Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 14;68(Pt 12):o3349. doi: 10.1107/S1600536812046247

Quinolinium 8-hy­droxy-7-iodo­quinoline-5-sulfonate 0.8-hydrate

Graham Smith a,*
PMCID: PMC3588950  PMID: 23476186

Abstract

In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy­droxy-7-iodo­quinoline-5-sulfonic acid), C9H7N+·C9H5INO4S·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy­droxy O—H⋯O and quinolinium N—H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H⋯O hydrogen-bonding inter­actions along b, giving a two-dimensional network.

Related literature  

For the crystal structure of ferron, see: Balasubramanian & Muthiah (1996). For analytical applications of ferron, see: Vogel (1964). For the crystal structures of other non-zwitterionic compounds of ferron, see: Hemamalini et al. (2004); Smith et al. (2004, 2007).graphic file with name e-68-o3349-scheme1.jpg

Experimental  

Crystal data  

  • C9H8N+·C9H5INO4S·0.8H2O

  • M r = 494.69

  • Orthorhombic, Inline graphic

  • a = 16.2403 (5) Å

  • b = 7.1539 (3) Å

  • c = 15.2458 (5) Å

  • V = 1771.28 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 200 K

  • 0.32 × 0.25 × 0.12 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.906, T max = 0.980

  • 6143 measured reflections

  • 3207 independent reflections

  • 2709 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.082

  • S = 1.18

  • 3207 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983), 789 Friedel pairs

  • Flack parameter: 0.01 (3)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046247/su2523sup1.cif

e-68-o3349-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046247/su2523Isup2.hkl

e-68-o3349-Isup2.hkl (154.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046247/su2523Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O53i 0.86 1.97 2.783 (10) 157
N1B—H1B⋯O53i 0.86 1.88 2.725 (16) 166
O8—H8⋯O52ii 0.81 2.13 2.769 (7) 135
O1W—H11W⋯O52 0.89 2.18 3.066 (9) 179
O1W—H12W⋯O51iii 0.90 2.18 3.080 (8) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

Ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) is a bidentate complexing agent which has analytical applications as a selective colour reagent for the detection of iron(III) but not iron(II) (Vogel, 1964). The crystal structure of ferron (Balasubramanian & Muthiah, 1996) has shown that the molecule exists as a sulfonate-quinolinium zwitterion. As a sulfonic acid, ferron is potentially capable of protonating most Lewis bases, but the crystal structures of only a small number of such salts have been reported. With 8-hydroxyquinoline, a 1:1 sesquihydrate is formed (Smith et al., 2004) and with bifunctional 4,4'-bipyridine (Hemamalini et al., 2004) a monoprotonated 1:1 dihydrate is found. A common structural feature in these ferron proton-transfer salts is the presence of R22(10) cyclic hydrogen-bonded ferron···ferron dimers involving the 8-hydroxy donor and hetero-N acceptor groups. Reaction of ferron with quinoline gave the title chemically stable 1:1 hydrated salt, whose crystal structure is reported on herein.

In the title compound, Fig. 1, the quinolinium cation is fully disordered over two sites A and B with occupancy factors fixed at 0.63 and 0.37, lying essentially within a common plane. These cations are linked to the anions through both quinolinium N—H···O and hydroxyl O—H···O and hydrogen bonds to sulfonate O-atom acceptors (Table 1), forming chains extending along c. Water O—H···Osulfonate hydrogen-bonding interactions together with cation–anion ring π–π associations [minimum ring centroid separation = 3.462 (6) Å] link the chains down the b axial direction, giving a two-dimensional network structure (Figs. 2 and 3). The ferron–ferron dimeric association is not present. In the crystal, there are relatively short intra-anionic I7···O51iv interactions [3.027 (5) Å] [symmetry code (iv): x + 1/2,-y, z].

With the ferron anion, the short intra-anionic O8—H8···N1 association [2.693 (7) Å] is present, similar to that found in other non-zwitterionic compounds of ferron (Hemamalini et al., 2004; Smith et al., 2004, 2007). Also the common aromatic ring C6–H6···O51sulfonate association [2.827 (8) Å] maintains the S5–O51 bond close to the extended plane of the aromatic ring [torsion angle C10—C5—S5—O51, 171.1 (5) °].

Experimental

The title compound was synthesized by heating a solution containing 1 mmol of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) and 1 mmol of quinoline in 50 ml of 50% ethanol-water for 10 min under reflux. After concentration to ca. 40 ml, partial room temperature evaporation of the hot-filtered solution gave yellow flat prisms of the title compound (m.p. 460.6–462.3 K) from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms on the water molecule and the hydroxyl group were located in a difference-Fourier synthesis but were subsequently allowed to ride in the refinement with Uiso(H) = 1.5Ueq(O). Other H-atoms were included in the refinement in calculated positions with N—H = 0.86 Å or C—H = 0.93 Å and were also treated as riding, with Uiso(H) = 1.2Ueq(C). The site occupancy of the water molecule was determined as 0.801 (12) and was subsequently fixed as 0.80. The quinolinium cation was completely disordered laterally within a common plane and the minor component (B) was subsequently located and its occupancy determined as 0.373 (14). Because of the instability in the anisotropic displacement parameters for both components, these were refined isotropically. The maximum difference peak was 0.64 e Å-3 1.07 Å from I7.

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming for the individual cation, the disordered anion components (A and B) and the water species in the title compound. The minor-occupancy B anion is shown with broken bonds and displacement ellipsoids are drawn at the 30% probability level. The intra- and inter-species hydrogen bonds are shown as a dashed lines.

Fig. 2.

Fig. 2.

The stacking of the cation and anion rings down the b axis in the crystal of the title compound.

Fig. 3.

Fig. 3.

A perspective view of the crystal packing of the title compound viewed along the a axis, showing the inter-chain water hydrogen-bonding associations (dashed lines; see Table for details; symmetry codes: (i) -x+1, -y+1, z+1/2; (ii) -x+1, -y+2, z+1/2; (iii) x, y+1, z).

Crystal data

C9H8N+·C9H5INO4S·0.8H2O F(000) = 976
Mr = 494.69 Dx = 1.855 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1806 reflections
a = 16.2403 (5) Å θ = 3.4–28.9°
b = 7.1539 (3) Å µ = 1.96 mm1
c = 15.2458 (5) Å T = 200 K
V = 1771.28 (11) Å3 Flat prism, yellow
Z = 4 0.32 × 0.25 × 0.12 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 3207 independent reflections
Radiation source: fine-focus sealed tube 2709 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 16.077 pixels mm-1 θmax = 28.9°, θmin = 3.4°
ω scans h = −22→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −6→9
Tmin = 0.906, Tmax = 0.980 l = −19→19
6143 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0181P)2 + 3.2291P] where P = (Fo2 + 2Fc2)/3
S = 1.18 (Δ/σ)max = 0.004
3207 reflections Δρmax = 0.65 e Å3
244 parameters Δρmin = −0.66 e Å3
1 restraint Absolute structure: Flack (1983), 789 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1A 0.5706 (6) 0.4412 (12) 0.3693 (6) 0.020 (2)* 0.630
C2A 0.6389 (9) 0.4939 (16) 0.3279 (9) 0.025 (3)* 0.630
C3A 0.6447 (7) 0.4807 (15) 0.2359 (9) 0.019 (2)* 0.630
C4A 0.5784 (8) 0.4161 (17) 0.1888 (8) 0.026 (3)* 0.630
C5A 0.4375 (7) 0.2937 (15) 0.1920 (9) 0.023 (3)* 0.630
C6A 0.3681 (8) 0.2443 (17) 0.2377 (9) 0.030 (2)* 0.630
C7A 0.3664 (8) 0.2600 (17) 0.3288 (10) 0.026 (2)* 0.630
C8A 0.4325 (10) 0.3261 (17) 0.3750 (8) 0.026 (3)* 0.630
C9A 0.5015 (8) 0.3760 (17) 0.3272 (8) 0.021 (3)* 0.630
C10A 0.5084 (11) 0.356 (3) 0.2307 (12) 0.022 (5)* 0.630
C8B 0.6037 (15) 0.466 (3) 0.3434 (14) 0.020 (4)* 0.370
C9B 0.5273 (13) 0.388 (3) 0.3220 (12) 0.013 (4)* 0.370
C10B 0.4986 (15) 0.362 (3) 0.2426 (16) 0.006 (6)* 0.370
C3B 0.3682 (13) 0.254 (3) 0.2889 (17) 0.029 (4)* 0.370
C4B 0.4180 (12) 0.288 (3) 0.2210 (14) 0.020 (4)* 0.370
C5B 0.5542 (14) 0.390 (3) 0.1688 (15) 0.032 (5)* 0.370
C6B 0.6308 (13) 0.451 (3) 0.1885 (15) 0.030 (4)* 0.370
C7B 0.6552 (12) 0.496 (3) 0.2747 (15) 0.022 (4)* 0.370
N1B 0.4736 (11) 0.341 (2) 0.3879 (10) 0.022 (3)* 0.370
C2B 0.4005 (15) 0.285 (3) 0.3719 (14) 0.028 (5)* 0.370
I7 0.30996 (2) 0.75195 (7) 0.45473 (4) 0.0259 (1)
S5 0.38785 (10) 0.7547 (3) 0.09027 (10) 0.0232 (4)
O8 0.4943 (2) 0.8886 (6) 0.4574 (4) 0.0265 (11)
O51 0.3101 (3) 0.6580 (7) 0.0999 (3) 0.0327 (16)
O52 0.3807 (3) 0.9388 (7) 0.0506 (3) 0.0280 (16)
O53 0.4497 (3) 0.6391 (7) 0.0466 (3) 0.0323 (16)
N1 0.6037 (3) 0.9565 (7) 0.3285 (4) 0.0220 (17)
C2 0.6580 (4) 0.9911 (9) 0.2656 (5) 0.027 (2)
C3 0.6418 (4) 0.9684 (9) 0.1760 (5) 0.0233 (19)
C4 0.5659 (4) 0.9043 (9) 0.1505 (4) 0.0223 (19)
C5 0.4255 (4) 0.7936 (7) 0.1981 (4) 0.0150 (17)
C6 0.3719 (4) 0.7600 (9) 0.2665 (4) 0.0183 (17)
C7 0.3948 (4) 0.7926 (7) 0.3545 (4) 0.0147 (17)
C8 0.4722 (4) 0.8578 (8) 0.3737 (4) 0.0173 (17)
C9 0.5289 (4) 0.8920 (8) 0.3042 (4) 0.0157 (17)
C10 0.5063 (4) 0.8627 (8) 0.2143 (4) 0.0167 (17)
O1W 0.2775 (5) 1.2846 (9) 0.0055 (5) 0.057 (3) 0.800
H4A 0.58090 0.41330 0.12790 0.0310* 0.630
H5A 0.43630 0.28440 0.13110 0.0270* 0.630
H6A 0.32210 0.20010 0.20780 0.0360* 0.630
H7A 0.31910 0.22470 0.35900 0.0310* 0.630
H8A 0.43110 0.33690 0.43570 0.0310* 0.630
H1A 0.56960 0.44830 0.42560 0.0240* 0.630
H2A 0.68320 0.53980 0.35990 0.0300* 0.630
H3A 0.69290 0.51530 0.20730 0.0220* 0.630
H1B 0.48960 0.34940 0.44150 0.0260* 0.370
H2B 0.36610 0.26310 0.41960 0.0330* 0.370
H3B 0.31450 0.21280 0.28100 0.0350* 0.370
H4B 0.40210 0.26440 0.16340 0.0240* 0.370
H5B 0.53800 0.36630 0.11140 0.0380* 0.370
H6B 0.66890 0.46380 0.14340 0.0360* 0.370
H7B 0.70690 0.54790 0.28460 0.0270* 0.370
H8B 0.61840 0.49450 0.40080 0.0250* 0.370
H2 0.71010 1.03290 0.28190 0.0320*
H3 0.68190 0.99650 0.13450 0.0280*
H4 0.55400 0.88840 0.09130 0.0270*
H6 0.31940 0.71470 0.25440 0.0220*
H8 0.54190 0.92330 0.45790 0.0390*
H11W 0.30700 1.18390 0.01810 0.0850* 0.800
H12W 0.28600 1.39490 0.03310 0.0850* 0.800

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I7 0.0229 (2) 0.0360 (2) 0.0189 (2) −0.0052 (2) 0.0053 (2) −0.0028 (2)
S5 0.0250 (8) 0.0290 (8) 0.0156 (6) −0.0017 (8) −0.0034 (6) 0.0023 (7)
O8 0.025 (2) 0.036 (2) 0.0184 (18) −0.0057 (18) −0.006 (3) −0.007 (3)
O51 0.030 (3) 0.043 (3) 0.025 (2) −0.017 (2) −0.010 (2) 0.003 (2)
O52 0.028 (3) 0.031 (3) 0.025 (2) 0.000 (2) −0.003 (2) 0.010 (2)
O53 0.045 (3) 0.031 (3) 0.021 (2) 0.006 (3) 0.000 (2) −0.009 (2)
N1 0.017 (3) 0.022 (3) 0.027 (3) −0.005 (2) −0.003 (2) −0.001 (3)
C2 0.018 (3) 0.023 (4) 0.041 (4) 0.002 (3) −0.007 (3) 0.007 (3)
C3 0.018 (3) 0.017 (3) 0.035 (4) 0.006 (3) 0.005 (3) 0.003 (3)
C4 0.028 (4) 0.016 (3) 0.023 (3) 0.005 (3) 0.004 (3) 0.004 (3)
C5 0.025 (3) 0.008 (3) 0.012 (3) 0.000 (2) 0.001 (2) 0.000 (2)
C6 0.018 (3) 0.019 (3) 0.018 (3) −0.003 (3) −0.002 (2) 0.004 (3)
C7 0.013 (3) 0.011 (3) 0.020 (3) −0.001 (2) 0.006 (2) 0.001 (2)
C8 0.020 (3) 0.014 (3) 0.018 (3) 0.001 (2) 0.001 (3) −0.004 (3)
C9 0.013 (3) 0.009 (3) 0.025 (3) 0.000 (2) 0.001 (2) −0.001 (2)
C10 0.018 (3) 0.012 (3) 0.020 (3) −0.001 (2) 0.000 (3) 0.008 (3)
O1W 0.070 (5) 0.027 (4) 0.073 (5) 0.023 (4) −0.034 (4) −0.010 (4)

Geometric parameters (Å, º)

I7—C7 2.078 (6) C8A—C9A 1.38 (2)
S5—O52 1.454 (5) C8B—C9B 1.40 (3)
S5—O51 1.447 (5) C9A—C10A 1.48 (2)
S5—O53 1.462 (5) C9B—C10B 1.31 (3)
S5—C5 1.776 (6) C2A—H2A 0.9300
O8—C8 1.344 (8) C2B—H2B 0.9300
O8—H8 0.8100 C3A—H3A 0.9300
O1W—H12W 0.9000 C3B—H3B 0.9300
O1W—H11W 0.8900 C4A—H4A 0.9300
N1A—C2A 1.331 (17) C4B—H4B 0.9300
N1A—C9A 1.374 (16) C5A—H5A 0.9300
N1B—C9B 1.37 (3) C5B—H5B 0.9300
N1B—C2B 1.28 (3) C6A—H6A 0.9300
N1A—H1A 0.8600 C6B—H6B 0.9300
N1B—H1B 0.8600 C7A—H7A 0.9300
N1—C2 1.326 (9) C7B—H7B 0.9300
N1—C9 1.351 (8) C8A—H8A 0.9300
C2A—C3A 1.409 (19) C8B—H8B 0.9300
C2B—C3B 1.39 (3) C2—C3 1.401 (11)
C3A—C4A 1.374 (17) C3—C4 1.371 (9)
C3B—C4B 1.34 (3) C4—C10 1.404 (9)
C4A—C10A 1.37 (2) C5—C6 1.380 (9)
C4B—C10B 1.45 (3) C5—C10 1.424 (9)
C5A—C10A 1.37 (2) C6—C7 1.412 (9)
C5A—C6A 1.371 (18) C7—C8 1.372 (9)
C5B—C6B 1.35 (3) C8—C9 1.425 (9)
C5B—C10B 1.46 (3) C9—C10 1.434 (9)
C6A—C7A 1.39 (2) C2—H2 0.9300
C6B—C7B 1.41 (3) C3—H3 0.9300
C7A—C8A 1.37 (2) C4—H4 0.9300
C7B—C8B 1.36 (3) C6—H6 0.9300
O51—S5—O52 113.9 (3) C4B—C3B—H3B 122.00
O51—S5—O53 112.1 (3) C10A—C4A—H4A 120.00
O51—S5—C5 106.3 (3) C3A—C4A—H4A 120.00
O52—S5—O53 112.2 (3) C3B—C4B—H4B 122.00
O52—S5—C5 105.7 (3) C10B—C4B—H4B 122.00
O53—S5—C5 105.9 (3) C10A—C5A—H5A 118.00
C8—O8—H8 108.00 C6A—C5A—H5A 118.00
H11W—O1W—H12W 122.00 C10B—C5B—H5B 122.00
C2A—N1A—C9A 123.7 (10) C6B—C5B—H5B 122.00
C2B—N1B—C9B 121.9 (17) C5A—C6A—H6A 120.00
C9A—N1A—H1A 118.00 C7A—C6A—H6A 120.00
C2A—N1A—H1A 118.00 C5B—C6B—H6B 119.00
C9B—N1B—H1B 119.00 C7B—C6B—H6B 119.00
C2B—N1B—H1B 119.00 C8A—C7A—H7A 119.00
C2—N1—C9 117.6 (6) C6A—C7A—H7A 119.00
N1A—C2A—C3A 120.6 (12) C8B—C7B—H7B 120.00
N1B—C2B—C3B 125 (2) C6B—C7B—H7B 120.00
C2A—C3A—C4A 119.4 (11) C7A—C8A—H8A 121.00
C2B—C3B—C4B 117 (2) C9A—C8A—H8A 122.00
C3A—C4A—C10A 120.7 (13) C9B—C8B—H8B 122.00
C3B—C4B—C10B 116 (2) C7B—C8B—H8B 122.00
C6A—C5A—C10A 123.8 (14) N1—C2—C3 124.0 (6)
C6B—C5B—C10B 116 (2) C2—C3—C4 119.0 (6)
C5A—C6A—C7A 120.1 (12) C3—C4—C10 119.6 (6)
C5B—C6B—C7B 123 (2) C6—C5—C10 120.7 (6)
C6A—C7A—C8A 121.7 (12) S5—C5—C6 117.1 (5)
C6B—C7B—C8B 120.7 (19) S5—C5—C10 122.2 (5)
C7A—C8A—C9A 117.0 (12) C5—C6—C7 121.6 (6)
C7B—C8B—C9B 115.4 (19) I7—C7—C8 119.9 (4)
C8A—C9A—C10A 124.0 (13) I7—C7—C6 120.1 (5)
N1A—C9A—C10A 115.8 (12) C6—C7—C8 120.0 (6)
N1A—C9A—C8A 120.2 (11) O8—C8—C9 120.4 (5)
N1B—C9B—C8B 119.4 (17) O8—C8—C7 120.2 (5)
C8B—C9B—C10B 126 (2) C7—C8—C9 119.5 (6)
N1B—C9B—C10B 115 (2) N1—C9—C10 122.8 (6)
C4A—C10A—C9A 119.6 (15) C8—C9—C10 121.3 (6)
C4A—C10A—C5A 126.7 (16) N1—C9—C8 115.8 (6)
C5A—C10A—C9A 113.3 (14) C4—C10—C9 117.0 (6)
C5B—C10B—C9B 118 (2) C4—C10—C5 126.1 (6)
C4B—C10B—C5B 116 (2) C5—C10—C9 116.9 (6)
C4B—C10B—C9B 126 (2) N1—C2—H2 118.00
C3A—C2A—H2A 120.00 C3—C2—H2 118.00
N1A—C2A—H2A 120.00 C4—C3—H3 121.00
C3B—C2B—H2B 117.00 C2—C3—H3 120.00
N1B—C2B—H2B 118.00 C3—C4—H4 120.00
C2A—C3A—H3A 120.00 C10—C4—H4 120.00
C4A—C3A—H3A 120.00 C5—C6—H6 119.00
C2B—C3B—H3B 122.00 C7—C6—H6 119.00
O53—S5—C5—C6 −130.4 (5) C8A—C9A—C10A—C4A 177.6 (14)
O53—S5—C5—C10 51.8 (5) N1—C2—C3—C4 −0.9 (10)
O52—S5—C5—C6 110.4 (5) C2—C3—C4—C10 −0.1 (9)
O51—S5—C5—C6 −11.0 (5) C3—C4—C10—C5 −179.3 (6)
O51—S5—C5—C10 171.1 (5) C3—C4—C10—C9 0.5 (9)
O52—S5—C5—C10 −67.4 (5) S5—C5—C6—C7 −177.8 (5)
C2A—N1A—C9A—C10A 3.5 (18) C10—C5—C6—C7 0.0 (9)
C9A—N1A—C2A—C3A −1.6 (17) S5—C5—C10—C4 −1.5 (8)
C2A—N1A—C9A—C8A −179.2 (11) S5—C5—C10—C9 178.7 (4)
C9—N1—C2—C3 1.4 (9) C6—C5—C10—C4 −179.2 (6)
C2—N1—C9—C8 −179.6 (5) C6—C5—C10—C9 1.0 (8)
C2—N1—C9—C10 −0.9 (9) C5—C6—C7—I7 177.1 (4)
N1A—C2A—C3A—C4A 1.3 (17) C5—C6—C7—C8 −0.5 (9)
C2A—C3A—C4A—C10A −3 (2) I7—C7—C8—O8 2.6 (7)
C3A—C4A—C10A—C5A 178.0 (15) I7—C7—C8—C9 −177.6 (4)
C3A—C4A—C10A—C9A 5 (2) C6—C7—C8—O8 −179.9 (5)
C6A—C5A—C10A—C4A −176.6 (16) C6—C7—C8—C9 0.0 (8)
C6A—C5A—C10A—C9A −4 (2) O8—C8—C9—N1 −0.4 (8)
C10A—C5A—C6A—C7A 1 (2) O8—C8—C9—C10 −179.1 (5)
C5A—C6A—C7A—C8A 0.7 (19) C7—C8—C9—N1 179.8 (5)
C6A—C7A—C8A—C9A −0.3 (19) C7—C8—C9—C10 1.1 (9)
C7A—C8A—C9A—C10A −2 (2) N1—C9—C10—C4 0.0 (9)
C7A—C8A—C9A—N1A −179.1 (11) N1—C9—C10—C5 179.8 (5)
N1A—C9A—C10A—C4A −5 (2) C8—C9—C10—C4 178.6 (6)
C8A—C9A—C10A—C5A 4 (2) C8—C9—C10—C5 −1.5 (8)
N1A—C9A—C10A—C5A −179.0 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O53i 0.86 1.97 2.783 (10) 157
N1B—H1B···O53i 0.86 1.88 2.725 (16) 166
O8—H8···N1 0.81 2.23 2.693 (7) 117
O8—H8···O52ii 0.81 2.13 2.769 (7) 135
O1W—H11W···O52 0.89 2.18 3.066 (9) 179
O1W—H12W···O51iii 0.90 2.18 3.080 (8) 178
C4—H4···O53 0.93 2.55 3.110 (8) 119
C6—H6···O51 0.93 2.39 2.827 (8) 108
C8A—H8A···O53i 0.93 2.58 3.251 (14) 130

Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1, −y+2, z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2523).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Balasubramanian, T. & Muthiah, P. T. (1996). Acta Cryst. C52, 2072–2073. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hemamalini, M., Mu­thiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284–o286. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600–o603. [DOI] [PubMed]
  9. Smith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. C63, o405–o407. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Vogel, A. I. (1964). Textbook of Macro and Semi-Micro Qualitative Inorganic Analysis, 4th ed., p. 266. London: Longmans.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046247/su2523sup1.cif

e-68-o3349-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046247/su2523Isup2.hkl

e-68-o3349-Isup2.hkl (154.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046247/su2523Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES