 0.1107 (2) 0.0382 (7) 0.8153 (16)
C100 −0.0885 (11) 0.5268 (4) 0.3027 (4) 0.0648 (14) 0.8153 (16)
H10C 0.0119 0.5110 0.3443 0.097* 0.8153 (16)
H10D −0.1634 0.5160 0.3419 0.097* 0.8153 (16)
H10E −0.0863 0.5778 0.2910 0.097* 0.8153 (16)
C200 −0.3247 (4) 0.5167 (3) 0.1308 (6) 0.0412 (9) 0.8153 (16)
H20A −0.3729 0.4955 0.0611 0.062* 0.8153 (16)
H20B −0.3210 0.5680 0.1231 0.062* 0.8153 (16)
H20C −0.3835 0.5050 0.1814 0.062* 0.8153 (16)
S10B −0.1368 (4) 0.54694 (19) 0.1798 (3) 0.03482 (18) 0.1847 (16)
O101 −0.0449 (18) 0.4988 (9) 0.1276 (13) 0.0382 (7) 0.1847 (16)
C101 −0.096 (5) 0.517 (2) 0.3127 (12) 0.0648 (14) 0.1847 (16)
H10F 0.0071 0.4981 0.3344 0.097* 0.1847 (16)
H10G −0.1685 0.4803 0.3183 0.097* 0.1847 (16)
H10H −0.1043 0.5567 0.3596 0.097* 0.1847 (16)
C201 −0.3306 (14) 0.5260 (18) 0.132 (3) 0.0412 (9) 0.1847 (16)
H20D −0.3710 0.5458 0.0604 0.062* 0.1847 (16)
H20E −0.3858 0.5458 0.1805 0.062* 0.1847 (16)
H20F −0.3430 0.4746 0.1291 0.062* 0.1847 (16)
Br1 0.25418 (3) 0.905937 (19) 0.00832 (2) 0.04525 (11)
O1 0.2313 (2) 0.77721 (11) 0.33651 (15) 0.0352 (4)
O2 0.7181 (2) 0.65871 (10) 0.37707 (14) 0.0340 (4)
N1 0.6163 (2) 0.78876 (11) 0.65949 (16) 0.0260 (4)
H1A 0.6514 0.8073 0.7235 0.031*
N2 0.7825 (2) 0.92633 (11) 0.39600 (17) 0.0269 (4)
H2C 0.8614 0.9546 0.4157 0.032*
C1 0.4715 (3) 0.80553 (12) 0.59876 (19) 0.0243 (5)
C2 0.3651 (3) 0.83425 (14) 0.6587 (2) 0.0296 (5)
H2A 0.4191 0.8691 0.7123 0.036*
H2B 0.3301 0.7954 0.6972 0.036*
C3 0.2284 (3) 0.86936 (15) 0.5820 (2) 0.0365 (6)
H3A 0.1516 0.8807 0.6205 0.044*
H3B 0.2604 0.9140 0.5551 0.044*
C4 0.1589 (3) 0.82086 (16) 0.4883 (2) 0.0364 (6)
H4A 0.1152 0.7791 0.5149 0.044*
H4B 0.0753 0.8460 0.4372 0.044*
C5 0.2730 (3) 0.79654 (13) 0.4305 (2) 0.0275 (5)
C6 0.4318 (3) 0.79381 (12) 0.49155 (19) 0.0239 (5)
C7 0.5513 (2) 0.77218 (12) 0.43652 (18) 0.0225 (4)
H7A 0.5026 0.7423 0.3730 0.027*
C8 0.6706 (3) 0.72888 (12) 0.51402 (18) 0.0235 (5)
C9 0.7466 (3) 0.67249 (13) 0.4734 (2) 0.0265 (5)
C10 0.8583 (3) 0.62845 (14) 0.5553 (2) 0.0305 (5)
H10A 0.9300 0.6052 0.5210 0.037*
H10B 0.8032 0.5912 0.5830 0.037*
C11 0.9464 (3) 0.67432 (14) 0.6478 (2) 0.0303 (5)
H11A 1.0056 0.7101 0.6207 0.036*
H11B 1.0183 0.6446 0.7008 0.036*
C12 0.8380 (3) 0.71116 (13) 0.70158 (19) 0.0270 (5)
H12A 0.8002 0.6766 0.7455 0.032*
H12B 0.8934 0.7486 0.7498 0.032*
C13 0.7059 (3) 0.74323 (12) 0.62042 (19) 0.0241 (5)
C14 0.6227 (3) 0.83598 (12) 0.39910 (18) 0.0230 (4)
C15 0.5613 (3) 0.87732 (12) 0.30416 (18) 0.0235 (4)
C16 0.4347 (3) 0.86999 (13) 0.21609 (19) 0.0261 (5)
H16A 0.3642 0.8327 0.2122 0.031*
C17 0.4162 (3) 0.91920 (14) 0.1349 (2) 0.0296 (5)
C18 0.5129 (3) 0.97717 (14) 0.1398 (2) 0.0300 (5)
H18A 0.4911 1.0114 0.0843 0.036*
C19 0.6399 (3) 0.98455 (13) 0.2253 (2) 0.0276 (5)
H19A 0.7078 1.0229 0.2291 0.033*
C20 0.6650 (3) 0.93375 (13) 0.30590 (19) 0.0253 (5)
C21 0.7575 (3) 0.86762 (13) 0.45088 (19) 0.0253 (5)
H21A 0.8242 0.8512 0.5157 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S10A 0.0375 (4) 0.0344 (4) 0.0344 (4) 0.0084 (3) 0.0128 (3) 0.0046 (3)
O100 0.0318 (9) 0.0508 (17) 0.0359 (14) 0.0114 (11) 0.0159 (9) 0.0126 (11)
C100 0.058 (2) 0.093 (4) 0.0423 (19) 0.008 (2) 0.0118 (19) −0.023 (2)
C200 0.0305 (13) 0.045 (2) 0.0518 (17) 0.0033 (13) 0.0173 (13) 0.0110 (16)
S10B 0.0375 (4) 0.0344 (4) 0.0344 (4) 0.0084 (3) 0.0128 (3) 0.0046 (3)
O101 0.0318 (9) 0.0508 (17) 0.0359 (14) 0.0114 (11) 0.0159 (9) 0.0126 (11)
C101 0.058 (2) 0.093 (4) 0.0423 (19) 0.008 (2) 0.0118 (19) −0.023 (2)
C201 0.0305 (13) 0.045 (2) 0.0518 (17) 0.0033 (13) 0.0173 (13) 0.0110 (16)
Br1 0.03879 (18) 0.0606 (2) 0.02995 (16) −0.00943 (13) −0.00175 (13) 0.01575 (12)
O1 0.0266 (8) 0.0499 (11) 0.0276 (9) 0.0020 (8) 0.0049 (7) 0.0038 (8)
O2 0.0406 (10) 0.0372 (10) 0.0242 (8) 0.0118 (8) 0.0085 (7) −0.0004 (7)
N1 0.0283 (9) 0.0290 (10) 0.0209 (9) 0.0015 (8) 0.0071 (8) −0.0011 (7)
N2 0.0255 (9) 0.0284 (10) 0.0278 (10) −0.0025 (8) 0.0089 (8) −0.0006 (8)
C1 0.0260 (10) 0.0227 (10) 0.0262 (11) 0.0004 (8) 0.0102 (9) 0.0033 (8)
C2 0.0329 (12) 0.0307 (12) 0.0293 (12) 0.0062 (10) 0.0153 (10) 0.0024 (9)
C3 0.0352 (13) 0.0416 (14) 0.0368 (13) 0.0128 (11) 0.0170 (11) 0.0044 (11)
C4 0.0254 (11) 0.0499 (15) 0.0364 (14) 0.0071 (11) 0.0126 (10) 0.0076 (12)
C5 0.0260 (11) 0.0303 (12) 0.0273 (11) 0.0022 (9) 0.0090 (9) 0.0074 (9)
C6 0.0233 (10) 0.0252 (11) 0.0250 (11) 0.0019 (8) 0.0096 (9) 0.0042 (8)
C7 0.0220 (10) 0.0248 (10) 0.0209 (10) 0.0014 (8) 0.0062 (8) 0.0009 (8)
C8 0.0214 (10) 0.0255 (11) 0.0239 (11) 0.0001 (8) 0.0065 (8) 0.0028 (9)
C9 0.0257 (11) 0.0279 (11) 0.0266 (11) 0.0018 (9) 0.0082 (9) 0.0018 (9)
C10 0.0297 (11) 0.0318 (12) 0.0298 (12) 0.0095 (10) 0.0077 (10) 0.0017 (10)
C11 0.0241 (11) 0.0369 (13) 0.0291 (12) 0.0049 (10) 0.0059 (9) 0.0056 (10)
C12 0.0267 (11) 0.0321 (12) 0.0213 (10) 0.0016 (9) 0.0048 (9) 0.0042 (9)
C13 0.0245 (10) 0.0243 (10) 0.0246 (11) 0.0000 (9) 0.0083 (9) 0.0039 (8)
C14 0.0242 (10) 0.0252 (11) 0.0210 (10) 0.0034 (8) 0.0086 (8) −0.0006 (8)
C15 0.0259 (10) 0.0239 (10) 0.0233 (10) 0.0037 (9) 0.0115 (9) 0.0014 (8)
C16 0.0268 (11) 0.0272 (11) 0.0246 (11) 0.0003 (9) 0.0077 (9) 0.0028 (9)
C17 0.0256 (11) 0.0388 (13) 0.0224 (11) 0.0013 (10) 0.0032 (9) 0.0050 (10)
C18 0.0348 (12) 0.0311 (12) 0.0267 (11) 0.0038 (10) 0.0129 (10) 0.0065 (9)
C19 0.0314 (11) 0.0251 (11) 0.0305 (12) −0.0002 (9) 0.0154 (10) 0.0025 (9)
C20 0.0259 (10) 0.0254 (11) 0.0272 (11) 0.0015 (9) 0.0113 (9) −0.0022 (9)
C21 0.0248 (10) 0.0288 (11) 0.0235 (10) 0.0022 (9) 0.0086 (9) 0.0000 (9)

Geometric parameters (Å, º)

S10A—O100 1.510 (3) C3—H3B 0.9900
S10A—C100 1.748 (6) C4—C5 1.512 (4)
S10A—C200 1.771 (4) C4—H4A 0.9900
C100—H10C 0.9800 C4—H4B 0.9900
C100—H10D 0.9800 C5—C6 1.457 (3)
C100—H10E 0.9800 C6—C7 1.515 (3)
C200—H20A 0.9800 C7—C8 1.512 (3)
C200—H20B 0.9800 C7—C14 1.515 (3)
C200—H20C 0.9800 C7—H7A 1.0000
S10B—O101 1.519 (11) C8—C13 1.358 (3)
S10B—C101 1.757 (11) C8—C9 1.450 (3)
S10B—C201 1.760 (10) C9—C10 1.513 (3)
C101—H10F 0.9800 C10—C11 1.525 (4)
C101—H10G 0.9800 C10—H10A 0.9900
C101—H10H 0.9800 C10—H10B 0.9900
C201—H20D 0.9800 C11—C12 1.527 (3)
C201—H20E 0.9800 C11—H11A 0.9900
C201—H20F 0.9800 C11—H11B 0.9900
Br1—C17 1.910 (3) C12—C13 1.502 (3)
O1—C5 1.232 (3) C12—H12A 0.9900
O2—C9 1.235 (3) C12—H12B 0.9900
N1—C13 1.378 (3) C14—C21 1.374 (3)
N1—C1 1.385 (3) C14—C15 1.441 (3)
N1—H1A 0.8800 C15—C16 1.398 (3)
N2—C20 1.366 (3) C15—C20 1.426 (3)
N2—C21 1.374 (3) C16—C17 1.383 (3)
N2—H2C 0.8800 C16—H16A 0.9500
C1—C6 1.358 (3) C17—C18 1.402 (4)
C1—C2 1.503 (3) C18—C19 1.382 (4)
C2—C3 1.526 (4) C18—H18A 0.9500
C2—H2A 0.9900 C19—C20 1.394 (3)
C2—H2B 0.9900 C19—H19A 0.9500
C3—C4 1.520 (4) C21—H21A 0.9500
C3—H3A 0.9900
O100—S10A—C100 108.4 (3) C8—C7—H7A 108.8
O100—S10A—C200 108.1 (3) C6—C7—H7A 108.8
C100—S10A—C200 98.3 (4) C14—C7—H7A 108.8
O101—S10B—C101 104.4 (16) C13—C8—C9 120.7 (2)
O101—S10B—C201 109.5 (14) C13—C8—C7 119.9 (2)
C101—S10B—C201 101 (2) C9—C8—C7 119.3 (2)
S10B—C101—H10F 109.5 O2—C9—C8 122.2 (2)
S10B—C101—H10G 109.5 O2—C9—C10 120.9 (2)
H10F—C101—H10G 109.5 C8—C9—C10 116.8 (2)
S10B—C101—H10H 109.5 C9—C10—C11 110.6 (2)
H10F—C101—H10H 109.5 C9—C10—H10A 109.5
H10G—C101—H10H 109.5 C11—C10—H10A 109.5
S10B—C201—H20D 109.5 C9—C10—H10B 109.5
S10B—C201—H20E 109.5 C11—C10—H10B 109.5
H20D—C201—H20E 109.5 H10A—C10—H10B 108.1
S10B—C201—H20F 109.5 C10—C11—C12 110.5 (2)
H20D—C201—H20F 109.5 C10—C11—H11A 109.6
H20E—C201—H20F 109.5 C12—C11—H11A 109.6
C13—N1—C1 120.5 (2) C10—C11—H11B 109.6
C13—N1—H1A 119.7 C12—C11—H11B 109.6
C1—N1—H1A 119.7 H11A—C11—H11B 108.1
C20—N2—C21 108.9 (2) C13—C12—C11 111.3 (2)
C20—N2—H2C 125.5 C13—C12—H12A 109.4
C21—N2—H2C 125.5 C11—C12—H12A 109.4
C6—C1—N1 119.7 (2) C13—C12—H12B 109.4
C6—C1—C2 123.9 (2) C11—C12—H12B 109.4
N1—C1—C2 116.3 (2) H12A—C12—H12B 108.0
C1—C2—C3 110.6 (2) C8—C13—N1 119.8 (2)
C1—C2—H2A 109.5 C8—C13—C12 123.9 (2)
C3—C2—H2A 109.5 N1—C13—C12 116.2 (2)
C1—C2—H2B 109.5 C21—C14—C15 105.8 (2)
C3—C2—H2B 109.5 C21—C14—C7 126.8 (2)
H2A—C2—H2B 108.1 C15—C14—C7 127.3 (2)
C4—C3—C2 110.5 (2) C16—C15—C20 119.3 (2)
C4—C3—H3A 109.5 C16—C15—C14 133.7 (2)
C2—C3—H3A 109.5 C20—C15—C14 106.9 (2)
C4—C3—H3B 109.5 C17—C16—C15 117.4 (2)
C2—C3—H3B 109.5 C17—C16—H16A 121.3
H3A—C3—H3B 108.1 C15—C16—H16A 121.3
C5—C4—C3 112.7 (2) C16—C17—C18 123.2 (2)
C5—C4—H4A 109.1 C16—C17—Br1 118.29 (19)
C3—C4—H4A 109.1 C18—C17—Br1 118.48 (19)
C5—C4—H4B 109.1 C19—C18—C17 120.0 (2)
C3—C4—H4B 109.1 C19—C18—H18A 120.0
H4A—C4—H4B 107.8 C17—C18—H18A 120.0
O1—C5—C6 121.7 (2) C18—C19—C20 117.8 (2)
O1—C5—C4 120.7 (2) C18—C19—H19A 121.1
C6—C5—C4 117.5 (2) C20—C19—H19A 121.1
C1—C6—C5 120.2 (2) N2—C20—C19 130.2 (2)
C1—C6—C7 120.0 (2) N2—C20—C15 107.7 (2)
C5—C6—C7 119.7 (2) C19—C20—C15 122.1 (2)
C8—C7—C6 108.48 (19) N2—C21—C14 110.7 (2)
C8—C7—C14 110.51 (19) N2—C21—H21A 124.6
C6—C7—C14 111.30 (19) C14—C21—H21A 124.6
C13—N1—C1—C6 −18.3 (3) C7—C8—C13—N1 10.9 (3)
C13—N1—C1—C2 159.9 (2) C9—C8—C13—C12 9.5 (4)
C6—C1—C2—C3 −17.9 (3) C7—C8—C13—C12 −170.2 (2)
N1—C1—C2—C3 164.0 (2) C1—N1—C13—C8 17.0 (3)
C1—C2—C3—C4 49.7 (3) C1—N1—C13—C12 −161.9 (2)
C2—C3—C4—C5 −54.8 (3) C11—C12—C13—C8 12.8 (3)
C3—C4—C5—O1 −156.3 (2) C11—C12—C13—N1 −168.3 (2)
C3—C4—C5—C6 26.5 (3) C8—C7—C14—C21 −22.8 (3)
N1—C1—C6—C5 166.7 (2) C6—C7—C14—C21 97.8 (3)
C2—C1—C6—C5 −11.4 (4) C8—C7—C14—C15 159.4 (2)
N1—C1—C6—C7 −8.5 (3) C6—C7—C14—C15 −80.0 (3)
C2—C1—C6—C7 173.4 (2) C21—C14—C15—C16 174.8 (3)
O1—C5—C6—C1 −170.3 (2) C7—C14—C15—C16 −7.1 (4)
C4—C5—C6—C1 6.9 (3) C21—C14—C15—C20 −1.1 (3)
O1—C5—C6—C7 4.9 (4) C7—C14—C15—C20 177.1 (2)
C4—C5—C6—C7 −177.9 (2) C20—C15—C16—C17 −0.7 (3)
C1—C6—C7—C8 32.0 (3) C14—C15—C16—C17 −176.1 (2)
C5—C6—C7—C8 −143.2 (2) C15—C16—C17—C18 −3.5 (4)
C1—C6—C7—C14 −89.8 (3) C15—C16—C17—Br1 174.75 (18)
C5—C6—C7—C14 95.0 (2) C16—C17—C18—C19 4.6 (4)
C6—C7—C8—C13 −33.3 (3) Br1—C17—C18—C19 −173.56 (19)
C14—C7—C8—C13 89.0 (3) C17—C18—C19—C20 −1.4 (4)
C6—C7—C8—C9 147.0 (2) C21—N2—C20—C19 −179.6 (2)
C14—C7—C8—C9 −90.7 (3) C21—N2—C20—C15 0.1 (3)
C13—C8—C9—O2 −179.2 (2) C18—C19—C20—N2 177.0 (2)
C7—C8—C9—O2 0.5 (4) C18—C19—C20—C15 −2.7 (4)
C13—C8—C9—C10 3.6 (3) C16—C15—C20—N2 −176.0 (2)
C7—C8—C9—C10 −176.7 (2) C14—C15—C20—N2 0.6 (3)
O2—C9—C10—C11 145.2 (2) C16—C15—C20—C19 3.8 (3)
C8—C9—C10—C11 −37.5 (3) C14—C15—C20—C19 −179.6 (2)
C9—C10—C11—C12 58.8 (3) C20—N2—C21—C14 −0.9 (3)
C10—C11—C12—C13 −46.2 (3) C15—C14—C21—N2 1.2 (3)
C9—C8—C13—N1 −169.4 (2) C7—C14—C21—N2 −177.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7A···O1 1.00 2.49 2.869 (3) 102
C16—H16A···O1 0.95 2.50 3.252 (3) 136
N1—H1A···O2i 0.88 2.03 2.901 (3) 173
N2—H2C···O100ii 0.88 2.10 2.920 (3) 154
N2—H2C···O100iii 0.88 2.52 3.038 (3) 118

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5266).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Berkan, Ö., Saraç, B., Şimşek, R., Yildirim, Ş., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519–523. [DOI] [PubMed]
  4. Biwersi, J., Tulk, B. & Verkman, A. S. (1994). Anal. Biochem. 219, 139-43. [DOI] [PubMed]
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Denny, W. (2002). Curr. Med. Chem. 9, 1655–1665. [DOI] [PubMed]
  7. Guetzoyan, L., Ramiandrasoa, F., Dorizon, H., Desprez, C., Bridoux, A., Rogier, C., Pradines, B. & Perree-Fauvet, M. (2007). Bioorg. Med. Chem. 15, 3278–3289. [DOI] [PubMed]
  8. Luan, X., Gao, C., Zhang, N., Chen, Y., Sun, Q., Tan, C., Liu, H., Jin, Y. & Jiang, Y. (2011). Bioorg. Med. Chem. 19, 3312–3319. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Şimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939–943. [DOI] [PubMed]
  11. Wainwright, M. J. (2001). J. Antimicrob. Chemother. 47, 1–13. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045886/hg5266sup1.cif

e-68-o3337-sup1.cif (34.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045886/hg5266Isup2.hkl

e-68-o3337-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045886/hg5266Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES