Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 14;68(Pt 12):o3347. doi: 10.1107/S1600536812046223

(E)-tert-Butyl 4-(N′-hy­droxy­carbam­­imid­o­yl)piperazine-1-carboxyl­ate

S Sreenivasa a,*, K E Manojkumar a, P A Suchetan b, N R Mohan a, B S Palakshamurthy c
PMCID: PMC3588948  PMID: 23476184

Abstract

In the title compound, C10H20N4O3, the piperazine ring adopts a chair conformation. The mol­ecule adopts an E conformation across the C=N double bond, with the –OH group and the piperazine ring trans to one another. Further, the H atom of the hy­droxy group is directed away from the NH2 group. An intra­molecular N—H⋯O contact occurs involving the NH2 group and the oxime O atom. In the crystal, mol­ecules are linked via strong N—H⋯O and O—H⋯N hydrogen bonds with alternating R 2 2(6) and C(9) motifs into tetra­meric units forming R 4 4(28) motifs.

Related literature  

For the synthesis, characterization and biological activity of piperazine and its derivatives, see: Gan et al. (2009a ,b ); Willems & Ilzerman (2010). For a related structure, see: Gowda et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).graphic file with name e-68-o3347-scheme1.jpg

Experimental  

Crystal data  

  • C10H20N4O3

  • M r = 244.3

  • Triclinic, Inline graphic

  • a = 8.1923 (17) Å

  • b = 8.7859 (16) Å

  • c = 9.714 (2) Å

  • α = 109.451 (7)°

  • β = 99.540 (7)°

  • γ = 96.474 (7)°

  • V = 639.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 300 K

  • 0.22 × 0.16 × 0.1 mm

Data collection  

  • Bruker SMART X2S diffractometer

  • 6407 measured reflections

  • 2218 independent reflections

  • 1632 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.130

  • S = 1.05

  • 2218 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046223/zj2096sup1.cif

e-68-o3347-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046223/zj2096Isup2.hkl

e-68-o3347-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046223/zj2096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2D⋯O1 0.94 (3) 2.08 (3) 2.538 (2) 108.3 (19)
N2—H2C⋯O2i 0.89 (3) 2.10 (3) 2.988 (2) 173 (3)
O1—H1⋯N1ii 0.82 2.04 2.764 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur for his constant encouragement. and G. B. Sadananda, Department of Studies and Research in Physics, U. C. S. Tumkur University, Tumkur, for his help and valuable suggestions. BSPM thanks Dr H. C. Devarajegowda, Department of Physics Yuvarajas College (constituent), University of Mysore, for his guidance.

supplementary crystallographic information

Comment

Numerous piperazine derivatives like aryl amide, sulphonamides, Mannich bases, Schiff's bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities viz. antiinflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic etc. In this view, we synthesized the title compound to study its crystal structure. The molecule crystallizes in triclinic P-1 space group. The piperazine ring in the molecule adopts chair conformation and the molecule prefers E configuration across the C—N double bond, as the OH group and the piperazine ring are in the opposite side of the double bond (Figure 1). The hydrogen atom of the hydroxyl group is directed away from the NH2 group. This results in stabilizing the structure through a strong intermolecular O—H···N(1) and an intramolecular N(2)—H···O hydrogen bonds. In addition to this, the molecule also exhibits a strong N(2)—H···O(C) intermolecular hydrogen bond. The molecules are connected through alternate R22(6) ring and C(9) chain hydrogen bond patterns into tetrameric units exhibiting R44(28) ring patterns (Figure 2). The average N—C bond length in the piperazine ring is 1.466 Å indicating the single bond nature. While, the N4—C(O) bond length is 1.359 (2) Å indicating the delocalization of the nitrogen lone pair of electrons into π system of the carbonyl group. The N(1)—C(1) bond length is 1.290 Å due to its double bond nature, but the N(3)—C(1) and N(2)—C(1) bond lengths are closer to N—C(O) lengths indicating the partial double bond nature of these bonds.

Experimental

To a solution of N-boc-piperazine (10.6 mmol) in 20 ml of acetonitrile was added cyanogen bromide (10.7 mmol) and K2CO3 (21.2 mmol) at -10°C. The reaction mixture was stirred for 18 h at room temperature under nitrogen atmosphere. N-Cyano-4-boc-piperazine was obtained. To N-cyano-4-boc-piperazine (4.6 mmol) in methanol was added NH2OH.HCl (9.3 mmol) and stirred for 30 min at room temperature. The solvent was removed under reduced pressure and the crude product was washed with cold water and dried to yield white solid product. Single crystals employed in X-ray diffraction studies were obtained from slow evaporation of the solution of the compound in methanol.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular Structure of the title compound, Showing the atom-labled Scheme.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, Hydrogen bonds are shown in dashed lines.

Crystal data

C10H20N4O3 F(000) = 264
Mr = 244.3 prism
Triclinic, P1 Dx = 1.269 Mg m3
Hall symbol: -P 1 Melting point: 463 K
a = 8.1923 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.7859 (16) Å Cell parameters from 1632 reflections
c = 9.714 (2) Å θ = 25°
α = 109.451 (7)° µ = 0.10 mm1
β = 99.540 (7)° T = 300 K
γ = 96.474 (7)° Prism, colorless
V = 639.5 (2) Å3 0.22 × 0.16 × 0.1 mm
Z = 2

Data collection

Bruker SMART X2S diffractometer 1632 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 25.0°, θmin = 2.5°
multi–scan h = −9→9
6407 measured reflections k = −10→10
2218 independent reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.0663P] where P = (Fo2 + 2Fc2)/3
2218 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.20 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C8 −0.0609 (3) 0.4383 (3) 0.7235 (3) 0.0705 (7)
H8A −0.1504 0.3592 0.7258 0.106*
H8B 0.0275 0.4655 0.8107 0.106*
H8C −0.0177 0.3931 0.6354 0.106*
C7 −0.1275 (2) 0.5921 (2) 0.7215 (2) 0.0452 (5)
O3 0.02502 (15) 0.69800 (15) 0.71797 (16) 0.0449 (4)
C6 0.0186 (2) 0.8470 (2) 0.7099 (2) 0.0363 (4)
N4 0.17149 (18) 0.92339 (18) 0.70828 (17) 0.0379 (4)
C3 0.3293 (2) 0.8718 (2) 0.7533 (2) 0.0386 (5)
H3A 0.3094 0.7539 0.7291 0.046*
H3B 0.3705 0.9241 0.8606 0.046*
C2 0.4601 (2) 0.9178 (2) 0.6738 (2) 0.0426 (5)
H2A 0.5652 0.8871 0.7081 0.051*
H2B 0.423 0.8574 0.5672 0.051*
N3 0.48827 (18) 1.09515 (18) 0.70205 (16) 0.0380 (4)
C1 0.5834 (2) 1.1978 (2) 0.8426 (2) 0.0372 (5)
C10 −0.1871 (3) 0.6755 (3) 0.8630 (3) 0.0710 (7)
H10A −0.2858 0.6076 0.866 0.106*
H10B −0.2133 0.7796 0.864 0.106*
H10C −0.0999 0.6921 0.9486 0.106*
O2 −0.10816 (16) 0.90611 (16) 0.70148 (16) 0.0489 (4)
N2 0.7249 (2) 1.1515 (2) 0.8972 (2) 0.0500 (5)
C5 0.3302 (2) 1.1390 (2) 0.6480 (2) 0.0437 (5)
H5A 0.2963 1.083 0.5405 0.052*
H5B 0.3481 1.2561 0.6682 0.052*
C4 0.1884 (2) 1.0956 (2) 0.7193 (2) 0.0422 (5)
H4A 0.2114 1.1666 0.8236 0.051*
H4B 0.0835 1.1134 0.6693 0.051*
C9 −0.2609 (3) 0.5532 (3) 0.5819 (3) 0.0623 (6)
H9A −0.3586 0.4846 0.5859 0.093*
H9B −0.2185 0.4968 0.496 0.093*
H9C −0.2907 0.6533 0.5747 0.093*
O1 0.6559 (2) 1.42316 (18) 1.05009 (17) 0.0655 (5)
H1 0.6236 1.5071 1.0951 0.098*
N1 0.5327 (2) 1.33013 (19) 0.91361 (19) 0.0483 (5)
H2C 0.776 (3) 1.084 (3) 0.835 (3) 0.061 (7)*
H2D 0.789 (3) 1.232 (3) 0.986 (3) 0.076 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C8 0.0538 (14) 0.0579 (14) 0.113 (2) 0.0029 (12) 0.0172 (14) 0.0500 (15)
C7 0.0329 (10) 0.0476 (12) 0.0584 (13) −0.0013 (9) 0.0116 (9) 0.0252 (10)
O3 0.0339 (7) 0.0396 (8) 0.0685 (9) 0.0052 (6) 0.0167 (7) 0.0264 (7)
C6 0.0348 (10) 0.0372 (10) 0.0377 (10) 0.0091 (8) 0.0113 (8) 0.0119 (8)
N4 0.0307 (8) 0.0338 (8) 0.0539 (10) 0.0079 (6) 0.0134 (7) 0.0191 (7)
C3 0.0327 (10) 0.0316 (10) 0.0541 (12) 0.0074 (8) 0.0106 (9) 0.0176 (9)
C2 0.0378 (11) 0.0360 (10) 0.0500 (12) 0.0067 (8) 0.0149 (9) 0.0077 (9)
N3 0.0399 (9) 0.0358 (9) 0.0411 (9) 0.0045 (7) 0.0144 (7) 0.0153 (7)
C1 0.0357 (10) 0.0344 (10) 0.0457 (11) 0.0046 (8) 0.0150 (9) 0.0173 (9)
C10 0.0646 (15) 0.0950 (19) 0.0633 (15) 0.0070 (14) 0.0278 (13) 0.0369 (14)
O2 0.0332 (8) 0.0476 (8) 0.0696 (10) 0.0143 (6) 0.0153 (7) 0.0214 (7)
N2 0.0422 (10) 0.0483 (11) 0.0554 (12) 0.0131 (9) 0.0093 (9) 0.0125 (9)
C5 0.0481 (12) 0.0424 (11) 0.0436 (11) 0.0037 (9) 0.0060 (9) 0.0225 (9)
C4 0.0390 (11) 0.0326 (10) 0.0571 (12) 0.0106 (8) 0.0091 (9) 0.0182 (9)
C9 0.0512 (13) 0.0536 (13) 0.0695 (16) −0.0039 (11) 0.0003 (12) 0.0164 (12)
O1 0.0646 (10) 0.0469 (9) 0.0624 (10) 0.0096 (8) −0.0060 (8) 0.0004 (7)
N1 0.0436 (10) 0.0355 (9) 0.0547 (11) 0.0041 (8) 0.0012 (8) 0.0073 (8)

Geometric parameters (Å, º)

C8—C7 1.517 (3) N3—C5 1.457 (2)
C8—H8A 0.96 C1—N1 1.292 (2)
C8—H8B 0.96 C1—N2 1.356 (3)
C8—H8C 0.96 C10—H10A 0.96
C7—O3 1.484 (2) C10—H10B 0.96
C7—C9 1.506 (3) C10—H10C 0.96
C7—C10 1.515 (3) N2—H2C 0.89 (3)
O3—C6 1.343 (2) N2—H2D 0.94 (3)
C6—O2 1.216 (2) C5—C4 1.522 (3)
C6—N4 1.358 (2) C5—H5A 0.97
N4—C3 1.465 (2) C5—H5B 0.97
N4—C4 1.470 (2) C4—H4A 0.97
C3—C2 1.514 (3) C4—H4B 0.97
C3—H3A 0.97 C9—H9A 0.96
C3—H3B 0.97 C9—H9B 0.96
C2—N3 1.473 (2) C9—H9C 0.96
C2—H2A 0.97 O1—N1 1.447 (2)
C2—H2B 0.97 O1—H1 0.82
N3—C1 1.398 (2)
C7—C8—H8A 109.5 C5—N3—C2 108.79 (15)
C7—C8—H8B 109.5 N1—C1—N2 123.51 (19)
H8A—C8—H8B 109.5 N1—C1—N3 119.03 (17)
C7—C8—H8C 109.5 N2—C1—N3 117.45 (17)
H8A—C8—H8C 109.5 C7—C10—H10A 109.5
H8B—C8—H8C 109.5 C7—C10—H10B 109.5
O3—C7—C9 110.52 (16) H10A—C10—H10B 109.5
O3—C7—C10 109.00 (17) C7—C10—H10C 109.5
C9—C7—C10 112.76 (19) H10A—C10—H10C 109.5
O3—C7—C8 101.95 (15) H10B—C10—H10C 109.5
C9—C7—C8 110.19 (18) C1—N2—H2C 119.9 (15)
C10—C7—C8 111.90 (18) C1—N2—H2D 112.7 (15)
C6—O3—C7 121.19 (14) H2C—N2—H2D 120 (2)
O2—C6—O3 124.82 (16) N3—C5—C4 113.42 (14)
O2—C6—N4 123.46 (17) N3—C5—H5A 108.9
O3—C6—N4 111.70 (15) C4—C5—H5A 108.9
C6—N4—C3 123.10 (15) N3—C5—H5B 108.9
C6—N4—C4 117.64 (15) C4—C5—H5B 108.9
C3—N4—C4 115.06 (15) H5A—C5—H5B 107.7
N4—C3—C2 110.37 (15) N4—C4—C5 110.69 (15)
N4—C3—H3A 109.6 N4—C4—H4A 109.5
C2—C3—H3A 109.6 C5—C4—H4A 109.5
N4—C3—H3B 109.6 N4—C4—H4B 109.5
C2—C3—H3B 109.6 C5—C4—H4B 109.5
H3A—C3—H3B 108.1 H4A—C4—H4B 108.1
N3—C2—C3 111.33 (14) C7—C9—H9A 109.5
N3—C2—H2A 109.4 C7—C9—H9B 109.5
C3—C2—H2A 109.4 H9A—C9—H9B 109.5
N3—C2—H2B 109.4 C7—C9—H9C 109.5
C3—C2—H2B 109.4 H9A—C9—H9C 109.5
H2A—C2—H2B 108 H9B—C9—H9C 109.5
C1—N3—C5 117.38 (15) N1—O1—H1 109.5
C1—N3—C2 116.57 (15) C1—N1—O1 109.58 (16)
C9—C7—O3—C6 60.5 (2) C3—C2—N3—C5 −59.90 (19)
C10—C7—O3—C6 −64.0 (2) C5—N3—C1—N1 −3.9 (2)
C8—C7—O3—C6 177.58 (17) C2—N3—C1—N1 −135.54 (18)
C7—O3—C6—O2 −1.7 (3) C5—N3—C1—N2 175.79 (15)
C7—O3—C6—N4 179.86 (15) C2—N3—C1—N2 44.1 (2)
O2—C6—N4—C3 165.07 (18) C1—N3—C5—C4 −77.5 (2)
O3—C6—N4—C3 −16.5 (2) C2—N3—C5—C4 57.6 (2)
O2—C6—N4—C4 9.3 (3) C6—N4—C4—C5 −154.43 (16)
O3—C6—N4—C4 −172.28 (15) C3—N4—C4—C5 47.9 (2)
C6—N4—C3—C2 152.67 (16) N3—C5—C4—N4 −51.3 (2)
C4—N4—C3—C2 −51.0 (2) N2—C1—N1—O1 4.7 (3)
N4—C3—C2—N3 56.6 (2) N3—C1—N1—O1 −175.65 (15)
C3—C2—N3—C1 75.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2D···O1 0.94 (3) 2.08 (3) 2.538 (2) 108.3 (19)
N2—H2C···O2i 0.89 (3) 2.10 (3) 2.988 (2) 173 (3)
O1—H1···N1ii 0.82 2.04 2.764 (3) 147

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+3, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2096).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). SMART, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.
  6. Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm 30, 127–131.
  7. Gowda, B. T., Foro, S., Sowmya, B. P., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o389. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Willems, L. I. & Ilzerman, A. P. (2010). Med. Chem. Res. 30, 778–817. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046223/zj2096sup1.cif

e-68-o3347-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046223/zj2096Isup2.hkl

e-68-o3347-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046223/zj2096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES